| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrTextureDomain.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| |
| #include "GrContext.h" |
| #include "GrBitmapTextContext.h" |
| #if SK_DISTANCEFIELD_FONTS |
| #include "GrDistanceFieldTextContext.h" |
| #endif |
| |
| #include "SkGrTexturePixelRef.h" |
| |
| #include "SkColorFilter.h" |
| #include "SkDeviceImageFilterProxy.h" |
| #include "SkDrawProcs.h" |
| #include "SkGlyphCache.h" |
| #include "SkImageFilter.h" |
| #include "SkPathEffect.h" |
| #include "SkRRect.h" |
| #include "SkStroke.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| #include "SkErrorInternals.h" |
| |
| #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw, forceI) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareDraw(draw, forceI); \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) |
| #endif |
| |
| // This constant represents the screen alignment criterion in texels for |
| // requiring texture domain clamping to prevent color bleeding when drawing |
| // a sub region of a larger source image. |
| #define COLOR_BLEED_TOLERANCE 0.001f |
| |
| #define DO_DEFERRED_CLEAR() \ |
| do { \ |
| if (fNeedClear) { \ |
| this->clear(SK_ColorTRANSPARENT); \ |
| } \ |
| } while (false) \ |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define CHECK_FOR_ANNOTATION(paint) \ |
| do { if (paint.getAnnotation()) { return; } } while (0) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { |
| public: |
| SkAutoCachedTexture() |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| } |
| |
| SkAutoCachedTexture(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params, |
| GrTexture** texture) |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| SkASSERT(NULL != texture); |
| *texture = this->set(device, bitmap, params); |
| } |
| |
| ~SkAutoCachedTexture() { |
| if (NULL != fTexture) { |
| GrUnlockAndUnrefCachedBitmapTexture(fTexture); |
| } |
| } |
| |
| GrTexture* set(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params) { |
| if (NULL != fTexture) { |
| GrUnlockAndUnrefCachedBitmapTexture(fTexture); |
| fTexture = NULL; |
| } |
| fDevice = device; |
| GrTexture* result = (GrTexture*)bitmap.getTexture(); |
| if (NULL == result) { |
| // Cannot return the native texture so look it up in our cache |
| fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); |
| result = fTexture; |
| } |
| return result; |
| } |
| |
| private: |
| SkGpuDevice* fDevice; |
| GrTexture* fTexture; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct GrSkDrawProcs : public SkDrawProcs { |
| public: |
| GrContext* fContext; |
| GrTextContext* fTextContext; |
| GrFontScaler* fFontScaler; // cached in the skia glyphcache |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) { |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kA8_Config; |
| case kRGB_565_GrPixelConfig: |
| *isOpaque = true; |
| return SkBitmap::kRGB_565_Config; |
| case kRGBA_4444_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kARGB_4444_Config; |
| case kSkia8888_GrPixelConfig: |
| // we don't currently have a way of knowing whether |
| // a 8888 is opaque based on the config. |
| *isOpaque = false; |
| return SkBitmap::kARGB_8888_Config; |
| default: |
| *isOpaque = false; |
| return SkBitmap::kNo_Config; |
| } |
| } |
| |
| /* |
| * GrRenderTarget does not know its opaqueness, only its config, so we have |
| * to make conservative guesses when we return an "equivalent" bitmap. |
| */ |
| static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { |
| bool isOpaque; |
| SkBitmap::Config config = grConfig2skConfig(renderTarget->config(), &isOpaque); |
| |
| SkBitmap bitmap; |
| bitmap.setConfig(config, renderTarget->width(), renderTarget->height(), 0, |
| isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); |
| return bitmap; |
| } |
| |
| /* |
| * Calling SkBitmapDevice with individual params asks it to allocate pixel memory. |
| * We never want that, so we always need to call it with a bitmap argument |
| * (which says take my allocate (or lack thereof)). |
| * |
| * This is a REALLY good reason to finish the clean-up of SkBaseDevice, and have |
| * SkGpuDevice inherit from that instead of SkBitmapDevice. |
| */ |
| static SkBitmap make_bitmap(SkBitmap::Config config, int width, int height, bool isOpaque) { |
| SkBitmap bm; |
| bm.setConfig(config, width, height, isOpaque); |
| return bm; |
| } |
| |
| SkGpuDevice* SkGpuDevice::Create(GrSurface* surface) { |
| SkASSERT(NULL != surface); |
| if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { |
| return NULL; |
| } |
| if (surface->asTexture()) { |
| return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture())); |
| } else { |
| return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget())); |
| } |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture) |
| : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { |
| this->initFromRenderTarget(context, texture->asRenderTarget(), false); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget) |
| : SkBitmapDevice(make_bitmap(context, renderTarget)) { |
| this->initFromRenderTarget(context, renderTarget, false); |
| } |
| |
| void SkGpuDevice::initFromRenderTarget(GrContext* context, |
| GrRenderTarget* renderTarget, |
| bool cached) { |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| SkASSERT(NULL != renderTarget); |
| fRenderTarget = renderTarget; |
| fRenderTarget->ref(); |
| |
| // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref |
| // on the RT but not vice-versa. |
| // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without |
| // busting chrome (for a currently unknown reason). |
| GrSurface* surface = fRenderTarget->asTexture(); |
| if (NULL == surface) { |
| surface = fRenderTarget; |
| } |
| |
| SkImageInfo info; |
| surface->asImageInfo(&info); |
| SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, surface, cached)); |
| |
| this->setPixelRef(pr)->unref(); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| SkBitmap::Config config, |
| int width, |
| int height, |
| int sampleCount) |
| : SkBitmapDevice(make_bitmap(config, width, height, false /*isOpaque*/)) |
