blob: 226a95725c83930de3ac1aaff85ffb86b6aa482e [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAutoMalloc.h"
#include "SkColorFilter.h"
#include "SkDrawLooper.h"
#include "SkImageFilter.h"
#include "SkMaskFilter.h"
#include "SkPathEffect.h"
#include "SkPipeCanvas.h"
#include "SkPipeFormat.h"
#include "SkRSXform.h"
#include "SkRasterizer.h"
#include "SkShader.h"
#include "SkStream.h"
#include "SkTextBlob.h"
#include "SkTypeface.h"
template <typename T> void write_rrect(T* writer, const SkRRect& rrect) {
char tmp[SkRRect::kSizeInMemory];
rrect.writeToMemory(tmp);
writer->write(tmp, SkRRect::kSizeInMemory);
}
template <typename T> void write_pad(T* writer, const void* buffer, size_t len) {
writer->write(buffer, len & ~3);
if (len & 3) {
const char* src = (const char*)buffer + (len & ~3);
len &= 3;
uint32_t tmp = 0;
memcpy(&tmp, src, len);
writer->write(&tmp, 4);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static uint16_t compute_nondef(const SkPaint& paint, PaintUsage usage) {
// kRespectsStroke_PaintUsage is only valid if other bits are also set
SkASSERT(0 != (usage & ~kRespectsStroke_PaintUsage));
const SkScalar kTextSize_Default = 12;
const SkScalar kTextScaleX_Default = 1;
const SkScalar kTextSkewX_Default = 0;
const SkScalar kStrokeWidth_Default = 0;
const SkScalar kStrokeMiter_Default = 4;
const SkColor kColor_Default = SK_ColorBLACK;
unsigned bits = (paint.getColor() != kColor_Default) ? kColor_NonDef : 0;
if (usage & kText_PaintUsage) {
bits |= (paint.getTextSize() != kTextSize_Default ? kTextSize_NonDef : 0);
bits |= (paint.getTextScaleX() != kTextScaleX_Default ? kTextScaleX_NonDef : 0);
bits |= (paint.getTextSkewX() != kTextSkewX_Default ? kTextSkewX_NonDef : 0);
bits |= (paint.getTypeface() ? kTypeface_NonDef : 0);
}
// TODO: kImage_PaintUsage only needs the shader/maskfilter IF its colortype is kAlpha_8
if (usage & (kVertices_PaintUsage | kDrawPaint_PaintUsage | kImage_PaintUsage |
kText_PaintUsage | kGeometry_PaintUsage | kTextBlob_PaintUsage)) {
bits |= (paint.getShader() ? kShader_NonDef : 0);
}
if (usage & (kText_PaintUsage | kGeometry_PaintUsage | kTextBlob_PaintUsage)) {
bits |= (paint.getPathEffect() ? kPathEffect_NonDef : 0);
bits |= (paint.getRasterizer() ? kRasterizer_NonDef : 0);
if (paint.getStyle() != SkPaint::kFill_Style || (usage & kRespectsStroke_PaintUsage)) {
bits |= (paint.getStrokeWidth() != kStrokeWidth_Default ? kStrokeWidth_NonDef : 0);
bits |= (paint.getStrokeMiter() != kStrokeMiter_Default ? kStrokeMiter_NonDef : 0);
}
}
if (usage &
(kText_PaintUsage | kGeometry_PaintUsage | kImage_PaintUsage | kTextBlob_PaintUsage))
{
bits |= (paint.getMaskFilter() ? kMaskFilter_NonDef : 0);
}
bits |= (paint.getColorFilter() ? kColorFilter_NonDef : 0);
bits |= (paint.getImageFilter() ? kImageFilter_NonDef : 0);
bits |= (paint.getDrawLooper() ? kDrawLooper_NonDef : 0);
return SkToU16(bits);
}
static uint32_t pack_paint_flags(unsigned flags, unsigned hint, unsigned align,
unsigned filter, unsigned style, unsigned caps, unsigned joins,
unsigned encoding) {
SkASSERT(kFlags_BPF + kHint_BPF + kAlign_BPF + kFilter_BPF <= 32);
ASSERT_FITS_IN(flags, kFlags_BPF);
ASSERT_FITS_IN(filter, kFilter_BPF);
ASSERT_FITS_IN(style, kStyle_BPF);
ASSERT_FITS_IN(caps, kCaps_BPF);
ASSERT_FITS_IN(joins, kJoins_BPF);
ASSERT_FITS_IN(hint, kHint_BPF);
ASSERT_FITS_IN(align, kAlign_BPF);
ASSERT_FITS_IN(encoding, kEncoding_BPF);
// left-align the fields of "known" size, and right-align the last (flatFlags) so it can easly
// add more bits in the future.
