| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "GrBlurUtils.h" |
| #include "GrContext.h" |
| #include "GrRenderTargetContextPriv.h" |
| #include "GrGpu.h" |
| #include "GrImageIDTextureAdjuster.h" |
| #include "GrStyle.h" |
| #include "GrTracing.h" |
| |
| #include "SkCanvasPriv.h" |
| #include "SkDraw.h" |
| #include "SkGlyphCache.h" |
| #include "SkGr.h" |
| #include "SkGrPriv.h" |
| #include "SkImage_Base.h" |
| #include "SkImageCacherator.h" |
| #include "SkImageFilter.h" |
| #include "SkImageFilterCache.h" |
| #include "SkLatticeIter.h" |
| #include "SkMaskFilter.h" |
| #include "SkPathEffect.h" |
| #include "SkPicture.h" |
| #include "SkPictureData.h" |
| #include "SkRasterClip.h" |
| #include "SkRRect.h" |
| #include "SkRecord.h" |
| #include "SkSpecialImage.h" |
| #include "SkStroke.h" |
| #include "SkSurface.h" |
| #include "SkSurface_Gpu.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| #include "SkVertState.h" |
| #include "SkXfermode.h" |
| #include "batches/GrRectBatchFactory.h" |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrDashingEffect.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| #include "effects/GrTextureDomain.h" |
| #include "text/GrTextUtils.h" |
| |
| #if SK_SUPPORT_GPU |
| |
| #define ASSERT_SINGLE_OWNER \ |
| SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(fContext->debugSingleOwner());) |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareDraw(draw); \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw) this->prepareDraw(draw) |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation |
| should fail. */ |
| bool SkGpuDevice::CheckAlphaTypeAndGetFlags( |
| const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) { |
| *flags = 0; |
| if (info) { |
| switch (info->alphaType()) { |
| case kPremul_SkAlphaType: |
| break; |
| case kOpaque_SkAlphaType: |
| *flags |= SkGpuDevice::kIsOpaque_Flag; |
| break; |
| default: // If it is unpremul or unknown don't try to render |
| return false; |
| } |
| } |
| if (kClear_InitContents == init) { |
| *flags |= kNeedClear_Flag; |
| } |
| return true; |
| } |
| |
| sk_sp<SkGpuDevice> SkGpuDevice::Make(GrContext* context, |
| sk_sp<GrRenderTargetContext> renderTargetContext, |
| int width, int height, |
| InitContents init) { |
| if (!renderTargetContext || renderTargetContext->wasAbandoned()) { |
| return nullptr; |
| } |
| unsigned flags; |
| if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { |
| return nullptr; |
| } |
| return sk_sp<SkGpuDevice>(new SkGpuDevice(context, std::move(renderTargetContext), |
| width, height, flags)); |
| } |
| |
| sk_sp<SkGpuDevice> SkGpuDevice::Make(GrContext* context, SkBudgeted budgeted, |
| const SkImageInfo& info, int sampleCount, |
| GrSurfaceOrigin origin, |
| const SkSurfaceProps* props, InitContents init) { |
| unsigned flags; |
| if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) { |
| return nullptr; |
| } |
| |
| sk_sp<GrRenderTargetContext> renderTargetContext(MakeRenderTargetContext(context, budgeted, |
| info, sampleCount, |
| origin, props)); |
| if (!renderTargetContext) { |
| return nullptr; |
| } |
| |
| return sk_sp<SkGpuDevice>(new SkGpuDevice(context, std::move(renderTargetContext), |
| info.width(), info.height(), flags)); |
| } |
| |
| static SkImageInfo make_info(GrRenderTargetContext* context, int w, int h, bool opaque) { |
| SkColorType colorType; |
| if (!GrPixelConfigToColorType(context->config(), &colorType)) { |
| colorType = kUnknown_SkColorType; |
| } |
| return SkImageInfo::Make(w, h, colorType, |
| opaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType, |
| sk_ref_sp(context->getColorSpace())); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, sk_sp<GrRenderTargetContext> renderTargetContext, |
| int width, int height, unsigned flags) |
| : INHERITED(make_info(renderTargetContext.get(), width, height, |
| SkToBool(flags & kIsOpaque_Flag)), renderTargetContext->surfaceProps()) |
| , fContext(SkRef(context)) |
| , fRenderTargetContext(std::move(renderTargetContext)) |
| { |
| fSize.set(width, height); |
| fOpaque = SkToBool(flags & kIsOpaque_Flag); |
| |
| if (flags & kNeedClear_Flag) { |
| this->clearAll(); |
| } |
| } |
| |
| sk_sp<GrRenderTargetContext> SkGpuDevice::MakeRenderTargetContext( |
| GrContext* context, |
| SkBudgeted budgeted, |
| const SkImageInfo& origInfo, |
| int sampleCount, |
| GrSurfaceOrigin origin, |
| const SkSurfaceProps* surfaceProps) { |
| if (kUnknown_SkColorType == origInfo.colorType() || |
| origInfo.width() < 0 || origInfo.height() < 0) { |
| return nullptr; |
| } |
| |
| if (!context) { |
| return nullptr; |
| } |
| |
| SkColorType ct = origInfo.colorType(); |
| SkAlphaType at = origInfo.alphaType(); |
| SkColorSpace* cs = origInfo.colorSpace(); |
| if (kRGB_565_SkColorType == ct || kGray_8_SkColorType == ct) { |
| at = kOpaque_SkAlphaType; // force this setting |
| } |
| if (kOpaque_SkAlphaType != at) { |
| at = kPremul_SkAlphaType; // force this setting |
| } |
| |
| GrPixelConfig config = SkImageInfo2GrPixelConfig(ct, at, cs, *context->caps()); |
| |
| return context->makeRenderTargetContext(SkBackingFit::kExact, // Why exact? |
| origInfo.width(), origInfo.height(), |
| config, sk_ref_sp(cs), sampleCount, |
| origin, surfaceProps, budgeted); |
| } |
| |
| sk_sp<SkSpecialImage> SkGpuDevice::filterTexture(const SkDraw& draw, |
| SkSpecialImage* srcImg, |
| int left, int top, |
| SkIPoint* offset, |
| const SkImageFilter* filter) { |
| SkASSERT(srcImg->isTextureBacked()); |
| SkASSERT(filter); |
| |
| SkMatrix matrix = *draw.fMatrix; |
| matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); |
| const SkIRect clipBounds = draw.fRC->getBounds().makeOffset(-left, -top); |
| sk_sp<SkImageFilterCache> cache(this->getImageFilterCache()); |
| SkImageFilter::OutputProperties outputProperties(fRenderTargetContext->getColorSpace()); |
| SkImageFilter::Context ctx(matrix, clipBounds, cache.get(), outputProperties); |
| |
| return filter->filterImage(srcImg, ctx, offset); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, |
| int x, int y) { |
| ASSERT_SINGLE_OWNER |
| |
| return fRenderTargetContext->readPixels(dstInfo, dstPixels, dstRowBytes, x, y); |
| } |
| |
| bool SkGpuDevice::onWritePixels(const SkImageInfo& srcInfo, const void* srcPixels, |
| size_t srcRowBytes, int x, int y) { |
| ASSERT_SINGLE_OWNER |
| |
| return fRenderTargetContext->writePixels(srcInfo, srcPixels, srcRowBytes, x, y); |
| } |
| |
| bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) { |
| ASSERT_SINGLE_OWNER |
| return false; |
| } |
| |
| // call this every draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareDraw(const SkDraw& draw) { |
| ASSERT_SINGLE_OWNER |
| |
| fClip.reset(draw.fClipStack, &this->getOrigin()); |
| } |
| |
| GrRenderTargetContext* SkGpuDevice::accessRenderTargetContext() { |
| ASSERT_SINGLE_OWNER |
| return fRenderTargetContext.get(); |
| } |
| |
