| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkThreadPool_DEFINED |
| #define SkThreadPool_DEFINED |
| |
| #include "SkCondVar.h" |
| #include "SkRunnable.h" |
| #include "SkTDArray.h" |
| #include "SkTInternalLList.h" |
| #include "SkThreadUtils.h" |
| #include "SkTypes.h" |
| |
| #if defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID) |
| # include <unistd.h> |
| #endif |
| |
| // Returns the number of cores on this machine. |
| static inline int num_cores() { |
| #if defined(SK_BUILD_FOR_WIN32) |
| SYSTEM_INFO sysinfo; |
| GetSystemInfo(&sysinfo); |
| return sysinfo.dwNumberOfProcessors; |
| #elif defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID) |
| return (int) sysconf(_SC_NPROCESSORS_ONLN); |
| #else |
| return 1; |
| #endif |
| } |
| |
| template <typename T> |
| class SkTThreadPool { |
| public: |
| /** |
| * Create a threadpool with count threads, or one thread per core if kThreadPerCore. |
| */ |
| static const int kThreadPerCore = -1; |
| explicit SkTThreadPool(int count); |
| ~SkTThreadPool(); |
| |
| /** |
| * Queues up an SkRunnable to run when a thread is available, or synchronously if count is 0. |
| * Does not take ownership. NULL is a safe no-op. If T is not void, the runnable will be passed |
| * a reference to a T on the thread's local stack. |
| */ |
| void add(SkTRunnable<T>*); |
| |
| /** |
| * Same as add, but adds the runnable as the very next to run rather than enqueueing it. |
| */ |
| void addNext(SkTRunnable<T>*); |
| |
| /** |
| * Block until all added SkRunnables have completed. Once called, calling add() is undefined. |
| */ |
| void wait(); |
| |
| private: |
| struct LinkedRunnable { |
| SkTRunnable<T>* fRunnable; // Unowned. |
| SK_DECLARE_INTERNAL_LLIST_INTERFACE(LinkedRunnable); |
| }; |
| |
| enum State { |
| kRunning_State, // Normal case. We've been constructed and no one has called wait(). |
| kWaiting_State, // wait has been called, but there still might be work to do or being done. |
| kHalting_State, // There's no work to do and no thread is busy. All threads can shut down. |
| }; |
| |
| void addSomewhere(SkTRunnable<T>* r, |
| void (SkTInternalLList<LinkedRunnable>::*)(LinkedRunnable*)); |
| |
| SkTInternalLList<LinkedRunnable> fQueue; |
| SkCondVar fReady; |
| SkTDArray<SkThread*> fThreads; |
| State fState; |
| int fBusyThreads; |
| |
| static void Loop(void*); // Static because we pass in this. |
| }; |
| |
| template <typename T> |
| SkTThreadPool<T>::SkTThreadPool(int count) : fState(kRunning_State), fBusyThreads(0) { |
| if (count < 0) { |
| count = num_cores(); |
| } |
| // Create count threads, all running SkTThreadPool::Loop. |
| for (int i = 0; i < count; i++) { |
| SkThread* thread = SkNEW_ARGS(SkThread, (&SkTThreadPool::Loop, this)); |
| *fThreads.append() = thread; |
| thread->start(); |
| } |
| } |
| |
| template <typename T> |
| SkTThreadPool<T>::~SkTThreadPool() { |
| if (kRunning_State == fState) { |
| this->wait(); |
| } |
| } |
| |
| namespace SkThreadPoolPrivate { |
| |
| template <typename T> |
| struct ThreadLocal { |
| void run(SkTRunnable<T>* r) { r->run(data); } |
| T data; |
| }; |
| |
| template <> |
| struct ThreadLocal<void> { |
| void run(SkTRunnable<void>* r) { r->run(); } |