uint32_t packed = 0;
int shift = 32;
shift -= kFlags_BPF; packed |= (flags << shift);
shift -= kFilter_BPF; packed |= (filter << shift);
shift -= kStyle_BPF; packed |= (style << shift);
// these are only needed for stroking (geometry or text)
shift -= kCaps_BPF; packed |= (caps << shift);
shift -= kJoins_BPF; packed |= (joins << shift);
// these are only needed for text
shift -= kHint_BPF; packed |= (hint << shift);
shift -= kAlign_BPF; packed |= (align << shift);
shift -= kEncoding_BPF; packed |= (encoding << shift);
return packed;
}
#define CHECK_WRITE_SCALAR(writer, nondef, paint, Field) \
do { if (nondef & (k##Field##_NonDef)) { \
writer.writeScalar(paint.get##Field()); \
}} while (0)
#define CHECK_WRITE_FLATTENABLE(writer, nondef, paint, Field) \
do { if (nondef & (k##Field##_NonDef)) { \
SkFlattenable* f = paint.get##Field(); \
SkASSERT(f != nullptr); \
writer.writeFlattenable(f); \
} } while (0)
/*
* Header:
* paint flags : 32
* non_def bits : 16
* xfermode enum : 8
* pad zeros : 8
*/
static void write_paint(SkWriteBuffer& writer, const SkPaint& paint, unsigned usage) {
uint32_t packedFlags = pack_paint_flags(paint.getFlags(), paint.getHinting(),
paint.getTextAlign(), paint.getFilterQuality(),
paint.getStyle(), paint.getStrokeCap(),
paint.getStrokeJoin(), paint.getTextEncoding());
writer.write32(packedFlags);
unsigned nondef = compute_nondef(paint, (PaintUsage)usage);
const uint8_t pad = 0;
writer.write32((nondef << 16) | ((unsigned)paint.getBlendMode() << 8) | pad);
CHECK_WRITE_SCALAR(writer, nondef, paint, TextSize);
CHECK_WRITE_SCALAR(writer, nondef, paint, TextScaleX);
CHECK_WRITE_SCALAR(writer, nondef, paint, TextSkewX);
CHECK_WRITE_SCALAR(writer, nondef, paint, StrokeWidth);
CHECK_WRITE_SCALAR(writer, nondef, paint, StrokeMiter);
if (nondef & kColor_NonDef) {
writer.write32(paint.getColor());
}
if (nondef & kTypeface_NonDef) {
// TODO: explore idea of writing bits indicating "use the prev (or prev N) face"
// e.g. 1-N bits is an index into a ring buffer of typefaces
SkTypeface* tf = paint.getTypeface();
SkASSERT(tf);
writer.writeTypeface(tf);
}
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, PathEffect);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, Shader);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, MaskFilter);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, ColorFilter);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, Rasterizer);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, ImageFilter);
CHECK_WRITE_FLATTENABLE(writer, nondef, paint, DrawLooper);
}
class SkPipeWriter : public SkBinaryWriteBuffer {
enum {
N = 1024/4,
};
uint32_t fStorage[N];
SkWStream* fStream;
public:
SkPipeWriter(SkWStream* stream, SkDeduper* deduper)
: SkBinaryWriteBuffer(fStorage, sizeof(fStorage))
, fStream(stream)
{
this->setDeduper(deduper);
}
SkPipeWriter(SkPipeCanvas* pc) : SkPipeWriter(pc->fStream, pc->fDeduper) {}
~SkPipeWriter() override {
SkASSERT(SkIsAlign4(fStream->bytesWritten()));
this->writeToStream(fStream);
}
void writePaint(const SkPaint& paint) override {
write_paint(*this, paint, kUnknown_PaintUsage);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
SkPipeCanvas::SkPipeCanvas(const SkRect& cull, SkPipeDeduper* deduper, SkWStream* stream)
: INHERITED(cull.roundOut())
, fDeduper(deduper)
, fStream(stream)