| void SkGpuDevice::clearAll() { |
| ASSERT_SINGLE_OWNER |
| GrColor color = 0; |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "clearAll", fContext.get()); |
| SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); |
| fRenderTargetContext->clear(&rect, color, true); |
| } |
| |
| void SkGpuDevice::replaceRenderTargetContext(bool shouldRetainContent) { |
| ASSERT_SINGLE_OWNER |
| |
| SkBudgeted budgeted = fRenderTargetContext->priv().isBudgeted(); |
| |
| sk_sp<GrRenderTargetContext> newRTC(MakeRenderTargetContext( |
| this->context(), |
| budgeted, |
| this->imageInfo(), |
| fRenderTargetContext->numColorSamples(), |
| fRenderTargetContext->origin(), |
| &this->surfaceProps())); |
| if (!newRTC) { |
| return; |
| } |
| |
| if (shouldRetainContent) { |
| if (fRenderTargetContext->wasAbandoned()) { |
| return; |
| } |
| newRTC->copySurface(fRenderTargetContext->asTexture().get(), |
| SkIRect::MakeWH(this->width(), this->height()), |
| SkIPoint::Make(0, 0)); |
| } |
| |
| fRenderTargetContext = newRTC; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPaint", fContext.get()); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawPaint(fClip, grPaint, *draw.fMatrix); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimitiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| // suppress antialiasing on axis-aligned integer-coordinate lines |
| static bool needs_antialiasing(SkCanvas::PointMode mode, size_t count, const SkPoint pts[]) { |
| if (mode == SkCanvas::PointMode::kPoints_PointMode) { |
| return false; |
| } |
| if (count == 2) { |
| // We do not antialias as long as the primary axis of the line is integer-aligned, even if |
| // the other coordinates are not. This does mean the two end pixels of the line will be |
| // sharp even when they shouldn't be, but turning antialiasing on (as things stand |
| // currently) means that the line will turn into a two-pixel-wide blur. While obviously a |
| // more complete fix is possible down the road, for the time being we accept the error on |
| // the two end pixels as being the lesser of two evils. |
| if (pts[0].fX == pts[1].fX) { |
| return ((int) pts[0].fX) != pts[0].fX; |
| } |
| if (pts[0].fY == pts[1].fY) { |
| return ((int) pts[0].fY) != pts[0].fY; |
| } |
| } |
| return true; |
| } |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPoints", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { |
| GrStyle style(paint, SkPaint::kStroke_Style); |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| SkPath path; |
| path.setIsVolatile(true); |
| path.moveTo(pts[0]); |
| path.lineTo(pts[1]); |
| fRenderTargetContext->drawPath(fClip, grPaint, *draw.fMatrix, path, style); |
| return; |
| } |
| |
| SkScalar scales[2]; |
| bool isHairline = (0 == width) || (1 == width && draw.fMatrix->getMinMaxScales(scales) && |
| SkScalarNearlyEqual(scales[0], 1.f) && |
| SkScalarNearlyEqual(scales[1], 1.f)); |
| // we only handle non-antialiased hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (!isHairline || paint.getPathEffect() || paint.getMaskFilter() || |
| (paint.isAntiAlias() && needs_antialiasing(mode, count, pts))) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPrimitiveType primitiveType = gPointMode2PrimitiveType[mode]; |
| |
| const SkMatrix* viewMatrix = draw.fMatrix; |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| // This offsetting in device space matches the expectations of the Android framework for non-AA |
| // points and lines. |
| SkMatrix tempMatrix; |
| if (GrIsPrimTypeLines(primitiveType) || kPoints_GrPrimitiveType == primitiveType) { |
| tempMatrix = *viewMatrix; |
| static const SkScalar kOffset = 0.063f; // Just greater than 1/16. |
| tempMatrix.postTranslate(kOffset, kOffset); |
| viewMatrix = &tempMatrix; |
| } |
| #endif |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *viewMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawVertices(fClip, |
| grPaint, |
| *viewMatrix, |
| primitiveType, |
| SkToS32(count), |
| (SkPoint*)pts, |
| nullptr, |
| nullptr, |
| nullptr, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRect", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| |
| // A couple reasons we might need to call drawPath. |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRect(rect); |
| GrBlurUtils::drawPathWithMaskFilter(fContext.get(), fRenderTargetContext.get(), |
| fClip, path, paint, |
| *draw.fMatrix, nullptr, |
| draw.fRC->getBounds(), true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| GrStyle style(paint); |
| fRenderTargetContext->drawRect(fClip, grPaint, *draw.fMatrix, rect, &style); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rrect, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRRect", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| SkMaskFilter* mf = paint.getMaskFilter(); |
| if (mf && mf->asFragmentProcessor(nullptr, nullptr, *draw.fMatrix)) { |
| mf = nullptr; // already handled in SkPaintToGrPaint |
| } |
| |
| GrStyle style(paint); |
| if (mf) { |
| // try to hit the fast path for drawing filtered round rects |
| |
| SkRRect devRRect; |
| if (rrect.transform(*draw.fMatrix, &devRRect)) { |
| if (devRRect.allCornersCircular()) { |
| SkRect maskRect; |
| if (mf->canFilterMaskGPU(devRRect, draw.fRC->getBounds(), |
| *draw.fMatrix, &maskRect)) { |
| SkIRect finalIRect; |
| maskRect.roundOut(&finalIRect); |
| if (draw.fRC->quickReject(finalIRect)) { |
| // clipped out |
| return; |
| } |
| if (mf->directFilterRRectMaskGPU(fContext.get(), fRenderTargetContext.get(), |
| &grPaint, fClip, *draw.fMatrix, |
| style.strokeRec(), rrect, devRRect)) { |
| return; |
| } |
| } |
| |
| } |
| } |
| } |
| |
| if (mf || style.pathEffect()) { |
| // The only mask filter the native rrect drawing code could've handle was taken |
| // care of above. |
| // A path effect will presumably transform this rrect into something else. |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRRect(rrect); |
| GrBlurUtils::drawPathWithMaskFilter(fContext.get(), fRenderTargetContext.get(), |
| fClip, path, paint, |
| *draw.fMatrix, nullptr, |
| draw.fRC->getBounds(), true); |
| return; |
| } |
| |
| SkASSERT(!style.pathEffect()); |
| |
| fRenderTargetContext->drawRRect(fClip, grPaint, *draw.fMatrix, rrect, style); |
| } |
| |
| |
| void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, |
| const SkRRect& inner, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDRRect", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| if (outer.isEmpty()) { |
| return; |
| } |
| |
| if (inner.isEmpty()) { |
| return this->drawRRect(draw, outer, paint); |
| } |
| |
| SkStrokeRec stroke(paint); |
| |
| if (stroke.isFillStyle() && !paint.getMaskFilter() && !paint.getPathEffect()) { |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawDRRect(fClip, grPaint, *draw.fMatrix, outer, inner); |
| return; |
| } |
| |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRRect(outer); |