| }; |
| |
| } // namespace SkThreadPoolPrivate |
| |
| template <typename T> |
| void SkTThreadPool<T>::addSomewhere(SkTRunnable<T>* r, |
| void (SkTInternalLList<LinkedRunnable>::* f)(LinkedRunnable*)) { |
| if (r == NULL) { |
| return; |
| } |
| |
| if (fThreads.isEmpty()) { |
| SkThreadPoolPrivate::ThreadLocal<T> threadLocal; |
| threadLocal.run(r); |
| return; |
| } |
| |
| LinkedRunnable* linkedRunnable = SkNEW(LinkedRunnable); |
| linkedRunnable->fRunnable = r; |
| fReady.lock(); |
| SkASSERT(fState != kHalting_State); // Shouldn't be able to add work when we're halting. |
| (fQueue.*f)(linkedRunnable); |
| fReady.signal(); |
| fReady.unlock(); |
| } |
| |
| template <typename T> |
| void SkTThreadPool<T>::add(SkTRunnable<T>* r) { |
| this->addSomewhere(r, &SkTInternalLList<LinkedRunnable>::addToTail); |
| } |
| |
| template <typename T> |
| void SkTThreadPool<T>::addNext(SkTRunnable<T>* r) { |
| this->addSomewhere(r, &SkTInternalLList<LinkedRunnable>::addToHead); |
| } |
| |
| |
| template <typename T> |
| void SkTThreadPool<T>::wait() { |
| fReady.lock(); |
| fState = kWaiting_State; |
| fReady.broadcast(); |
| fReady.unlock(); |
| |
| // Wait for all threads to stop. |
| for (int i = 0; i < fThreads.count(); i++) { |
| fThreads[i]->join(); |
| SkDELETE(fThreads[i]); |
| } |
| SkASSERT(fQueue.isEmpty()); |
| } |
| |
| template <typename T> |
| /*static*/ void SkTThreadPool<T>::Loop(void* arg) { |
| // The SkTThreadPool passes itself as arg to each thread as they're created. |
| SkTThreadPool<T>* pool = static_cast<SkTThreadPool<T>*>(arg); |
| SkThreadPoolPrivate::ThreadLocal<T> threadLocal; |
| |
| while (true) { |
| // We have to be holding the lock to read the queue and to call wait. |
| pool->fReady.lock(); |
| while(pool->fQueue.isEmpty()) { |
| // Does the client want to stop and are all the threads ready to stop? |
| // If so, we move into the halting state, and whack all the threads so they notice. |
| if (kWaiting_State == pool->fState && pool->fBusyThreads == 0) { |
| pool->fState = kHalting_State; |
| pool->fReady.broadcast(); |
| } |
| // Any time we find ourselves in the halting state, it's quitting time. |
| if (kHalting_State == pool->fState) { |
| pool->fReady.unlock(); |
| return; |
| } |
| // wait yields the lock while waiting, but will have it again when awoken. |
| pool->fReady.wait(); |
| } |
| // We've got the lock back here, no matter if we ran wait or not. |
| |
| // The queue is not empty, so we have something to run. Claim it. |
| LinkedRunnable* r = pool->fQueue.head(); |
| |
| pool->fQueue.remove(r); |
| |
| // Having claimed our SkRunnable, we now give up the lock while we run it. |
| // Otherwise, we'd only ever do work on one thread at a time, which rather |
| // defeats the point of this code. |
| pool->fBusyThreads++; |
| pool->fReady.unlock(); |
| |
| // OK, now really do the work. |
| threadLocal.run(r->fRunnable); |
| SkDELETE(r); |
| |
| // Let everyone know we're not busy. |
| pool->fReady.lock(); |
| pool->fBusyThreads--; |
| pool->fReady.unlock(); |
| } |
| |
| SkASSERT(false); // Unreachable. The only exit happens when pool->fState is kHalting_State. |
| } |
| |
| typedef SkTThreadPool<void> SkThreadPool; |
| |
| #endif |