{}
SkPipeCanvas::~SkPipeCanvas() {}
void SkPipeCanvas::willSave() {
fStream->write32(pack_verb(SkPipeVerb::kSave));
this->INHERITED::willSave();
}
SkCanvas::SaveLayerStrategy SkPipeCanvas::getSaveLayerStrategy(const SaveLayerRec& rec) {
SkPipeWriter writer(this);
uint32_t extra = rec.fSaveLayerFlags;
// remap this wacky flag
if (extra & (1 << 31)/*SkCanvas::kDontClipToLayer_PrivateSaveLayerFlag*/) {
extra &= ~(1 << 31);
extra |= kDontClipToLayer_SaveLayerMask;
}
if (rec.fBounds) {
extra |= kHasBounds_SaveLayerMask;
}
if (rec.fPaint) {
extra |= kHasPaint_SaveLayerMask;
}
if (rec.fBackdrop) {
extra |= kHasBackdrop_SaveLayerMask;
}
if (rec.fClipMask) {
extra |= kHasClipMask_SaveLayerMask;
}
if (rec.fClipMatrix) {
extra |= kHasClipMatrix_SaveLayerMask;
}
writer.write32(pack_verb(SkPipeVerb::kSaveLayer, extra));
if (rec.fBounds) {
writer.writeRect(*rec.fBounds);
}
if (rec.fPaint) {
write_paint(writer, *rec.fPaint, kSaveLayer_PaintUsage);
}
if (rec.fBackdrop) {
writer.writeFlattenable(rec.fBackdrop);
}
if (rec.fClipMask) {
writer.writeImage(rec.fClipMask);
}
if (rec.fClipMatrix) {
writer.writeMatrix(*rec.fClipMatrix);
}
return kNoLayer_SaveLayerStrategy;
}
void SkPipeCanvas::willRestore() {
fStream->write32(pack_verb(SkPipeVerb::kRestore));
this->INHERITED::willRestore();
}
template <typename T> void write_sparse_matrix(T* writer, const SkMatrix& matrix) {
SkMatrix::TypeMask tm = matrix.getType();
SkScalar tmp[9];
if (tm & SkMatrix::kPerspective_Mask) {
matrix.get9(tmp);
writer->write(tmp, 9 * sizeof(SkScalar));
} else if (tm & SkMatrix::kAffine_Mask) {
tmp[0] = matrix[SkMatrix::kMScaleX];
tmp[1] = matrix[SkMatrix::kMSkewX];
tmp[2] = matrix[SkMatrix::kMTransX];
tmp[3] = matrix[SkMatrix::kMScaleY];
tmp[4] = matrix[SkMatrix::kMSkewY];
tmp[5] = matrix[SkMatrix::kMTransY];
writer->write(tmp, 6 * sizeof(SkScalar));
} else if (tm & SkMatrix::kScale_Mask) {
tmp[0] = matrix[SkMatrix::kMScaleX];
tmp[1] = matrix[SkMatrix::kMTransX];
tmp[2] = matrix[SkMatrix::kMScaleY];
tmp[3] = matrix[SkMatrix::kMTransY];
writer->write(tmp, 4 * sizeof(SkScalar));
} else if (tm & SkMatrix::kTranslate_Mask) {
tmp[0] = matrix[SkMatrix::kMTransX];
tmp[1] = matrix[SkMatrix::kMTransY];
writer->write(tmp, 2 * sizeof(SkScalar));
}
// else write nothing for Identity
}
static void do_concat(SkWStream* stream, const SkMatrix& matrix, bool isSetMatrix) {
unsigned mtype = matrix.getType();
SkASSERT(0 == (mtype & ~kTypeMask_ConcatMask));
unsigned extra = mtype;
if (isSetMatrix) {
extra |= kSetMatrix_ConcatMask;
}
if (mtype || isSetMatrix) {
stream->write32(pack_verb(SkPipeVerb::kConcat, extra));
write_sparse_matrix(stream, matrix);
}
}
void SkPipeCanvas::didConcat(const SkMatrix& matrix) {
do_concat(fStream, matrix, false);
this->INHERITED::didConcat(matrix);
}
void SkPipeCanvas::didSetMatrix(const SkMatrix& matrix) {
do_concat(fStream, matrix, true);
this->INHERITED::didSetMatrix(matrix);
}
void SkPipeCanvas::onClipRect(const SkRect& rect, SkClipOp op, ClipEdgeStyle edgeStyle) {
fStream->write32(pack_verb(SkPipeVerb::kClipRect, ((unsigned)op << 1) | edgeStyle));
fStream->write(&rect, 4 * sizeof(SkScalar));
this->INHERITED::onClipRect(rect, op, edgeStyle);
}
void SkPipeCanvas::onClipRRect(const SkRRect& rrect, SkClipOp op, ClipEdgeStyle edgeStyle) {
fStream->write32(pack_verb(SkPipeVerb::kClipRRect, ((unsigned)op << 1) | edgeStyle));