| path.addRRect(inner); |
| path.setFillType(SkPath::kEvenOdd_FillType); |
| |
| GrBlurUtils::drawPathWithMaskFilter(fContext.get(), fRenderTargetContext.get(), |
| fClip, path, paint, |
| *draw.fMatrix, nullptr, |
| draw.fRC->getBounds(), true); |
| } |
| |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRegion(const SkDraw& draw, const SkRegion& region, const SkPaint& paint) { |
| if (paint.getMaskFilter()) { |
| SkPath path; |
| region.getBoundaryPath(&path); |
| return this->drawPath(draw, path, paint, nullptr, false); |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawRegion(fClip, grPaint, *draw.fMatrix, region, GrStyle(paint)); |
| } |
| |
| void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawOval", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| // Presumably the path effect warps this to something other than an oval |
| if (paint.getPathEffect()) { |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addOval(oval); |
| this->drawPath(draw, path, paint, nullptr, true); |
| return; |
| } |
| |
| if (paint.getMaskFilter()) { |
| // The RRect path can handle special case blurring |
| SkRRect rr = SkRRect::MakeOval(oval); |
| return this->drawRRect(draw, rr, paint); |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawOval(fClip, grPaint, *draw.fMatrix, oval, GrStyle(paint)); |
| } |
| |
| void SkGpuDevice::drawArc(const SkDraw& draw, const SkRect& oval, SkScalar startAngle, |
| SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawArc", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| if (paint.getMaskFilter()) { |
| this->INHERITED::drawArc(draw, oval, startAngle, sweepAngle, useCenter, paint); |
| return; |
| } |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawArc(fClip, grPaint, *draw.fMatrix, oval, startAngle, sweepAngle, |
| useCenter, GrStyle(paint)); |
| } |
| |
| #include "SkMaskFilter.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| void SkGpuDevice::drawStrokedLine(const SkPoint points[2], |
| const SkDraw& draw, |
| const SkPaint& origPaint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawStrokedLine", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| // Adding support for round capping would require a |
| // GrRenderTargetContext::fillRRectWithLocalMatrix entry point |
| SkASSERT(SkPaint::kRound_Cap != origPaint.getStrokeCap()); |
| SkASSERT(SkPaint::kStroke_Style == origPaint.getStyle()); |
| SkASSERT(!origPaint.getPathEffect()); |
| SkASSERT(!origPaint.getMaskFilter()); |
| |
| const SkScalar halfWidth = 0.5f * origPaint.getStrokeWidth(); |
| SkASSERT(halfWidth > 0); |
| |
| SkVector v = points[1] - points[0]; |
| |
| SkScalar length = SkPoint::Normalize(&v); |
| if (!length) { |
| v.fX = 1.0f; |
| v.fY = 0.0f; |
| } |
| |
| SkPaint newPaint(origPaint); |
| newPaint.setStyle(SkPaint::kFill_Style); |
| |
| SkScalar xtraLength = 0.0f; |
| if (SkPaint::kButt_Cap != origPaint.getStrokeCap()) { |
| xtraLength = halfWidth; |
| } |
| |
| SkPoint mid = points[0] + points[1]; |
| mid.scale(0.5f); |
| |
| SkRect rect = SkRect::MakeLTRB(mid.fX-halfWidth, mid.fY - 0.5f*length - xtraLength, |
| mid.fX+halfWidth, mid.fY + 0.5f*length + xtraLength); |
| SkMatrix m; |
| m.setSinCos(v.fX, -v.fY, mid.fX, mid.fY); |
| |
| SkMatrix local = m; |
| |
| m.postConcat(*draw.fMatrix); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), newPaint, m, &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->fillRectWithLocalMatrix(fClip, grPaint, m, rect, local); |
| } |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| ASSERT_SINGLE_OWNER |
| if (!origSrcPath.isInverseFillType() && !paint.getPathEffect() && !prePathMatrix) { |
| SkPoint points[2]; |
| if (SkPaint::kStroke_Style == paint.getStyle() && paint.getStrokeWidth() > 0 && |
| !paint.getMaskFilter() && SkPaint::kRound_Cap != paint.getStrokeCap() && |
| draw.fMatrix->preservesRightAngles() && origSrcPath.isLine(points)) { |
| // Path-based stroking looks better for thin rects |
| SkScalar strokeWidth = draw.fMatrix->getMaxScale() * paint.getStrokeWidth(); |
| if (strokeWidth >= 1.0f) { |
| // Round capping support is currently disabled b.c. it would require |
| // a RRect batch that takes a localMatrix. |
| this->drawStrokedLine(points, draw, paint); |
| return; |
| } |
| } |
| bool isClosed; |
| SkRect rect; |
| if (origSrcPath.isRect(&rect, &isClosed) && isClosed) { |
| this->drawRect(draw, rect, paint); |
| return; |
| } |
| if (origSrcPath.isOval(&rect)) { |
| this->drawOval(draw, rect, paint); |
| return; |
| } |
| SkRRect rrect; |
| if (origSrcPath.isRRect(&rrect)) { |
| this->drawRRect(draw, rrect, paint); |
| return; |
| } |
| } |
| |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPath", fContext.get()); |
| |
| GrBlurUtils::drawPathWithMaskFilter(fContext.get(), fRenderTargetContext.get(), |
| fClip, origSrcPath, paint, |
| *draw.fMatrix, prePathMatrix, |
| draw.fRC->getBounds(), pathIsMutable); |
| } |
| |
| static const int kBmpSmallTileSize = 1 << 10; |
| |
| static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { |
| int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; |
| int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| static int determine_tile_size(const SkIRect& src, int maxTileSize) { |
| if (maxTileSize <= kBmpSmallTileSize) { |
| return maxTileSize; |
| } |
| |
| size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); |
| size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); |
| |
| maxTileTotalTileSize *= maxTileSize * maxTileSize; |
| smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| if (maxTileTotalTileSize > 2 * smallTotalTileSize) { |
| return kBmpSmallTileSize; |
| } else { |
| return maxTileSize; |
| } |
| } |
| |
| // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what |
| // pixels from the bitmap are necessary. |
| static void determine_clipped_src_rect(int width, int height, |
| const GrClip& clip, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& srcToDstRect, |
| const SkISize& imageSize, |
| const SkRect* srcRectPtr, |
| SkIRect* clippedSrcIRect) { |
| clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr); |
| SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect); |
| if (!inv.invert(&inv)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); |
| inv.mapRect(&clippedSrcRect); |
| if (srcRectPtr) { |
| if (!clippedSrcRect.intersect(*srcRectPtr)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| } |
| clippedSrcRect.roundOut(clippedSrcIRect); |
| SkIRect bmpBounds = SkIRect::MakeSize(imageSize); |
| if (!clippedSrcIRect->intersect(bmpBounds)) { |
| clippedSrcIRect->setEmpty(); |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileImageID(uint32_t imageID, const SkIRect& imageRect, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& srcToDstRect, |
| const GrSamplerParams& params, |
| const SkRect* srcRectPtr, |
| int maxTileSize, |
| int* tileSize, |
| SkIRect* clippedSubset) const { |