| { |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| if (config != SkBitmap::kRGB_565_Config) { |
| config = SkBitmap::kARGB_8888_Config; |
| } |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = SkBitmapConfig2GrPixelConfig(config); |
| desc.fSampleCnt = sampleCount; |
| |
| SkImageInfo info; |
| if (!GrPixelConfig2ColorType(desc.fConfig, &info.fColorType)) { |
| sk_throw(); |
| } |
| info.fWidth = width; |
| info.fHeight = height; |
| info.fAlphaType = kPremul_SkAlphaType; |
| |
| SkAutoTUnref<GrTexture> texture(fContext->createUncachedTexture(desc, NULL, 0)); |
| |
| if (NULL != texture) { |
| fRenderTarget = texture->asRenderTarget(); |
| fRenderTarget->ref(); |
| |
| SkASSERT(NULL != fRenderTarget); |
| |
| // wrap the bitmap with a pixelref to expose our texture |
| SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, texture)); |
| this->setPixelRef(pr)->unref(); |
| } else { |
| GrPrintf("--- failed to create gpu-offscreen [%d %d]\n", |
| width, height); |
| SkASSERT(false); |
| } |
| } |
| |
| SkGpuDevice::~SkGpuDevice() { |
| if (fDrawProcs) { |
| delete fDrawProcs; |
| } |
| |
| // The GrContext takes a ref on the target. We don't want to cause the render |
| // target to be unnecessarily kept alive. |
| if (fContext->getRenderTarget() == fRenderTarget) { |
| fContext->setRenderTarget(NULL); |
| } |
| |
| if (fContext->getClip() == &fClipData) { |
| fContext->setClip(NULL); |
| } |
| |
| SkSafeUnref(fRenderTarget); |
| fContext->unref(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::makeRenderTargetCurrent() { |
| DO_DEFERRED_CLEAR(); |
| fContext->setRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) { |
| switch (config8888) { |
| case SkCanvas::kNative_Premul_Config8888: |
| *flags = 0; |
| return kSkia8888_GrPixelConfig; |
| case SkCanvas::kNative_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kSkia8888_GrPixelConfig; |
| case SkCanvas::kBGRA_Premul_Config8888: |
| *flags = 0; |
| return kBGRA_8888_GrPixelConfig; |
| case SkCanvas::kBGRA_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kBGRA_8888_GrPixelConfig; |
| case SkCanvas::kRGBA_Premul_Config8888: |
| *flags = 0; |
| return kRGBA_8888_GrPixelConfig; |
| case SkCanvas::kRGBA_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kRGBA_8888_GrPixelConfig; |
| default: |
| GrCrash("Unexpected Config8888."); |
| *flags = 0; // suppress warning |
| return kSkia8888_GrPixelConfig; |
| } |
| } |
| } |
| |
| bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap, |
| int x, int y, |
| SkCanvas::Config8888 config8888) { |
| DO_DEFERRED_CLEAR(); |
| SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); |
| SkASSERT(!bitmap.isNull()); |
| SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); |
| |
| SkAutoLockPixels alp(bitmap); |
| GrPixelConfig config; |
| uint32_t flags; |
| config = config8888_to_grconfig_and_flags(config8888, &flags); |
| return fContext->readRenderTargetPixels(fRenderTarget, |
| x, y, |
| bitmap.width(), |
| bitmap.height(), |
| config, |
| bitmap.getPixels(), |
| bitmap.rowBytes(), |
| flags); |
| } |
| |
| void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y, |
| SkCanvas::Config8888 config8888) { |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| |
| GrPixelConfig config; |
| uint32_t flags; |
| if (SkBitmap::kARGB_8888_Config == bitmap.config()) { |
| config = config8888_to_grconfig_and_flags(config8888, &flags); |
| } else { |
| flags = 0; |
| config= SkBitmapConfig2GrPixelConfig(bitmap.config()); |
| } |
| |
| fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(), |
| config, bitmap.getPixels(), bitmap.rowBytes(), flags); |
| } |
| |
| void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { |
| INHERITED::onAttachToCanvas(canvas); |
| |
| // Canvas promises that this ptr is valid until onDetachFromCanvas is called |
| fClipData.fClipStack = canvas->getClipStack(); |
| } |
| |
| void SkGpuDevice::onDetachFromCanvas() { |
| INHERITED::onDetachFromCanvas(); |
| fClipData.fClipStack = NULL; |
| } |
| |
| // call this every draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { |
| SkASSERT(NULL != fClipData.fClipStack); |
| |
| fContext->setRenderTarget(fRenderTarget); |
| |
| SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); |
| |
| if (forceIdentity) { |
| fContext->setIdentityMatrix(); |
| } else { |
| fContext->setMatrix(*draw.fMatrix); |
| } |
| fClipData.fOrigin = this->getOrigin(); |
| |
| fContext->setClip(&fClipData); |
| |
| DO_DEFERRED_CLEAR(); |
| } |
| |
| GrRenderTarget* SkGpuDevice::accessRenderTarget() { |
| DO_DEFERRED_CLEAR(); |
| return fRenderTarget; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); |
| |
| namespace { |
| |
| // converts a SkPaint to a GrPaint, ignoring the skPaint's shader |
| // justAlpha indicates that skPaint's alpha should be used rather than the color |
| // Callers may subsequently modify the GrPaint. Setting constantColor indicates |
| // that the final paint will draw the same color at every pixel. This allows |
| // an optimization where the the color filter can be applied to the skPaint's |
| // color once while converting to GrPaint and then ignored. |
| inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev, |
| const SkPaint& skPaint, |
| bool justAlpha, |
| bool constantColor, |
| GrPaint* grPaint) { |
| |
| grPaint->setDither(skPaint.isDither()); |
| grPaint->setAntiAlias(skPaint.isAntiAlias()); |
| |
| SkXfermode::Coeff sm; |
| SkXfermode::Coeff dm; |
| |
| SkXfermode* mode = skPaint.getXfermode(); |
| GrEffectRef* xferEffect = NULL; |
| if (SkXfermode::AsNewEffectOrCoeff(mode, &xferEffect, &sm, &dm)) { |
| if (NULL != xferEffect) { |
| grPaint->addColorEffect(xferEffect)->unref(); |
| sm = SkXfermode::kOne_Coeff; |
| dm = SkXfermode::kZero_Coeff; |
| } |
| } else { |
| //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) |
| #if 0 |
| return false; |
| #else |
| // Fall back to src-over |
| sm = SkXfermode::kOne_Coeff; |
| dm = SkXfermode::kISA_Coeff; |
| #endif |
| } |
| grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm)); |
| |
| if (justAlpha) { |
| uint8_t alpha = skPaint.getAlpha(); |
| grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha)); |