write_rrect(fStream, rrect);
this->INHERITED::onClipRRect(rrect, op, edgeStyle);
}
void SkPipeCanvas::onClipPath(const SkPath& path, SkClipOp op, ClipEdgeStyle edgeStyle) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kClipPath, ((unsigned)op << 1) | edgeStyle));
writer.writePath(path);
this->INHERITED::onClipPath(path, op, edgeStyle);
}
void SkPipeCanvas::onClipRegion(const SkRegion& deviceRgn, SkClipOp op) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kClipRegion, (unsigned)op << 1));
writer.writeRegion(deviceRgn);
this->INHERITED::onClipRegion(deviceRgn, op);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkPipeCanvas::onDrawArc(const SkRect& bounds, SkScalar startAngle, SkScalar sweepAngle,
bool useCenter, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawArc, (int)useCenter));
writer.writeRect(bounds);
writer.writeScalar(startAngle);
writer.writeScalar(sweepAngle);
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawAtlas(const SkImage* image, const SkRSXform xform[], const SkRect rect[],
const SkColor colors[], int count, SkBlendMode mode,
const SkRect* cull, const SkPaint* paint) {
unsigned extra = (unsigned)mode;
SkASSERT(0 == (extra & ~kMode_DrawAtlasMask));
if (colors) {
extra |= kHasColors_DrawAtlasMask;
}
if (cull) {
extra |= kHasCull_DrawAtlasMask;
}
if (paint) {
extra |= kHasPaint_DrawAtlasMask;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawAtlas, extra));
writer.writeImage(image);
writer.write32(count);
writer.write(xform, count * sizeof(SkRSXform));
writer.write(rect, count * sizeof(SkRect));
if (colors) {
writer.write(colors, count * sizeof(SkColor));
}
if (cull) {
writer.writeRect(*cull);
}
if (paint) {
write_paint(writer, *paint, kImage_PaintUsage);
}
}
void SkPipeCanvas::onDrawPaint(const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPaint));
write_paint(writer, paint, kDrawPaint_PaintUsage);
}
void SkPipeCanvas::onDrawPoints(PointMode mode, size_t count, const SkPoint pts[],
const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPoints, mode));
writer.write32(SkToU32(count));
writer.write(pts, count * sizeof(SkPoint));
write_paint(writer, paint, kGeometry_PaintUsage | kRespectsStroke_PaintUsage);
}
void SkPipeCanvas::onDrawRect(const SkRect& rect, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawRect));
writer.write(&rect, sizeof(SkRect));
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawOval(const SkRect& rect, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawOval));
writer.write(&rect, sizeof(SkRect));
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawRRect));
write_rrect(&writer, rrect);
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawDRRect));
write_rrect(&writer, outer);
write_rrect(&writer, inner);
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPath));
writer.writePath(path);
write_paint(writer, paint, kGeometry_PaintUsage);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkImage> make_from_bitmap(const SkBitmap& bitmap) {
// If we just "make" an image, it will force a CPU copy (if its mutable), only to have
// us then either find it in our cache, or compress and send it.
//
// Better could be to look it up in our cache first, and only create/compress it if we have to.
//
// But for now, just do the dumb thing...