| ASSERT_SINGLE_OWNER |
| // if it's larger than the max tile size, then we have no choice but tiling. |
| if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) { |
| determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(), |
| fClip, viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr, |
| clippedSubset); |
| *tileSize = determine_tile_size(*clippedSubset, maxTileSize); |
| return true; |
| } |
| |
| // If the image would only produce 4 tiles of the smaller size, don't bother tiling it. |
| const size_t area = imageRect.width() * imageRect.height(); |
| if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels |
| size_t cacheSize; |
| fContext->getResourceCacheLimits(nullptr, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| // Figure out how much of the src we will need based on the src rect and clipping. Reject if |
| // tiling memory savings would be < 50%. |
| determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(), fClip, |
| viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr, |
| clippedSubset); |
| *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. |
| size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) * |
| kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| return usedTileBytes < 2 * bmpSize; |
| } |
| |
| bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& srcToDstRect) const { |
| ASSERT_SINGLE_OWNER |
| // if image is explictly texture backed then just use the texture |
| if (as_IB(image)->peekTexture()) { |
| return false; |
| } |
| |
| GrSamplerParams params; |
| bool doBicubic; |
| GrSamplerParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(quality, viewMatrix, srcToDstRect, &doBicubic); |
| |
| int tileFilterPad; |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrSamplerParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; |
| |
| // these are output, which we safely ignore, as we just want to know the predicate |
| int outTileSize; |
| SkIRect outClippedSrcRect; |
| |
| return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, srcToDstRect, |
| params, srcRectPtr, maxTileSize, &outTileSize, |
| &outClippedSrcRect); |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& origDraw, |
| const SkBitmap& bitmap, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(origDraw); |
| SkMatrix viewMatrix; |
| viewMatrix.setConcat(*origDraw.fMatrix, m); |
| |
| int maxTileSize = fContext->caps()->maxTileSize(); |
| |
| // The tile code path doesn't currently support AA, so if the paint asked for aa and we could |
| // draw untiled, then we bypass checking for tiling purely for optimization reasons. |
| bool drawAA = !fRenderTargetContext->isUnifiedMultisampled() && |
| paint.isAntiAlias() && |
| bitmap.width() <= maxTileSize && |
| bitmap.height() <= maxTileSize; |
| |
| bool skipTileCheck = drawAA || paint.getMaskFilter(); |
| |
| if (!skipTileCheck) { |
| SkRect srcRect = SkRect::MakeIWH(bitmap.width(), bitmap.height()); |
| int tileSize; |
| SkIRect clippedSrcRect; |
| |
| GrSamplerParams params; |
| bool doBicubic; |
| GrSamplerParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewMatrix, SkMatrix::I(), |
| &doBicubic); |
| |
| int tileFilterPad; |
| |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrSamplerParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSizeForFilter = fContext->caps()->maxTileSize() - 2 * tileFilterPad; |
| if (this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), viewMatrix, |
| SkMatrix::I(), params, &srcRect, maxTileSizeForFilter, |
| &tileSize, &clippedSrcRect)) { |
| this->drawTiledBitmap(bitmap, viewMatrix, SkMatrix::I(), srcRect, clippedSrcRect, |
| params, paint, SkCanvas::kStrict_SrcRectConstraint, tileSize, |
| doBicubic); |
| return; |
| } |
| } |
| GrBitmapTextureMaker maker(fContext.get(), bitmap); |
| this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kStrict_SrcRectConstraint, |
| viewMatrix, fClip, paint); |
| } |
| |
| // This method outsets 'iRect' by 'outset' all around and then clamps its extents to |
| // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner |
| // of 'iRect' for all possible outsets/clamps. |
| static inline void clamped_outset_with_offset(SkIRect* iRect, |
| int outset, |
| SkPoint* offset, |
| const SkIRect& clamp) { |
| iRect->outset(outset, outset); |
| |
| int leftClampDelta = clamp.fLeft - iRect->fLeft; |
| if (leftClampDelta > 0) { |
| offset->fX -= outset - leftClampDelta; |
| iRect->fLeft = clamp.fLeft; |
| } else { |
| offset->fX -= outset; |
| } |
| |
| int topClampDelta = clamp.fTop - iRect->fTop; |
| if (topClampDelta > 0) { |
| offset->fY -= outset - topClampDelta; |
| iRect->fTop = clamp.fTop; |
| } else { |
| offset->fY -= outset; |
| } |
| |
| if (iRect->fRight > clamp.fRight) { |
| iRect->fRight = clamp.fRight; |
| } |
| if (iRect->fBottom > clamp.fBottom) { |
| iRect->fBottom = clamp.fBottom; |
| } |
| } |
| |
| // Break 'bitmap' into several tiles to draw it since it has already |
| // been determined to be too large to fit in VRAM |
| void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& dstMatrix, |
| const SkRect& srcRect, |
| const SkIRect& clippedSrcIRect, |
| const GrSamplerParams& params, |
| const SkPaint& origPaint, |
| SkCanvas::SrcRectConstraint constraint, |
| int tileSize, |
| bool bicubic) { |
| ASSERT_SINGLE_OWNER |
| |
| // This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries. |
| SK_HISTOGRAM_BOOLEAN("DrawTiled", true); |
| LogDrawScaleFactor(viewMatrix, origPaint.getFilterQuality()); |
| |
| // The following pixel lock is technically redundant, but it is desirable |
| // to lock outside of the tile loop to prevent redecoding the whole image |
| // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that |
| // is larger than the limit of the discardable memory pool. |
| SkAutoLockPixels alp(bitmap); |
| |
| const SkPaint* paint = &origPaint; |
| SkPaint tempPaint; |
| if (origPaint.isAntiAlias() && !fRenderTargetContext->isUnifiedMultisampled()) { |
| // Drop antialiasing to avoid seams at tile boundaries. |
| tempPaint = origPaint; |
| tempPaint.setAntiAlias(false); |
| paint = &tempPaint; |
| } |
| SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkRect tileR; |
| tileR.set(SkIntToScalar(x * tileSize), |
| SkIntToScalar(y * tileSize), |
| SkIntToScalar((x + 1) * tileSize), |
| SkIntToScalar((y + 1) * tileSize)); |
| |
| if (!SkRect::Intersects(tileR, clippedSrcRect)) { |
| continue; |
| } |
| |
| if (!tileR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkIRect iTileR; |
| tileR.roundOut(&iTileR); |
| SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), |
| SkIntToScalar(iTileR.fTop)); |
| SkRect rectToDraw = SkRect::MakeXYWH(offset.fX, offset.fY, |
| tileR.width(), tileR.height()); |
| dstMatrix.mapRect(&rectToDraw); |
| if (GrSamplerParams::kNone_FilterMode != params.filterMode() || bicubic) { |
| SkIRect iClampRect; |
| |
| if (SkCanvas::kFast_SrcRectConstraint == constraint) { |