| // justAlpha is currently set to true only if there is a texture, |
| // so constantColor should not also be true. |
| SkASSERT(!constantColor); |
| } else { |
| grPaint->setColor(SkColor2GrColor(skPaint.getColor())); |
| } |
| |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (NULL != colorFilter) { |
| // if the source color is a constant then apply the filter here once rather than per pixel |
| // in a shader. |
| if (constantColor) { |
| SkColor filtered = colorFilter->filterColor(skPaint.getColor()); |
| grPaint->setColor(SkColor2GrColor(filtered)); |
| } else { |
| SkAutoTUnref<GrEffectRef> effect(colorFilter->asNewEffect(dev->context())); |
| if (NULL != effect.get()) { |
| grPaint->addColorEffect(effect); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function is similar to skPaint2GrPaintNoShader but also converts |
| // skPaint's shader to a GrTexture/GrEffectStage if possible. The texture to |
| // be used is set on grPaint and returned in param act. constantColor has the |
| // same meaning as in skPaint2GrPaintNoShader. |
| inline bool skPaint2GrPaintShader(SkGpuDevice* dev, |
| const SkPaint& skPaint, |
| bool constantColor, |
| GrPaint* grPaint) { |
| SkShader* shader = skPaint.getShader(); |
| if (NULL == shader) { |
| return skPaint2GrPaintNoShader(dev, skPaint, false, constantColor, grPaint); |
| } |
| |
| // SkShader::asNewEffect() may do offscreen rendering. Setup default drawing state and require |
| // the shader to set a render target . |
| GrContext::AutoWideOpenIdentityDraw awo(dev->context(), NULL); |
| |
| // setup the shader as the first color effect on the paint |
| SkAutoTUnref<GrEffectRef> effect(shader->asNewEffect(dev->context(), skPaint)); |
| if (NULL != effect.get()) { |
| grPaint->addColorEffect(effect); |
| // Now setup the rest of the paint. |
| return skPaint2GrPaintNoShader(dev, skPaint, true, false, grPaint); |
| } else { |
| // We still don't have SkColorShader::asNewEffect() implemented. |
| SkShader::GradientInfo info; |
| SkColor color; |
| |
| info.fColors = &color; |
| info.fColorOffsets = NULL; |
| info.fColorCount = 1; |
| if (SkShader::kColor_GradientType == shader->asAGradient(&info)) { |
| SkPaint copy(skPaint); |
| copy.setShader(NULL); |
| // modulate the paint alpha by the shader's solid color alpha |
| U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha()); |
| copy.setColor(SkColorSetA(color, newA)); |
| return skPaint2GrPaintNoShader(dev, copy, false, constantColor, grPaint); |
| } else { |
| return false; |
| } |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBitmap::Config SkGpuDevice::config() const { |
| if (NULL == fRenderTarget) { |
| return SkBitmap::kNo_Config; |
| } |
| |
| bool isOpaque; |
| return grConfig2skConfig(fRenderTarget->config(), &isOpaque); |
| } |
| |
| void SkGpuDevice::clear(SkColor color) { |
| SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); |
| fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget); |
| fNeedClear = false; |
| } |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| fContext->drawPaint(grPaint); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimtiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| // we only handle hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| fContext->drawVertices(grPaint, |
| gPointMode2PrimtiveType[mode], |
| SkToS32(count), |
| (GrPoint*)pts, |
| NULL, |
| NULL, |
| NULL, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, |
| const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| bool doStroke = paint.getStyle() != SkPaint::kFill_Style; |
| SkScalar width = paint.getStrokeWidth(); |
| |
| /* |
| We have special code for hairline strokes, miter-strokes, bevel-stroke |
| and fills. Anything else we just call our path code. |
| */ |
| bool usePath = doStroke && width > 0 && |
| (paint.getStrokeJoin() == SkPaint::kRound_Join || |
| (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); |
| // another two reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| usePath = true; |
| } |
| if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| if (doStroke) { |
| #endif |
| usePath = true; |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| } else { |
| usePath = !fContext->getMatrix().preservesRightAngles(); |
| } |
| #endif |
| } |
| // until we can both stroke and fill rectangles |
| if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| if (!doStroke) { |
| fContext->drawRect(grPaint, rect); |
| } else { |
| SkStrokeRec stroke(paint); |
| fContext->drawRect(grPaint, rect, &stroke); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, |
| const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| bool usePath = !rect.isSimple(); |
| // another two reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| usePath = true; |
| } |
| // until we can rotate rrects... |
| if (!usePath && !fContext->getMatrix().rectStaysRect()) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addRRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| SkStrokeRec stroke(paint); |
| fContext->drawRRect(grPaint, rect, stroke); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, |
| const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| bool usePath = false; |
| // some basic reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addOval(oval); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| SkStrokeRec stroke(paint); |
| |
| fContext->drawOval(grPaint, oval, stroke); |
| } |
| |
| #include "SkMaskFilter.h" |
| #include "SkBounder.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // helpers for applying mask filters |
| namespace { |
| |
| // Draw a mask using the supplied paint. Since the coverage/geometry |
| // is already burnt into the mask this boils down to a rect draw. |
| // Return true if the mask was successfully drawn. |
| bool draw_mask(GrContext* context, const SkRect& maskRect, |
| GrPaint* grp, GrTexture* mask) { |
| GrContext::AutoMatrix am; |
| if (!am.setIdentity(context, grp)) { |
| return false; |
| } |
| |
| SkMatrix matrix; |
| matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop); |
| matrix.postIDiv(mask->width(), mask->height()); |
| |
| grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref(); |
| context->drawRect(*grp, maskRect); |
| return true; |
| } |
| |
| bool draw_with_mask_filter(GrContext* context, const SkPath& devPath, |
| SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder, |
| GrPaint* grp, SkPaint::Style style) { |
| SkMask srcM, dstM; |
| |
| if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, |
| SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { |
| return false; |
| } |
| SkAutoMaskFreeImage autoSrc(srcM.fImage); |
| |
| if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { |
| return false; |
| } |
| // this will free-up dstM when we're done (allocated in filterMask()) |
| SkAutoMaskFreeImage autoDst(dstM.fImage); |
| |
| if (clip.quickReject(dstM.fBounds)) { |
| return false; |
| } |
| if (bounder && !bounder->doIRect(dstM.fBounds)) { |
| return false; |
| } |
| |
| // we now have a device-aligned 8bit mask in dstM, ready to be drawn using |
| // the current clip (and identity matrix) and GrPaint settings |
| GrTextureDesc desc; |
| desc.fWidth = dstM.fBounds.width(); |
| desc.fHeight = dstM.fBounds.height(); |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| GrAutoScratchTexture ast(context, desc); |
| GrTexture* texture = ast.texture(); |
| |
| if (NULL == texture) { |
| return false; |
| } |
| texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, |
| dstM.fImage, dstM.fRowBytes); |
| |
| SkRect maskRect = SkRect::Make(dstM.fBounds); |
| |
| return draw_mask(context, maskRect, grp, texture); |
| } |
| |
| // Create a mask of 'devPath' and place the result in 'mask'. Return true on |
| // success; false otherwise. |
| bool create_mask_GPU(GrContext* context, |
| const SkRect& maskRect, |
| const SkPath& devPath, |
| const SkStrokeRec& stroke, |
| bool doAA, |
| GrAutoScratchTexture* mask) { |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = SkScalarCeilToInt(maskRect.width()); |
| desc.fHeight = SkScalarCeilToInt(maskRect.height()); |
| // We actually only need A8, but it often isn't supported as a |
| // render target so default to RGBA_8888 |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| } |
| |
| mask->set(context, desc); |
| if (NULL == mask->texture()) { |
| return false; |
| } |
| |
| GrTexture* maskTexture = mask->texture(); |
| SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); |
| |
| GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget()); |
| GrContext::AutoClip ac(context, clipRect); |
| |
| context->clear(NULL, 0x0, true); |
| |
| GrPaint tempPaint; |
| if (doAA) { |
| tempPaint.setAntiAlias(true); |
| // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst |
| // blend coeff of zero requires dual source blending support in order |
| // to properly blend partially covered pixels. This means the AA |
| // code path may not be taken. So we use a dst blend coeff of ISA. We |
| // could special case AA draws to a dst surface with known alpha=0 to |
| // use a zero dst coeff when dual source blending isn't available. |
| tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); |
| } |
| |
| GrContext::AutoMatrix am; |
| |
| // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint. |
| SkMatrix translate; |
| translate.setTranslate(-maskRect.fLeft, -maskRect.fTop); |
| am.set(context, translate); |
| context->drawPath(tempPaint, devPath, stroke); |
| return true; |
| } |
| |
| SkBitmap wrap_texture(GrTexture* texture) { |
| SkImageInfo info; |
| texture->asImageInfo(&info); |
| |
| SkBitmap result; |
| result.setConfig(info); |
| result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref(); |
| return result; |
| } |
| |
| }; |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| // If we have a prematrix, apply it to the path, optimizing for the case |
| // where the original path can in fact be modified in place (even though |
| // its parameter type is const). |
| SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); |
| SkPath tmpPath, effectPath; |
| |
| if (prePathMatrix) { |
| SkPath* result = pathPtr; |
| |
| if (!pathIsMutable) { |
| result = &tmpPath; |
| pathIsMutable = true; |
| } |
| // should I push prePathMatrix on our MV stack temporarily, instead |
| // of applying it here? See SkDraw.cpp |
| pathPtr->transform(*prePathMatrix, result); |
| pathPtr = result; |
| } |
| // at this point we're done with prePathMatrix |
| SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) |
| |
| SkStrokeRec stroke(paint); |
| SkPathEffect* pathEffect = paint.getPathEffect(); |
| const SkRect* cullRect = NULL; // TODO: what is our bounds? |
| if (pathEffect && pathEffect->filterPath(&effectPath, *pathPtr, &stroke, |
| cullRect)) { |
| pathPtr = &effectPath; |
| } |
| |
| if (paint.getMaskFilter()) { |
| if (!stroke.isHairlineStyle()) { |
| if (stroke.applyToPath(&tmpPath, *pathPtr)) { |
| pathPtr = &tmpPath; |
| pathIsMutable = true; |
| stroke.setFillStyle(); |
| } |
| } |
| |
| // avoid possibly allocating a new path in transform if we can |
| SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; |
| |
| // transform the path into device space |
| pathPtr->transform(fContext->getMatrix(), devPathPtr); |
| |
| SkRect maskRect; |
| if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(), |
| draw.fClip->getBounds(), |
| fContext->getMatrix(), |
| &maskRect)) { |
| SkIRect finalIRect; |
| maskRect.roundOut(&finalIRect); |
| if (draw.fClip->quickReject(finalIRect)) { |
| // clipped out |
| return; |
| } |
| if (NULL != draw.fBounder && !draw.fBounder->doIRect(finalIRect)) { |
| // nothing to draw |
| return; |
| } |
| |
| GrAutoScratchTexture mask; |
| |
| if (create_mask_GPU(fContext, maskRect, *devPathPtr, stroke, |
| grPaint.isAntiAlias(), &mask)) { |
| GrTexture* filtered; |
| |
| if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), |
| fContext->getMatrix(), maskRect, |
| &filtered, true)) { |
| // filterMaskGPU gives us ownership of a ref to the result |
| SkAutoTUnref<GrTexture> atu(filtered); |
| |
| // If the scratch texture that we used as the filter src also holds the filter |
| // result then we must detach so that this texture isn't recycled for a later |
| // draw. |
| if (filtered == mask.texture()) { |