return SkImage::MakeFromBitmap(bitmap);
}
void SkPipeCanvas::onDrawBitmap(const SkBitmap& bitmap, SkScalar x, SkScalar y,
const SkPaint* paint) {
sk_sp<SkImage> image = make_from_bitmap(bitmap);
if (image) {
this->onDrawImage(image.get(), x, y, paint);
}
}
void SkPipeCanvas::onDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
sk_sp<SkImage> image = make_from_bitmap(bitmap);
if (image) {
this->onDrawImageRect(image.get(), src, dst, paint, constraint);
}
}
void SkPipeCanvas::onDrawBitmapNine(const SkBitmap& bitmap, const SkIRect& center,
const SkRect& dst, const SkPaint* paint) {
sk_sp<SkImage> image = make_from_bitmap(bitmap);
if (image) {
this->onDrawImageNine(image.get(), center, dst, paint);
}
}
void SkPipeCanvas::onDrawBitmapLattice(const SkBitmap& bitmap, const Lattice& lattice,
const SkRect& dst, const SkPaint* paint) {
sk_sp<SkImage> image = make_from_bitmap(bitmap);
if (image) {
this->onDrawImageLattice(image.get(), lattice, dst, paint);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkPipeCanvas::onDrawImage(const SkImage* image, SkScalar left, SkScalar top,
const SkPaint* paint) {
unsigned extra = 0;
if (paint) {
extra |= kHasPaint_DrawImageMask;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawImage, extra));
writer.writeImage(image);
writer.writeScalar(left);
writer.writeScalar(top);
if (paint) {
write_paint(writer, *paint, kImage_PaintUsage);
}
}
void SkPipeCanvas::onDrawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
SkASSERT(0 == ((unsigned)constraint & ~1));
unsigned extra = (unsigned)constraint;
if (paint) {
extra |= kHasPaint_DrawImageRectMask;
}
if (src) {
extra |= kHasSrcRect_DrawImageRectMask;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawImageRect, extra));
writer.writeImage(image);
if (src) {
writer.write(src, sizeof(*src));
}
writer.write(&dst, sizeof(dst));
if (paint) {
write_paint(writer, *paint, kImage_PaintUsage);
}
}
void SkPipeCanvas::onDrawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
unsigned extra = 0;
if (paint) {
extra |= kHasPaint_DrawImageNineMask;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawImageNine, extra));
writer.writeImage(image);
writer.write(&center, sizeof(center));
writer.write(&dst, sizeof(dst));
if (paint) {
write_paint(writer, *paint, kImage_PaintUsage);
}
}
void SkPipeCanvas::onDrawImageLattice(const SkImage* image, const Lattice& lattice,
const SkRect& dst, const SkPaint* paint) {
unsigned extra = 0;
if (paint) {
extra |= kHasPaint_DrawImageLatticeMask;
}
if (lattice.fFlags) {
extra |= kHasFlags_DrawImageLatticeMask;
}
if (lattice.fXCount >= kCount_DrawImageLatticeMask) {
extra |= kCount_DrawImageLatticeMask << kXCount_DrawImageLatticeShift;
} else {
extra |= lattice.fXCount << kXCount_DrawImageLatticeShift;
}
if (lattice.fYCount >= kCount_DrawImageLatticeMask) {
extra |= kCount_DrawImageLatticeMask << kYCount_DrawImageLatticeShift;
} else {
extra |= lattice.fYCount << kYCount_DrawImageLatticeShift;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawImageLattice, extra));
writer.writeImage(image);
if (lattice.fXCount >= kCount_DrawImageLatticeMask) {
writer.write32(lattice.fXCount);
}
if (lattice.fYCount >= kCount_DrawImageLatticeMask) {
writer.write32(lattice.fYCount);
}
// Often these divs will be small (8 or 16 bits). Consider sniffing that and writing a flag
// so we can store them smaller.
writer.write(lattice.fXDivs, lattice.fXCount * sizeof(int32_t));
writer.write(lattice.fYDivs, lattice.fYCount * sizeof(int32_t));
if (lattice.fFlags) {
int32_t count = (lattice.fXCount + 1) * (lattice.fYCount + 1);
SkASSERT(count > 0);
write_pad(&writer, lattice.fFlags, count);
}
SkASSERT(lattice.fBounds);
writer.write(&lattice.fBounds, sizeof(*lattice.fBounds));
writer.write(&dst, sizeof(dst));
if (paint) {
write_paint(writer, *paint, kImage_PaintUsage);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkPipeCanvas::onDrawText(const void* text, size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
SkASSERT(byteLength);
bool compact = fits_in(byteLength, 24);
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawText, compact ? (unsigned)byteLength : 0));