| // In bleed mode we want to always expand the tile on all edges |
| // but stay within the bitmap bounds |
| iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| } else { |
| // In texture-domain/clamp mode we only want to expand the |
| // tile on edges interior to "srcRect" (i.e., we want to |
| // not bleed across the original clamped edges) |
| srcRect.roundOut(&iClampRect); |
| } |
| int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; |
| clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); |
| } |
| |
| SkBitmap tmpB; |
| if (bitmap.extractSubset(&tmpB, iTileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| tileR.offset(-offset.fX, -offset.fY); |
| GrSamplerParams paramsTemp = params; |
| // de-optimized this determination |
| bool needsTextureDomain = true; |
| this->drawBitmapTile(tmpB, |
| viewMatrix, |
| rectToDraw, |
| tileR, |
| paramsTemp, |
| *paint, |
| constraint, |
| bicubic, |
| needsTextureDomain); |
| } |
| } |
| } |
| } |
| |
| void SkGpuDevice::drawBitmapTile(const SkBitmap& bitmap, |
| const SkMatrix& viewMatrix, |
| const SkRect& dstRect, |
| const SkRect& srcRect, |
| const GrSamplerParams& params, |
| const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint, |
| bool bicubic, |
| bool needsTextureDomain) { |
| // We should have already handled bitmaps larger than the max texture size. |
| SkASSERT(bitmap.width() <= fContext->caps()->maxTextureSize() && |
| bitmap.height() <= fContext->caps()->maxTextureSize()); |
| // We should be respecting the max tile size by the time we get here. |
| SkASSERT(bitmap.width() <= fContext->caps()->maxTileSize() && |
| bitmap.height() <= fContext->caps()->maxTileSize()); |
| |
| sk_sp<GrTexture> texture = GrMakeCachedBitmapTexture( |
| fContext.get(), bitmap, params, fRenderTargetContext->colorMode()); |
| if (nullptr == texture) { |
| return; |
| } |
| sk_sp<GrColorSpaceXform> colorSpaceXform = |
| GrColorSpaceXform::Make(bitmap.colorSpace(), fRenderTargetContext->getColorSpace()); |
| |
| SkScalar iw = 1.f / texture->width(); |
| SkScalar ih = 1.f / texture->height(); |
| |
| SkMatrix texMatrix; |
| // Compute a matrix that maps the rect we will draw to the src rect. |
| texMatrix.setRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit); |
| texMatrix.postScale(iw, ih); |
| |
| // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring |
| // the rest from the SkPaint. |
| sk_sp<GrFragmentProcessor> fp; |
| |
| if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) { |
| // Use a constrained texture domain to avoid color bleeding |
| SkRect domain; |
| if (srcRect.width() > SK_Scalar1) { |
| domain.fLeft = (srcRect.fLeft + 0.5f) * iw; |
| domain.fRight = (srcRect.fRight - 0.5f) * iw; |
| } else { |
| domain.fLeft = domain.fRight = srcRect.centerX() * iw; |
| } |
| if (srcRect.height() > SK_Scalar1) { |
| domain.fTop = (srcRect.fTop + 0.5f) * ih; |
| domain.fBottom = (srcRect.fBottom - 0.5f) * ih; |
| } else { |
| domain.fTop = domain.fBottom = srcRect.centerY() * ih; |
| } |
| if (bicubic) { |
| fp = GrBicubicEffect::Make(texture.get(), std::move(colorSpaceXform), texMatrix, |
| domain); |
| } else { |
| fp = GrTextureDomainEffect::Make(texture.get(), std::move(colorSpaceXform), texMatrix, |
| domain, GrTextureDomain::kClamp_Mode, |
| params.filterMode()); |
| } |
| } else if (bicubic) { |
| SkASSERT(GrSamplerParams::kNone_FilterMode == params.filterMode()); |
| SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; |
| fp = GrBicubicEffect::Make(texture.get(), std::move(colorSpaceXform), texMatrix, tileModes); |
| } else { |
| fp = GrSimpleTextureEffect::Make(texture.get(), std::move(colorSpaceXform), texMatrix, params); |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext.get(), paint, viewMatrix, |
| std::move(fp), kAlpha_8_SkColorType == bitmap.colorType(), |
| &grPaint)) { |
| return; |
| } |
| |
| fRenderTargetContext->drawRect(fClip, grPaint, viewMatrix, dstRect); |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSprite", fContext.get()); |
| |
| if (fContext->abandoned()) { |
| return; |
| } |
| |
| sk_sp<GrTexture> texture; |
| { |
| SkAutoLockPixels alp(bitmap, true); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| |
| // draw sprite neither filters nor tiles. |
| texture.reset( |
| GrRefCachedBitmapTexture(fContext.get(), bitmap, GrSamplerParams::ClampNoFilter(), |
| SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware)); |
| if (!texture) { |
| return; |
| } |
| } |
| |
| SkIRect srcRect = SkIRect::MakeXYWH(bitmap.pixelRefOrigin().fX, |
| bitmap.pixelRefOrigin().fY, |
| bitmap.width(), |
| bitmap.height()); |
| |
| sk_sp<SkSpecialImage> srcImg(SkSpecialImage::MakeFromGpu(srcRect, |
| bitmap.getGenerationID(), |
| std::move(texture), |
| sk_ref_sp(bitmap.colorSpace()), |
| &this->surfaceProps())); |
| |
| this->drawSpecial(draw, srcImg.get(), left, top, paint); |
| } |
| |
| |
| void SkGpuDevice::drawSpecial(const SkDraw& draw, |
| SkSpecialImage* special1, |
| int left, int top, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSpecial", fContext.get()); |
| |
| SkIPoint offset = { 0, 0 }; |
| |
| sk_sp<SkSpecialImage> result; |
| if (paint.getImageFilter()) { |
| result = this->filterTexture(draw, special1, left, top, |
| &offset, |
| paint.getImageFilter()); |
| if (!result) { |
| return; |
| } |
| } else { |
| result = sk_ref_sp(special1); |
| } |
| |
| SkASSERT(result->isTextureBacked()); |
| sk_sp<GrTexture> texture = result->asTextureRef(fContext.get()); |
| if (!texture) { |
| return; |
| } |
| |
| SkPaint tmpUnfiltered(paint); |
| tmpUnfiltered.setImageFilter(nullptr); |
| |
| sk_sp<GrColorSpaceXform> colorSpaceXform = |
| GrColorSpaceXform::Make(result->getColorSpace(), fRenderTargetContext->getColorSpace()); |
| GrPaint grPaint; |
| sk_sp<GrFragmentProcessor> fp(GrSimpleTextureEffect::Make(texture.get(), |
| std::move(colorSpaceXform), |
| SkMatrix::I())); |
| if (GrPixelConfigIsAlphaOnly(texture->config())) { |
| fp = GrFragmentProcessor::MulOutputByInputUnpremulColor(std::move(fp)); |
| } else { |
| fp = GrFragmentProcessor::MulOutputByInputAlpha(std::move(fp)); |
| } |
| if (!SkPaintToGrPaintReplaceShader(this->context(), fRenderTargetContext.get(), tmpUnfiltered, |
| std::move(fp), &grPaint)) { |
| return; |
| } |
| |
| const SkIRect& subset = result->subset(); |
| |
| fRenderTargetContext->fillRectToRect(fClip, |
| grPaint, |
| SkMatrix::I(), |
| SkRect::Make(SkIRect::MakeXYWH(left + offset.fX, |
| top + offset.fY, |
| subset.width(), |
| subset.height())), |
| SkRect::MakeXYWH( |
| SkIntToScalar(subset.fLeft) / texture->width(), |
| SkIntToScalar(subset.fTop) / texture->height(), |
| SkIntToScalar(subset.width()) / texture->width(), |
| SkIntToScalar(subset.height()) / texture->height())); |
| } |
| |
| void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, |
| const SkRect* src, const SkRect& origDst, |