| mask.detach(); |
| filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us. |
| } |
| |
| if (draw_mask(fContext, maskRect, &grPaint, filtered)) { |
| // This path is completely drawn |
| return; |
| } |
| } |
| } |
| } |
| |
| // draw the mask on the CPU - this is a fallthrough path in case the |
| // GPU path fails |
| SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : |
| SkPaint::kFill_Style; |
| draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(), |
| *draw.fClip, draw.fBounder, &grPaint, style); |
| return; |
| } |
| |
| fContext->drawPath(grPaint, *pathPtr, stroke); |
| } |
| |
| static const int kBmpSmallTileSize = 1 << 10; |
| |
| static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { |
| int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; |
| int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) { |
| if (maxTileSize <= kBmpSmallTileSize) { |
| return maxTileSize; |
| } |
| |
| size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); |
| size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); |
| |
| maxTileTotalTileSize *= maxTileSize * maxTileSize; |
| smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| if (maxTileTotalTileSize > 2 * smallTotalTileSize) { |
| return kBmpSmallTileSize; |
| } else { |
| return maxTileSize; |
| } |
| } |
| |
| // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what |
| // pixels from the bitmap are necessary. |
| static void determine_clipped_src_rect(const GrContext* context, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| SkIRect* clippedSrcIRect) { |
| const GrClipData* clip = context->getClip(); |
| clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL); |
| SkMatrix inv; |
| if (!context->getMatrix().invert(&inv)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); |
| inv.mapRect(&clippedSrcRect); |
| if (NULL != srcRectPtr) { |
| // we've setup src space 0,0 to map to the top left of the src rect. |
| clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); |
| if (!clippedSrcRect.intersect(*srcRectPtr)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| } |
| clippedSrcRect.roundOut(clippedSrcIRect); |
| SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| if (!clippedSrcIRect->intersect(bmpBounds)) { |
| clippedSrcIRect->setEmpty(); |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| const SkRect* srcRectPtr, |
| int maxTileSize, |
| int* tileSize, |
| SkIRect* clippedSrcRect) const { |
| // if bitmap is explictly texture backed then just use the texture |
| if (NULL != bitmap.getTexture()) { |
| return false; |
| } |
| |
| // if it's larger than the max tile size, then we have no choice but tiling. |
| if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) { |
| determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); |
| *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize); |
| return true; |
| } |
| |
| if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { |
| return false; |
| } |
| |
| // if the entire texture is already in our cache then no reason to tile it |
| if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = bitmap.getSize(); |
| size_t cacheSize; |
| fContext->getTextureCacheLimits(NULL, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| // Figure out how much of the src we will need based on the src rect and clipping. |
| determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); |
| *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. |
| size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) * |
| kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| return usedTileBytes < 2 * bmpSize; |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& origDraw, |
| const SkBitmap& bitmap, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| SkMatrix concat; |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (!m.isIdentity()) { |
| concat.setConcat(*draw->fMatrix, m); |
| draw.writable()->fMatrix = &concat; |
| } |
| this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag); |
| } |
| |
| // This method outsets 'iRect' by 'outset' all around and then clamps its extents to |
| // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner |
| // of 'iRect' for all possible outsets/clamps. |
| static inline void clamped_outset_with_offset(SkIRect* iRect, |
| int outset, |
| SkPoint* offset, |
| const SkIRect& clamp) { |
| iRect->outset(outset, outset); |
| |
| int leftClampDelta = clamp.fLeft - iRect->fLeft; |
| if (leftClampDelta > 0) { |
| offset->fX -= outset - leftClampDelta; |
| iRect->fLeft = clamp.fLeft; |
| } else { |
| offset->fX -= outset; |
| } |
| |
| int topClampDelta = clamp.fTop - iRect->fTop; |
| if (topClampDelta > 0) { |
| offset->fY -= outset - topClampDelta; |
| iRect->fTop = clamp.fTop; |
| } else { |
| offset->fY -= outset; |
| } |
| |
| if (iRect->fRight > clamp.fRight) { |
| iRect->fRight = clamp.fRight; |
| } |
| if (iRect->fBottom > clamp.fBottom) { |
| iRect->fBottom = clamp.fBottom; |
| } |
| } |
| |
| void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| const SkSize* dstSizePtr, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkRect srcRect; |
| SkSize dstSize; |
| // If there is no src rect, or the src rect contains the entire bitmap then we're effectively |
| // in the (easier) bleed case, so update flags. |
| if (NULL == srcRectPtr) { |
| SkScalar w = SkIntToScalar(bitmap.width()); |
| SkScalar h = SkIntToScalar(bitmap.height()); |
| dstSize.fWidth = w; |
| dstSize.fHeight = h; |
| srcRect.set(0, 0, w, h); |
| flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); |
| } else { |
| SkASSERT(NULL != dstSizePtr); |
| srcRect = *srcRectPtr; |
| dstSize = *dstSizePtr; |
| if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 && |
| srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) { |
| flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); |
| } |
| } |
| |
| if (paint.getMaskFilter()){ |
| // Convert the bitmap to a shader so that the rect can be drawn |
| // through drawRect, which supports mask filters. |
| SkBitmap tmp; // subset of bitmap, if necessary |
| const SkBitmap* bitmapPtr = &bitmap; |
| SkMatrix localM; |