if (!compact) {
writer.write32(SkToU32(byteLength));
}
write_pad(&writer, text, byteLength);
writer.writeScalar(x);
writer.writeScalar(y);
write_paint(writer, paint, kText_PaintUsage);
}
void SkPipeCanvas::onDrawPosText(const void* text, size_t byteLength, const SkPoint pos[],
const SkPaint& paint) {
SkASSERT(byteLength);
bool compact = fits_in(byteLength, 24);
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPosText, compact ? (unsigned)byteLength : 0));
if (!compact) {
writer.write32(SkToU32(byteLength));
}
write_pad(&writer, text, byteLength);
writer.writePointArray(pos, paint.countText(text, byteLength));
write_paint(writer, paint, kText_PaintUsage);
}
void SkPipeCanvas::onDrawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[],
SkScalar constY, const SkPaint& paint) {
SkASSERT(byteLength);
bool compact = fits_in(byteLength, 24);
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPosTextH, compact ? (unsigned)byteLength : 0));
if (!compact) {
writer.write32(SkToU32(byteLength));
}
write_pad(&writer, text, byteLength);
writer.writeScalarArray(xpos, paint.countText(text, byteLength));
writer.writeScalar(constY);
write_paint(writer, paint, kText_PaintUsage);
}
void SkPipeCanvas::onDrawTextOnPath(const void* text, size_t byteLength, const SkPath& path,
const SkMatrix* matrix, const SkPaint& paint) {
SkASSERT(byteLength > 0);
unsigned extra = 0;
if (byteLength <= kTextLength_DrawTextOnPathMask) {
extra |= byteLength;
} // else we will write the length after the packedverb
SkMatrix::TypeMask tm = matrix ? matrix->getType() : SkMatrix::kIdentity_Mask;
extra |= (unsigned)tm << kMatrixType_DrawTextOnPathShift;
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawTextOnPath, extra));
if (byteLength > kTextLength_DrawTextOnPathMask) {
writer.write32(byteLength);
}
write_pad(&writer, text, byteLength);
writer.writePath(path);
if (matrix) {
write_sparse_matrix(&writer, *matrix);
}
write_paint(writer, paint, kText_PaintUsage);
}
void SkPipeCanvas::onDrawTextRSXform(const void* text, size_t byteLength, const SkRSXform xform[],
const SkRect* cull, const SkPaint& paint) {
SkASSERT(byteLength);
bool compact = fits_in(byteLength, 23);
unsigned extra = compact ? (byteLength << 1) : 0;
if (cull) {
extra |= 1;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawTextRSXform, extra));
if (!compact) {
writer.write32(SkToU32(byteLength));
}
write_pad(&writer, text, byteLength);
int count = paint.countText(text, byteLength);
writer.write32(count); // maybe we can/should store this in extra as well?
writer.write(xform, count * sizeof(SkRSXform));
if (cull) {
writer.writeRect(*cull);
}
write_paint(writer, paint, kText_PaintUsage);
}
void SkPipeCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint &paint) {
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawTextBlob, 0));
blob->flatten(writer);
writer.writeScalar(x);
writer.writeScalar(y);
write_paint(writer, paint, kTextBlob_PaintUsage);
}
void SkPipeCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {
unsigned extra = fDeduper->findOrDefinePicture(const_cast<SkPicture*>(picture));
if (matrix) {
extra |= kHasMatrix_DrawPictureExtra;
}
if (paint) {
extra |= kHasPaint_DrawPictureExtra;
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawPicture, extra));
if (matrix) {
writer.writeMatrix(*matrix);
}
if (paint) {
write_paint(writer, *paint, kSaveLayer_PaintUsage);
}
}
void SkPipeCanvas::onDrawRegion(const SkRegion& region, const SkPaint& paint) {
size_t size = region.writeToMemory(nullptr);
unsigned extra = 0;
if (fits_in(size, 24)) {
extra = SkToUInt(size);
}
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawRegion, extra));
if (0 == extra) {
writer.write32(size);
}
SkAutoSMalloc<2048> storage(size);
region.writeToMemory(storage.get());
write_pad(&writer, storage.get(), size);
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawVerticesObject(const SkVertices* vertices, SkBlendMode bmode,
const SkPaint& paint) {
unsigned extra = static_cast<unsigned>(bmode);
SkPipeWriter writer(this);
writer.write32(pack_verb(SkPipeVerb::kDrawVertices, extra));
// TODO: dedup vertices?