| const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| |
| // The src rect is inferred to be the bmp bounds if not provided. Otherwise, the src rect must |
| // be clipped to the bmp bounds. To determine tiling parameters we need the filter mode which |
| // in turn requires knowing the src-to-dst mapping. If the src was clipped to the bmp bounds |
| // then we use the src-to-dst mapping to compute a new clipped dst rect. |
| const SkRect* dst = &origDst; |
| const SkRect bmpBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height()); |
| // Compute matrix from the two rectangles |
| if (!src) { |
| src = &bmpBounds; |
| } |
| |
| SkMatrix srcToDstMatrix; |
| if (!srcToDstMatrix.setRectToRect(*src, *dst, SkMatrix::kFill_ScaleToFit)) { |
| return; |
| } |
| SkRect tmpSrc, tmpDst; |
| if (src != &bmpBounds) { |
| if (!bmpBounds.contains(*src)) { |
| tmpSrc = *src; |
| if (!tmpSrc.intersect(bmpBounds)) { |
| return; // nothing to draw |
| } |
| src = &tmpSrc; |
| srcToDstMatrix.mapRect(&tmpDst, *src); |
| dst = &tmpDst; |
| } |
| } |
| |
| int maxTileSize = fContext->caps()->maxTileSize(); |
| |
| // The tile code path doesn't currently support AA, so if the paint asked for aa and we could |
| // draw untiled, then we bypass checking for tiling purely for optimization reasons. |
| bool drawAA = !fRenderTargetContext->isUnifiedMultisampled() && |
| paint.isAntiAlias() && |
| bitmap.width() <= maxTileSize && |
| bitmap.height() <= maxTileSize; |
| |
| bool skipTileCheck = drawAA || paint.getMaskFilter(); |
| |
| if (!skipTileCheck) { |
| int tileSize; |
| SkIRect clippedSrcRect; |
| |
| GrSamplerParams params; |
| bool doBicubic; |
| GrSamplerParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), *draw.fMatrix, srcToDstMatrix, |
| &doBicubic); |
| |
| int tileFilterPad; |
| |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrSamplerParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSizeForFilter = fContext->caps()->maxTileSize() - 2 * tileFilterPad; |
| if (this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), *draw.fMatrix, |
| srcToDstMatrix, params, src, maxTileSizeForFilter, &tileSize, |
| &clippedSrcRect)) { |
| this->drawTiledBitmap(bitmap, *draw.fMatrix, srcToDstMatrix, *src, clippedSrcRect, |
| params, paint, constraint, tileSize, doBicubic); |
| return; |
| } |
| } |
| GrBitmapTextureMaker maker(fContext.get(), bitmap); |
| this->drawTextureProducer(&maker, src, dst, constraint, *draw.fMatrix, fClip, paint); |
| } |
| |
| sk_sp<SkSpecialImage> SkGpuDevice::makeSpecial(const SkBitmap& bitmap) { |
| SkAutoLockPixels alp(bitmap, true); |
| if (!bitmap.readyToDraw()) { |
| return nullptr; |
| } |
| |
| sk_sp<GrTexture> texture = |
| GrMakeCachedBitmapTexture(fContext.get(), bitmap, GrSamplerParams::ClampNoFilter(), |
| SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware); |
| if (!texture) { |
| return nullptr; |
| } |
| |
| return SkSpecialImage::MakeFromGpu(bitmap.bounds(), |
| bitmap.getGenerationID(), |
| texture, |
| sk_ref_sp(bitmap.colorSpace()), |
| &this->surfaceProps()); |
| } |
| |
| sk_sp<SkSpecialImage> SkGpuDevice::makeSpecial(const SkImage* image) { |
| SkPixmap pm; |
| if (image->isTextureBacked()) { |
| GrTexture* texture = as_IB(image)->peekTexture(); |
| |
| return SkSpecialImage::MakeFromGpu(SkIRect::MakeWH(image->width(), image->height()), |
| image->uniqueID(), |
| sk_ref_sp(texture), |
| sk_ref_sp(as_IB(image)->onImageInfo().colorSpace()), |
| &this->surfaceProps()); |
| } else if (image->peekPixels(&pm)) { |
| SkBitmap bm; |
| |
| bm.installPixels(pm); |
| return this->makeSpecial(bm); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| sk_sp<SkSpecialImage> SkGpuDevice::snapSpecial() { |
| sk_sp<GrTexture> texture(this->accessRenderTargetContext()->asTexture()); |
| if (!texture) { |
| // When the device doesn't have a texture, we create a temporary texture. |
| // TODO: we should actually only copy the portion of the source needed to apply the image |
| // filter |
| texture.reset(fContext->textureProvider()->createTexture( |
| this->accessRenderTargetContext()->desc(), SkBudgeted::kYes)); |
| if (!texture) { |
| return nullptr; |
| } |
| |
| if (!fContext->copySurface(texture.get(), |
| this->accessRenderTargetContext()->accessRenderTarget())) { |
| return nullptr; |
| } |
| } |
| |
| const SkImageInfo ii = this->imageInfo(); |
| const SkIRect srcRect = SkIRect::MakeWH(ii.width(), ii.height()); |
| |
| return SkSpecialImage::MakeFromGpu(srcRect, |
| kNeedNewImageUniqueID_SpecialImage, |
| std::move(texture), |
| sk_ref_sp(ii.colorSpace()), |
| &this->surfaceProps()); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, |
| int left, int top, const SkPaint& paint) { |
| SkASSERT(!paint.getImageFilter()); |
| |
| ASSERT_SINGLE_OWNER |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDevice", fContext.get()); |
| |
| // drawDevice is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| sk_sp<SkSpecialImage> srcImg(dev->snapSpecial()); |
| if (!srcImg) { |
| return; |
| } |
| |
| this->drawSpecial(draw, srcImg.get(), left, top, paint); |
| } |
| |
| void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| SkMatrix viewMatrix = *draw.fMatrix; |
| viewMatrix.preTranslate(x, y); |
| uint32_t pinnedUniqueID; |
| if (sk_sp<GrTexture> tex = as_IB(image)->refPinnedTexture(&pinnedUniqueID)) { |
| CHECK_SHOULD_DRAW(draw); |
| GrTextureAdjuster adjuster(tex.get(), image->alphaType(), image->bounds(), pinnedUniqueID, |
| as_IB(image)->onImageInfo().colorSpace()); |
| this->drawTextureProducer(&adjuster, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, |
| viewMatrix, fClip, paint); |
| return; |
| } else { |
| SkBitmap bm; |
| if (this->shouldTileImage(image, nullptr, SkCanvas::kFast_SrcRectConstraint, |
| paint.getFilterQuality(), *draw.fMatrix, SkMatrix::I())) { |
| // only support tiling as bitmap at the moment, so force raster-version |
| if (!as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| return; |
| } |
| this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); |
| } else if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { |
| CHECK_SHOULD_DRAW(draw); |
| GrImageTextureMaker maker(fContext.get(), cacher, image, SkImage::kAllow_CachingHint); |
| this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint, |
| viewMatrix, fClip, paint); |
| } else if (as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); |
| } |
| } |
| } |
| |
| void SkGpuDevice::drawImageRect(const SkDraw& draw, const SkImage* image, const SkRect* src, |
| const SkRect& dst, const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint) { |
| ASSERT_SINGLE_OWNER |
| uint32_t pinnedUniqueID; |
| if (sk_sp<GrTexture> tex = as_IB(image)->refPinnedTexture(&pinnedUniqueID)) { |
| CHECK_SHOULD_DRAW(draw); |
| GrTextureAdjuster adjuster(tex.get(), image->alphaType(), image->bounds(), pinnedUniqueID, |
| as_IB(image)->onImageInfo().colorSpace()); |