| if (NULL != srcRectPtr) { |
| localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); |
| localM.postScale(dstSize.fWidth / srcRectPtr->width(), |
| dstSize.fHeight / srcRectPtr->height()); |
| // In bleed mode we position and trim the bitmap based on the src rect which is |
| // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out |
| // the desired portion of the bitmap and then update 'm' and 'srcRect' to |
| // compensate. |
| if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) { |
| SkIRect iSrc; |
| srcRect.roundOut(&iSrc); |
| |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), |
| SkIntToScalar(iSrc.fTop)); |
| |
| if (!bitmap.extractSubset(&tmp, iSrc)) { |
| return; // extraction failed |
| } |
| bitmapPtr = &tmp; |
| srcRect.offset(-offset.fX, -offset.fY); |
| |
| // The source rect has changed so update the matrix |
| localM.preTranslate(offset.fX, offset.fY); |
| } |
| } else { |
| localM.reset(); |
| } |
| |
| SkPaint paintWithShader(paint); |
| paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); |
| paintWithShader.getShader()->setLocalMatrix(localM); |
| SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; |
| this->drawRect(draw, dstRect, paintWithShader); |
| |
| return; |
| } |
| |
| // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using |
| // the view matrix rather than a local matrix. |
| SkMatrix m; |
| m.setScale(dstSize.fWidth / srcRect.width(), |
| dstSize.fHeight / srcRect.height()); |
| fContext->concatMatrix(m); |
| |
| GrTextureParams params; |
| SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel(); |
| GrTextureParams::FilterMode textureFilterMode; |
| |
| int tileFilterPad; |
| bool doBicubic = false; |
| |
| switch(paintFilterLevel) { |
| case SkPaint::kNone_FilterLevel: |
| tileFilterPad = 0; |
| textureFilterMode = GrTextureParams::kNone_FilterMode; |
| break; |
| case SkPaint::kLow_FilterLevel: |
| tileFilterPad = 1; |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| break; |
| case SkPaint::kMedium_FilterLevel: |
| tileFilterPad = 1; |
| if (fContext->getMatrix().getMinStretch() < SK_Scalar1) { |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| } else { |
| // Don't trigger MIP level generation unnecessarily. |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| break; |
| case SkPaint::kHigh_FilterLevel: |
| // Minification can look bad with the bicubic effect. |
| if (fContext->getMatrix().getMinStretch() >= SK_Scalar1) { |
| // We will install an effect that does the filtering in the shader. |
| textureFilterMode = GrTextureParams::kNone_FilterMode; |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| doBicubic = true; |
| } else { |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| tileFilterPad = 1; |
| } |
| break; |
| default: |
| SkErrorInternals::SetError( kInvalidPaint_SkError, |
| "Sorry, I don't understand the filtering " |
| "mode you asked for. Falling back to " |
| "MIPMaps."); |
| tileFilterPad = 1; |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| break; |
| } |
| |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad; |
| int tileSize; |
| |
| SkIRect clippedSrcRect; |
| if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize, |
| &clippedSrcRect)) { |
| this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize, |
| doBicubic); |
| } else { |
| // take the simple case |
| this->internalDrawBitmap(bitmap, srcRect, params, paint, flags, doBicubic); |
| } |
| } |
| |
| // Break 'bitmap' into several tiles to draw it since it has already |
| // been determined to be too large to fit in VRAM |
| void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const SkIRect& clippedSrcIRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags, |
| int tileSize, |
| bool bicubic) { |
| SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkRect tileR; |
| tileR.set(SkIntToScalar(x * tileSize), |
| SkIntToScalar(y * tileSize), |
| SkIntToScalar((x + 1) * tileSize), |
| SkIntToScalar((y + 1) * tileSize)); |
| |
| if (!SkRect::Intersects(tileR, clippedSrcRect)) { |
| continue; |
| } |
| |
| if (!tileR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkBitmap tmpB; |
| SkIRect iTileR; |
| tileR.roundOut(&iTileR); |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), |
| SkIntToScalar(iTileR.fTop)); |
| |
| // Adjust the context matrix to draw at the right x,y in device space |
| SkMatrix tmpM; |
| GrContext::AutoMatrix am; |
| tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); |
| am.setPreConcat(fContext, tmpM); |
| |
| if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) { |
| SkIRect iClampRect; |
| |
| if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) { |
| // In bleed mode we want to always expand the tile on all edges |
| // but stay within the bitmap bounds |
| iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| } else { |
| // In texture-domain/clamp mode we only want to expand the |
| // tile on edges interior to "srcRect" (i.e., we want to |
| // not bleed across the original clamped edges) |
| srcRect.roundOut(&iClampRect); |
| } |
| int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; |
| clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); |
| } |
| |
| if (bitmap.extractSubset(&tmpB, iTileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| tileR.offset(-offset.fX, -offset.fY); |
| |
| this->internalDrawBitmap(tmpB, tileR, params, paint, flags, bicubic); |
| } |
| } |
| } |
| } |
| |
| static bool has_aligned_samples(const SkRect& srcRect, |
| const SkRect& transformedRect) { |
| // detect pixel disalignment |
| if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - |
| transformedRect.left()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - |
| transformedRect.top()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.width() - srcRect.width()) < |
| COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.height() - srcRect.height()) < |
| COLOR_BLEED_TOLERANCE) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool may_color_bleed(const SkRect& srcRect, |
| const SkRect& transformedRect, |
| const SkMatrix& m) { |
| // Only gets called if has_aligned_samples returned false. |