writer.writeDataAsByteArray(vertices->encode().get());
write_paint(writer, paint, kVertices_PaintUsage);
}
void SkPipeCanvas::onDrawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode bmode,
const SkPaint& paint) {
SkPipeWriter writer(this);
unsigned extra = 0;
SkASSERT(0 == ((int)bmode & ~kModeEnum_DrawPatchExtraMask));
extra = (unsigned)bmode;
if (colors) {
extra |= kHasColors_DrawPatchExtraMask;
}
if (texCoords) {
extra |= kHasTexture_DrawPatchExtraMask;
}
writer.write32(pack_verb(SkPipeVerb::kDrawPatch, extra));
writer.write(cubics, sizeof(SkPoint) * 12);
if (colors) {
writer.write(colors, sizeof(SkColor) * 4);
}
if (texCoords) {
writer.write(texCoords, sizeof(SkPoint) * 4);
}
write_paint(writer, paint, kGeometry_PaintUsage);
}
void SkPipeCanvas::onDrawAnnotation(const SkRect& rect, const char key[], SkData* data) {
const size_t len = strlen(key) + 1; // must write the trailing 0
bool compact = fits_in(len, 23);
uint32_t extra = compact ? (unsigned)len : 0;
extra <<= 1; // make room for has_data_sentinel
if (data) {
extra |= 1;
}
fStream->write32(pack_verb(SkPipeVerb::kDrawAnnotation, extra));
fStream->write(&rect, sizeof(SkRect));
if (!compact) {
fStream->write32(SkToU32(len));
}
write_pad(fStream, key, len);
if (data) {
fStream->write32(SkToU32(data->size()));
write_pad(fStream, data->data(), data->size());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class A8Serializer : public SkPixelSerializer {
protected:
bool onUseEncodedData(const void* data, size_t len) {
return true;
}
SkData* onEncode(const SkPixmap& pmap) {
if (kAlpha_8_SkColorType == pmap.colorType()) {
SkDynamicMemoryWStream stream;
stream.write("skiaimgf", 8);
stream.write32(pmap.width());
stream.write32(pmap.height());
stream.write16(pmap.colorType());
stream.write16(pmap.alphaType());
stream.write32(0); // no colorspace for now
for (int y = 0; y < pmap.height(); ++y) {
stream.write(pmap.addr8(0, y), pmap.width());
}
return stream.detachAsData().release();
}
return nullptr;
}
};
static sk_sp<SkData> default_image_serializer(SkImage* image) {
A8Serializer serial;
sk_sp<SkData> data = image->encodeToData(&serial);
if (!data) {
data = image->encodeToData();
}
return data;
}
static bool show_deduper_traffic = false;
int SkPipeDeduper::findOrDefineImage(SkImage* image) {
int index = fImages.find(image->uniqueID());
SkASSERT(index >= 0);
if (index) {
if (show_deduper_traffic) {
SkDebugf(" reuseImage(%d)\n", index - 1);
}
return index;
}
sk_sp<SkData> data = fIMSerializer ? fIMSerializer->serialize(image)
: default_image_serializer(image);
if (data) {
index = fImages.add(image->uniqueID());
SkASSERT(index > 0);
SkASSERT(fits_in(index, 24));
fStream->write32(pack_verb(SkPipeVerb::kDefineImage, index));
uint32_t len = SkToU32(data->size());
fStream->write32(SkAlign4(len));
write_pad(fStream, data->data(), len);
if (show_deduper_traffic) {
int size = image->width() * image->height() << 2;
SkDebugf(" defineImage(%d) %d -> %d\n", index - 1, size, len);
}
return index;
}
SkDebugf("+++ failed to encode image [%d %d]\n", image->width(), image->height());
return 0; // failed to encode
}
int SkPipeDeduper::findOrDefinePicture(SkPicture* picture) {
int index = fPictures.find(picture->uniqueID());
SkASSERT(index >= 0);
if (index) {
if (show_deduper_traffic) {
SkDebugf(" reusePicture(%d)\n", index - 1);
}
return index;
}
size_t prevWritten = fStream->bytesWritten();
unsigned extra = 0; // 0 means we're defining a new picture, non-zero means undef_index + 1
fStream->write32(pack_verb(SkPipeVerb::kDefinePicture, extra));
const SkRect cull = picture->cullRect();
fStream->write(&cull, sizeof(cull));
picture->playback(fPipeCanvas);
// call fPictures.add *after* we're written the picture, so that any nested pictures will have
// already been defined, and we get the "last" index value.