| this->drawTextureProducer(&adjuster, src, &dst, constraint, *draw.fMatrix, fClip, paint); |
| return; |
| } |
| SkBitmap bm; |
| SkMatrix srcToDstRect; |
| srcToDstRect.setRectToRect((src ? *src : SkRect::MakeIWH(image->width(), image->height())), |
| dst, SkMatrix::kFill_ScaleToFit); |
| if (this->shouldTileImage(image, src, constraint, paint.getFilterQuality(), *draw.fMatrix, |
| srcToDstRect)) { |
| // only support tiling as bitmap at the moment, so force raster-version |
| if (!as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| return; |
| } |
| this->drawBitmapRect(draw, bm, src, dst, paint, constraint); |
| } else if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { |
| CHECK_SHOULD_DRAW(draw); |
| GrImageTextureMaker maker(fContext.get(), cacher, image, SkImage::kAllow_CachingHint); |
| this->drawTextureProducer(&maker, src, &dst, constraint, *draw.fMatrix, fClip, paint); |
| } else if (as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| this->drawBitmapRect(draw, bm, src, dst, paint, constraint); |
| } |
| } |
| |
| void SkGpuDevice::drawProducerNine(const SkDraw& draw, GrTextureProducer* producer, |
| const SkIRect& center, const SkRect& dst, const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawProducerNine", fContext.get()); |
| |
| CHECK_SHOULD_DRAW(draw); |
| |
| bool useFallback = paint.getMaskFilter() || paint.isAntiAlias() || |
| fRenderTargetContext->isUnifiedMultisampled(); |
| bool doBicubic; |
| GrSamplerParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), *draw.fMatrix, SkMatrix::I(), |
| &doBicubic); |
| if (useFallback || doBicubic || GrSamplerParams::kNone_FilterMode != textureFilterMode) { |
| SkLatticeIter iter(producer->width(), producer->height(), center, dst); |
| |
| SkRect srcR, dstR; |
| while (iter.next(&srcR, &dstR)) { |
| this->drawTextureProducer(producer, &srcR, &dstR, SkCanvas::kStrict_SrcRectConstraint, |
| *draw.fMatrix, fClip, paint); |
| } |
| return; |
| } |
| |
| static const GrSamplerParams::FilterMode kMode = GrSamplerParams::kNone_FilterMode; |
| sk_sp<GrFragmentProcessor> fp( |
| producer->createFragmentProcessor(SkMatrix::I(), |
| SkRect::MakeIWH(producer->width(), producer->height()), |
| GrTextureProducer::kNo_FilterConstraint, true, |
| &kMode, fRenderTargetContext->getColorSpace(), |
| fRenderTargetContext->colorMode())); |
| GrPaint grPaint; |
| if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext.get(), paint, |
| *draw.fMatrix, std::move(fp), producer->isAlphaOnly(), |
| &grPaint)) { |
| return; |
| } |
| |
| std::unique_ptr<SkLatticeIter> iter( |
| new SkLatticeIter(producer->width(), producer->height(), center, dst)); |
| fRenderTargetContext->drawImageLattice(fClip, grPaint, *draw.fMatrix, producer->width(), |
| producer->height(), std::move(iter), dst); |
| } |
| |
| void SkGpuDevice::drawImageNine(const SkDraw& draw, const SkImage* image, |
| const SkIRect& center, const SkRect& dst, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| uint32_t pinnedUniqueID; |
| if (sk_sp<GrTexture> tex = as_IB(image)->refPinnedTexture(&pinnedUniqueID)) { |
| CHECK_SHOULD_DRAW(draw); |
| GrTextureAdjuster adjuster(tex.get(), image->alphaType(), image->bounds(), pinnedUniqueID, |
| as_IB(image)->onImageInfo().colorSpace()); |
| this->drawProducerNine(draw, &adjuster, center, dst, paint); |
| } else { |
| SkBitmap bm; |
| if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { |
| GrImageTextureMaker maker(fContext.get(), cacher, image, SkImage::kAllow_CachingHint); |
| this->drawProducerNine(draw, &maker, center, dst, paint); |
| } else if (as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| this->drawBitmapNine(draw, bm, center, dst, paint); |
| } |
| } |
| } |
| |
| void SkGpuDevice::drawBitmapNine(const SkDraw& draw, const SkBitmap& bitmap, const SkIRect& center, |
| const SkRect& dst, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GrBitmapTextureMaker maker(fContext.get(), bitmap); |
| this->drawProducerNine(draw, &maker, center, dst, paint); |
| } |
| |
| void SkGpuDevice::drawProducerLattice(const SkDraw& draw, GrTextureProducer* producer, |
| const SkCanvas::Lattice& lattice, const SkRect& dst, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawProducerLattice", fContext.get()); |
| |
| CHECK_SHOULD_DRAW(draw); |
| |
| static const GrSamplerParams::FilterMode kMode = GrSamplerParams::kNone_FilterMode; |
| sk_sp<GrFragmentProcessor> fp( |
| producer->createFragmentProcessor(SkMatrix::I(), |
| SkRect::MakeIWH(producer->width(), producer->height()), |
| GrTextureProducer::kNo_FilterConstraint, true, |
| &kMode, fRenderTargetContext->getColorSpace(), |
| fRenderTargetContext->colorMode())); |
| GrPaint grPaint; |
| if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext.get(), paint, |
| *draw.fMatrix, std::move(fp), producer->isAlphaOnly(), |
| &grPaint)) { |
| return; |
| } |
| |
| std::unique_ptr<SkLatticeIter> iter( |
| new SkLatticeIter(lattice, dst)); |
| fRenderTargetContext->drawImageLattice(fClip, grPaint, *draw.fMatrix, producer->width(), |
| producer->height(), std::move(iter), dst); |
| } |
| |
| void SkGpuDevice::drawImageLattice(const SkDraw& draw, const SkImage* image, |
| const SkCanvas::Lattice& lattice, const SkRect& dst, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| uint32_t pinnedUniqueID; |
| if (sk_sp<GrTexture> tex = as_IB(image)->refPinnedTexture(&pinnedUniqueID)) { |
| CHECK_SHOULD_DRAW(draw); |
| GrTextureAdjuster adjuster(tex.get(), image->alphaType(), image->bounds(), pinnedUniqueID, |
| as_IB(image)->onImageInfo().colorSpace()); |
| this->drawProducerLattice(draw, &adjuster, lattice, dst, paint); |
| } else { |
| SkBitmap bm; |
| if (SkImageCacherator* cacher = as_IB(image)->peekCacherator()) { |
| GrImageTextureMaker maker(fContext.get(), cacher, image, SkImage::kAllow_CachingHint); |
| this->drawProducerLattice(draw, &maker, lattice, dst, paint); |
| } else if (as_IB(image)->getROPixels(&bm, fRenderTargetContext->colorMode())) { |
| this->drawBitmapLattice(draw, bm, lattice, dst, paint); |
| } |
| } |
| } |
| |
| void SkGpuDevice::drawBitmapLattice(const SkDraw& draw, const SkBitmap& bitmap, |
| const SkCanvas::Lattice& lattice, const SkRect& dst, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GrBitmapTextureMaker maker(fContext.get(), bitmap); |
| this->drawProducerLattice(draw, &maker, lattice, dst, paint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkBlendMode bmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawVertices", fContext.get()); |
| |
| // If both textures and vertex-colors are nullptr, strokes hairlines with the paint's color. |
| if ((nullptr == texs || nullptr == paint.getShader()) && nullptr == colors) { |
| |
| texs = nullptr; |
| |
| SkPaint copy(paint); |
| copy.setStyle(SkPaint::kStroke_Style); |
| copy.setStrokeWidth(0); |
| |
| GrPaint grPaint; |
| // we ignore the shader if texs is null. |