| // So we can assume that sampling is axis aligned but not texel aligned. |
| SkASSERT(!has_aligned_samples(srcRect, transformedRect)); |
| SkRect innerSrcRect(srcRect), innerTransformedRect, |
| outerTransformedRect(transformedRect); |
| innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); |
| m.mapRect(&innerTransformedRect, innerSrcRect); |
| |
| // The gap between outerTransformedRect and innerTransformedRect |
| // represents the projection of the source border area, which is |
| // problematic for color bleeding. We must check whether any |
| // destination pixels sample the border area. |
| outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| SkIRect outer, inner; |
| outerTransformedRect.round(&outer); |
| innerTransformedRect.round(&inner); |
| // If the inner and outer rects round to the same result, it means the |
| // border does not overlap any pixel centers. Yay! |
| return inner != outer; |
| } |
| |
| |
| /* |
| * This is called by drawBitmap(), which has to handle images that may be too |
| * large to be represented by a single texture. |
| * |
| * internalDrawBitmap assumes that the specified bitmap will fit in a texture |
| * and that non-texture portion of the GrPaint has already been setup. |
| */ |
| void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags, |
| bool bicubic) { |
| SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && |
| bitmap.height() <= fContext->getMaxTextureSize()); |
| |
| GrTexture* texture; |
| SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); |
| if (NULL == texture) { |
| return; |
| } |
| |
| SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; |
| SkRect paintRect; |
| SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); |
| SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); |
| paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), |
| SkScalarMul(srcRect.fTop, hInv), |
| SkScalarMul(srcRect.fRight, wInv), |
| SkScalarMul(srcRect.fBottom, hInv)); |
| |
| bool needsTextureDomain = false; |
| if (!(flags & SkCanvas::kBleed_DrawBitmapRectFlag) && |
| (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode)) { |
| // Need texture domain if drawing a sub rect |
| needsTextureDomain = srcRect.width() < bitmap.width() || |
| srcRect.height() < bitmap.height(); |
| if (!bicubic && needsTextureDomain && fContext->getMatrix().rectStaysRect()) { |
| const SkMatrix& matrix = fContext->getMatrix(); |
| // sampling is axis-aligned |
| SkRect transformedRect; |
| matrix.mapRect(&transformedRect, srcRect); |
| |
| if (has_aligned_samples(srcRect, transformedRect)) { |
| // We could also turn off filtering here (but we already did a cache lookup with |
| // params). |
| needsTextureDomain = false; |
| } else { |
| needsTextureDomain = may_color_bleed(srcRect, transformedRect, matrix); |
| } |
| } |
| } |
| |
| SkRect textureDomain = SkRect::MakeEmpty(); |
| SkAutoTUnref<GrEffectRef> effect; |
| if (needsTextureDomain) { |
| // Use a constrained texture domain to avoid color bleeding |
| SkScalar left, top, right, bottom; |
| if (srcRect.width() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->width(); |
| left = paintRect.left() + border; |
| right = paintRect.right() - border; |
| } else { |
| left = right = SkScalarHalf(paintRect.left() + paintRect.right()); |
| } |
| if (srcRect.height() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->height(); |
| top = paintRect.top() + border; |
| bottom = paintRect.bottom() - border; |
| } else { |
| top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); |
| } |
| textureDomain.setLTRB(left, top, right, bottom); |
| if (bicubic) { |
| effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain)); |
| } else { |
| effect.reset(GrTextureDomainEffect::Create(texture, |
| SkMatrix::I(), |
| textureDomain, |
| GrTextureDomain::kClamp_Mode, |
| params.filterMode())); |
| } |
| } else if (bicubic) { |
| SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); |
| SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; |
| effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes)); |
| } else { |
| effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); |
| } |
| |
| // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring |
| // the rest from the SkPaint. |
| GrPaint grPaint; |
| grPaint.addColorEffect(effect); |
| bool alphaOnly = !(SkBitmap::kA8_Config == bitmap.config()); |
| if (!skPaint2GrPaintNoShader(this, paint, alphaOnly, false, &grPaint)) { |
| return; |
| } |
| |
| fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL); |
| } |
| |
| static bool filter_texture(SkBaseDevice* device, GrContext* context, |
| GrTexture* texture, SkImageFilter* filter, |
| int w, int h, const SkMatrix& ctm, SkBitmap* result, |
| SkIPoint* offset) { |
| SkASSERT(filter); |
| SkDeviceImageFilterProxy proxy(device); |
| |
| if (filter->canFilterImageGPU()) { |
| // Save the render target and set it to NULL, so we don't accidentally draw to it in the |
| // filter. Also set the clip wide open and the matrix to identity. |
| GrContext::AutoWideOpenIdentityDraw awo(context, NULL); |
| return filter->filterImageGPU(&proxy, wrap_texture(texture), ctm, result, offset); |
| } else { |
| return false; |
| } |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| // drawSprite is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| return; |
| } |
| |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| |
| GrTexture* texture; |
| // draw sprite uses the default texture params |
| SkAutoCachedTexture act(this, bitmap, NULL, &texture); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (NULL != filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); |
| if (filter_texture(this, fContext, texture, filter, w, h, matrix, &filteredBitmap, |
| &offset)) { |
| texture = (GrTexture*) filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| left += offset.x(); |
| top += offset.y(); |
| } else { |
| return; |
| } |
| } |
| |
| GrPaint grPaint; |
| grPaint.addColorTextureEffect(texture, SkMatrix::I()); |
| |
| if(!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { |
| return; |
| } |
| |
| fContext->drawRectToRect(grPaint, |
| SkRect::MakeXYWH(SkIntToScalar(left), |