index = fPictures.add(picture->uniqueID());
ASSERT_FITS_IN(index, kObjectDefinitionBits);
fStream->write32(pack_verb(SkPipeVerb::kEndPicture, index));
if (show_deduper_traffic) {
SkDebugf(" definePicture(%d) %d\n",
index - 1, SkToU32(fStream->bytesWritten() - prevWritten));
}
return index;
}
static sk_sp<SkData> encode(SkTypeface* tf) {
SkDynamicMemoryWStream stream;
tf->serialize(&stream);
return sk_sp<SkData>(stream.detachAsData());
}
int SkPipeDeduper::findOrDefineTypeface(SkTypeface* typeface) {
if (!typeface) {
return 0; // default
}
int index = fTypefaces.find(typeface->uniqueID());
SkASSERT(index >= 0);
if (index) {
if (show_deduper_traffic) {
SkDebugf(" reuseTypeface(%d)\n", index - 1);
}
return index;
}
sk_sp<SkData> data = fTFSerializer ? fTFSerializer->serialize(typeface) : encode(typeface);
if (data) {
index = fTypefaces.add(typeface->uniqueID());
SkASSERT(index > 0);
SkASSERT(fits_in(index, 24));
fStream->write32(pack_verb(SkPipeVerb::kDefineTypeface, index));
uint32_t len = SkToU32(data->size());
fStream->write32(SkAlign4(len));
write_pad(fStream, data->data(), len);
if (show_deduper_traffic) {
SkDebugf(" defineTypeface(%d) %d\n", index - 1, len);
}
return index;
}
SkDebugf("+++ failed to encode typeface %d\n", typeface->uniqueID());
return 0; // failed to encode
}
int SkPipeDeduper::findOrDefineFactory(SkFlattenable* flattenable) {
if (!flattenable) {
return 0;
}
int index = fFactories.find(flattenable->getFactory());
SkASSERT(index >= 0);
if (index) {
if (show_deduper_traffic) {
SkDebugf(" reuseFactory(%d)\n", index - 1);
}
return index;
}
index = fFactories.add(flattenable->getFactory());
ASSERT_FITS_IN(index, kIndex_DefineFactoryExtraBits);
const char* name = flattenable->getTypeName();
size_t len = strlen(name);
ASSERT_FITS_IN(len, kNameLength_DefineFactoryExtraBits);
unsigned extra = (index << kNameLength_DefineFactoryExtraBits) | len;
size_t prevWritten = fStream->bytesWritten();
fStream->write32(pack_verb(SkPipeVerb::kDefineFactory, extra));
write_pad(fStream, name, len + 1);
if (false) {
SkDebugf(" defineFactory(%d) %d %s\n",
index - 1, SkToU32(fStream->bytesWritten() - prevWritten), name);
}
return index;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkPipe.h"
class SkPipeSerializer::Impl {
public:
SkPipeDeduper fDeduper;
std::unique_ptr<SkPipeCanvas> fCanvas;
};
SkPipeSerializer::SkPipeSerializer() : fImpl(new Impl) {}
SkPipeSerializer::~SkPipeSerializer() {
if (fImpl->fCanvas) {
this->endWrite();
}
}
void SkPipeSerializer::setTypefaceSerializer(SkTypefaceSerializer* tfs) {
fImpl->fDeduper.setTypefaceSerializer(tfs);
}
void SkPipeSerializer::setImageSerializer(SkImageSerializer* ims) {
fImpl->fDeduper.setImageSerializer(ims);
}
void SkPipeSerializer::resetCache() {
fImpl->fDeduper.resetCaches();
}
sk_sp<SkData> SkPipeSerializer::writeImage(SkImage* image) {
SkDynamicMemoryWStream stream;
this->writeImage(image, &stream);
return stream.detachAsData();
}
sk_sp<SkData> SkPipeSerializer::writePicture(SkPicture* picture) {
SkDynamicMemoryWStream stream;
this->writePicture(picture, &stream);
return stream.detachAsData();
}
void SkPipeSerializer::writePicture(SkPicture* picture, SkWStream* stream) {
int index = fImpl->fDeduper.findPicture(picture);
if (0 == index) {
// Try to define the picture
this->beginWrite(picture->cullRect(), stream);
index = fImpl->fDeduper.findOrDefinePicture(picture);
this->endWrite();
}
stream->write32(pack_verb(SkPipeVerb::kWritePicture, index));
}
void SkPipeSerializer::writeImage(SkImage* image, SkWStream* stream) {
int index = fImpl->fDeduper.findImage(image);
if (0 == index) {
// Try to define the image
fImpl->fDeduper.setStream(stream);
index = fImpl->fDeduper.findOrDefineImage(image);
}
stream->write32(pack_verb(SkPipeVerb::kWriteImage, index));
}
SkCanvas* SkPipeSerializer::beginWrite(const SkRect& cull, SkWStream* stream) {
SkASSERT(nullptr == fImpl->fCanvas);
fImpl->fCanvas.reset(new SkPipeCanvas(cull, &fImpl->fDeduper, stream));
fImpl->fDeduper.setStream(stream);
fImpl->fDeduper.setCanvas(fImpl->fCanvas.get());
return fImpl->fCanvas.get();
}
void SkPipeSerializer::endWrite() {
fImpl->fCanvas->restoreToCount(1);
fImpl->fCanvas.reset(nullptr);
fImpl->fDeduper.setCanvas(nullptr);
}