| if (!SkPaintToGrPaintNoShader(this->context(), fRenderTargetContext.get(), copy, |
| &grPaint)) { |
| return; |
| } |
| |
| int triangleCount = 0; |
| int n = (nullptr == indices) ? vertexCount : indexCount; |
| switch (vmode) { |
| case SkCanvas::kTriangles_VertexMode: |
| triangleCount = n / 3; |
| break; |
| case SkCanvas::kTriangleStrip_VertexMode: |
| case SkCanvas::kTriangleFan_VertexMode: |
| triangleCount = n - 2; |
| break; |
| } |
| |
| VertState state(vertexCount, indices, indexCount); |
| VertState::Proc vertProc = state.chooseProc(vmode); |
| |
| //number of indices for lines per triangle with kLines |
| indexCount = triangleCount * 6; |
| |
| std::unique_ptr<uint16_t[]> lineIndices(new uint16_t[indexCount]); |
| int i = 0; |
| while (vertProc(&state)) { |
| lineIndices[i] = state.f0; |
| lineIndices[i + 1] = state.f1; |
| lineIndices[i + 2] = state.f1; |
| lineIndices[i + 3] = state.f2; |
| lineIndices[i + 4] = state.f2; |
| lineIndices[i + 5] = state.f0; |
| i += 6; |
| } |
| fRenderTargetContext->drawVertices(fClip, |
| grPaint, |
| *draw.fMatrix, |
| kLines_GrPrimitiveType, |
| vertexCount, |
| vertices, |
| texs, |
| colors, |
| lineIndices.get(), |
| indexCount); |
| return; |
| } |
| |
| GrPrimitiveType primType = gVertexMode2PrimitiveType[vmode]; |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (colors) { |
| // need to convert byte order and from non-PM to PM. TODO: Keep unpremul until after |
| // interpolation. |
| convertedColors.reset(vertexCount); |
| for (int i = 0; i < vertexCount; ++i) { |
| convertedColors[i] = SkColorToPremulGrColor(colors[i]); |
| } |
| colors = convertedColors.get(); |
| } |
| GrPaint grPaint; |
| if (texs && paint.getShader()) { |
| if (colors) { |
| // When there are texs and colors the shader and colors are combined using bmode. |
| if (!SkPaintToGrPaintWithXfermode(this->context(), fRenderTargetContext.get(), paint, |
| *draw.fMatrix, bmode, false, &grPaint)) { |
| return; |
| } |
| } else { |
| // We have a shader, but no colors to blend it against. |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| } |
| } else { |
| if (colors) { |
| // We have colors, but either have no shader or no texture coords (which implies that |
| // we should ignore the shader). |
| if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), fRenderTargetContext.get(), |
| paint, &grPaint)) { |
| return; |
| } |
| } else { |
| // No colors and no shaders. Just draw with the paint color. |
| if (!SkPaintToGrPaintNoShader(this->context(), fRenderTargetContext.get(), paint, |
| &grPaint)) { |
| return; |
| } |
| } |
| } |
| |
| fRenderTargetContext->drawVertices(fClip, |
| grPaint, |
| *draw.fMatrix, |
| primType, |
| vertexCount, |
| vertices, |
| texs, |
| colors, |
| indices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawAtlas(const SkDraw& draw, const SkImage* atlas, const SkRSXform xform[], |
| const SkRect texRect[], const SkColor colors[], int count, |
| SkBlendMode mode, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| if (paint.isAntiAlias()) { |
| this->INHERITED::drawAtlas(draw, atlas, xform, texRect, colors, count, mode, paint); |
| return; |
| } |
| |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext.get()); |
| |
| SkPaint p(paint); |
| p.setShader(atlas->makeShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode)); |
| |
| GrPaint grPaint; |
| if (colors) { |
| if (!SkPaintToGrPaintWithXfermode(this->context(), fRenderTargetContext.get(), p, |
| *draw.fMatrix, (SkBlendMode)mode, true, &grPaint)) { |
| return; |
| } |
| } else { |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), p, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| fRenderTargetContext->drawAtlas(fClip, grPaint, *draw.fMatrix, count, xform, texRect, colors); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext.get()); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fRenderTargetContext->drawText(fClip, grPaint, paint, *draw.fMatrix, |
| (const char *)text, byteLength, x, y, draw.fRC->getBounds()); |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, |
| const SkScalar pos[], int scalarsPerPos, |
| const SkPoint& offset, const SkPaint& paint) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPosText", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), fRenderTargetContext.get(), paint, *draw.fMatrix, |
| &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fRenderTargetContext->drawPosText(fClip, grPaint, paint, *draw.fMatrix, |
| (const char *)text, byteLength, pos, scalarsPerPos, offset, |
| draw.fRC->getBounds()); |
| } |
| |
| void SkGpuDevice::drawTextBlob(const SkDraw& draw, const SkTextBlob* blob, SkScalar x, SkScalar y, |
| const SkPaint& paint, SkDrawFilter* drawFilter) { |
| ASSERT_SINGLE_OWNER |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawTextBlob", fContext.get()); |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fRenderTargetContext->drawTextBlob(fClip, paint, *draw.fMatrix, |
| blob, x, y, drawFilter, draw.fRC->getBounds()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::onShouldDisableLCD(const SkPaint& paint) const { |
| return GrTextUtils::ShouldDisableLCD(paint); |
| } |
| |
| void SkGpuDevice::flush() { |
| ASSERT_SINGLE_OWNER |
| |
| fRenderTargetContext->prepareForExternalIO(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) { |
| ASSERT_SINGLE_OWNER |
| |
| SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry); |
| |
| // layers are never drawn in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| SkBackingFit fit = kNever_TileUsage == cinfo.fTileUsage ? SkBackingFit::kApprox |
| : SkBackingFit::kExact; |
| |
| sk_sp<GrRenderTargetContext> rtc(fContext->makeRenderTargetContext( |
| fit, |
| cinfo.fInfo.width(), cinfo.fInfo.height(), |
| fRenderTargetContext->config(), |
| sk_ref_sp(fRenderTargetContext->getColorSpace()), |
| fRenderTargetContext->desc().fSampleCnt, |
| kDefault_GrSurfaceOrigin, |
| &props)); |
| if (!rtc) { |
| return nullptr; |
| } |
| |
| // Skia's convention is to only clear a device if it is non-opaque. |
| InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents; |
| |
| return SkGpuDevice::Make(fContext.get(), std::move(rtc), |
| cinfo.fInfo.width(), cinfo.fInfo.height(), init).release(); |
| } |
| |
| sk_sp<SkSurface> SkGpuDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) { |
| ASSERT_SINGLE_OWNER |
| // TODO: Change the signature of newSurface to take a budgeted parameter. |
| static const SkBudgeted kBudgeted = SkBudgeted::kNo; |
| return SkSurface::MakeRenderTarget(fContext.get(), kBudgeted, info, |
| fRenderTargetContext->desc().fSampleCnt, |
| fRenderTargetContext->origin(), &props); |
| } |
| |
| SkImageFilterCache* SkGpuDevice::getImageFilterCache() { |
| ASSERT_SINGLE_OWNER |
| // We always return a transient cache, so it is freed after each |
| // filter traversal. |
| return SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize); |
| } |
| |
| #endif |