| SkIntToScalar(top), |
| SkIntToScalar(w), |
| SkIntToScalar(h)), |
| SkRect::MakeXYWH(0, |
| 0, |
| SK_Scalar1 * w / texture->width(), |
| SK_Scalar1 * h / texture->height())); |
| } |
| |
| void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, |
| const SkRect* src, const SkRect& dst, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags) { |
| SkMatrix matrix; |
| SkRect bitmapBounds, tmpSrc; |
| |
| bitmapBounds.set(0, 0, |
| SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| |
| // Compute matrix from the two rectangles |
| if (NULL != src) { |
| tmpSrc = *src; |
| } else { |
| tmpSrc = bitmapBounds; |
| } |
| |
| matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); |
| |
| // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. |
| if (NULL != src) { |
| if (!bitmapBounds.contains(tmpSrc)) { |
| if (!tmpSrc.intersect(bitmapBounds)) { |
| return; // nothing to draw |
| } |
| } |
| } |
| |
| SkRect tmpDst; |
| matrix.mapRect(&tmpDst, tmpSrc); |
| |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { |
| // Translate so that tempDst's top left is at the origin. |
| matrix = *origDraw.fMatrix; |
| matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); |
| draw.writable()->fMatrix = &matrix; |
| } |
| SkSize dstSize; |
| dstSize.fWidth = tmpDst.width(); |
| dstSize.fHeight = tmpDst.height(); |
| |
| this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, |
| int x, int y, const SkPaint& paint) { |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| if (dev->fNeedClear) { |
| // TODO: could check here whether we really need to draw at all |
| dev->clear(0x0); |
| } |
| |
| // drawDevice is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| GrRenderTarget* devRT = dev->accessRenderTarget(); |
| GrTexture* devTex; |
| if (NULL == (devTex = devRT->asTexture())) { |
| return; |
| } |
| |
| const SkBitmap& bm = dev->accessBitmap(false); |
| int w = bm.width(); |
| int h = bm.height(); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (NULL != filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); |
| if (filter_texture(this, fContext, devTex, filter, w, h, matrix, &filteredBitmap, |
| &offset)) { |
| devTex = filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| x += offset.fX; |
| y += offset.fY; |
| } else { |
| return; |
| } |
| } |
| |
| GrPaint grPaint; |
| grPaint.addColorTextureEffect(devTex, SkMatrix::I()); |
| |
| if (!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) { |
| return; |
| } |
| |
| SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), |
| SkIntToScalar(y), |
| SkIntToScalar(w), |
| SkIntToScalar(h)); |
| |
| // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate |
| // scratch texture). |
| SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), |
| SK_Scalar1 * h / devTex->height()); |
| |
| fContext->drawRectToRect(grPaint, dstRect, srcRect); |
| } |
| |
| bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) { |
| return filter->canFilterImageGPU(); |
| } |
| |
| bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src, |
| const SkMatrix& ctm, |
| SkBitmap* result, SkIPoint* offset) { |
| // want explicitly our impl, so guard against a subclass of us overriding it |
| if (!this->SkGpuDevice::canHandleImageFilter(filter)) { |
| return false; |
| } |
| |
| SkAutoLockPixels alp(src, !src.getTexture()); |
| if (!src.getTexture() && !src.readyToDraw()) { |
| return false; |
| } |
| |
| GrTexture* texture; |
| // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup |
| // must be pushed upstack. |
| SkAutoCachedTexture act(this, src, NULL, &texture); |
| |
| return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctm, result, |
| offset); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| // we ignore the shader if texs is null. |
| if (NULL == texs) { |
| if (!skPaint2GrPaintNoShader(this, paint, false, NULL == colors, &grPaint)) { |
| return; |
| } |
| } else { |
| if (!skPaint2GrPaintShader(this, paint, NULL == colors, &grPaint)) { |
| return; |
| } |
| } |
| |
| if (NULL != xmode && NULL != texs && NULL != colors) { |
| if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { |
| SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); |
| #if 0 |
| return |
| #endif |
| } |
| } |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (NULL != colors) { |
| // need to convert byte order and from non-PM to PM |
| convertedColors.reset(vertexCount); |
| for (int i = 0; i < vertexCount; ++i) { |
| convertedColors[i] = SkColor2GrColor(colors[i]); |
| } |
| colors = convertedColors.get(); |
| } |
| fContext->drawVertices(grPaint, |
| gVertexMode2PrimitiveType[vmode], |
| vertexCount, |
| (GrPoint*) vertices, |
| (GrPoint*) texs, |
| colors, |
| indices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void GlyphCacheAuxProc(void* data) { |
| GrFontScaler* scaler = (GrFontScaler*)data; |
| SkSafeUnref(scaler); |
| } |
| |
| static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) { |
| void* auxData; |
| GrFontScaler* scaler = NULL; |
| if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) { |
| scaler = (GrFontScaler*)auxData; |
| } |
| if (NULL == scaler) { |
| scaler = SkNEW_ARGS(SkGrFontScaler, (cache)); |
| cache->setAuxProc(GlyphCacheAuxProc, scaler); |
| } |
| return scaler; |
| } |
| |
| static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| |
| GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs); |
| |
| if (NULL == procs->fFontScaler) { |
| procs->fFontScaler = get_gr_font_scaler(state.fCache); |
| } |
| |
| procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(), |
| glyph.getSubXFixed(), |
| glyph.getSubYFixed()), |
| SkFixedFloorToFixed(fx), |
| SkFixedFloorToFixed(fy), |
| procs->fFontScaler); |
| } |
| |
| SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) { |
| |
| // deferred allocation |
| if (NULL == fDrawProcs) { |
| fDrawProcs = SkNEW(GrSkDrawProcs); |
| fDrawProcs->fD1GProc = SkGPU_Draw1Glyph; |
| fDrawProcs->fContext = fContext; |
| } |
| |
| // init our (and GL's) state |
| fDrawProcs->fTextContext = context; |
| fDrawProcs->fFontScaler = NULL; |
| return fDrawProcs; |
| } |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| if (SkDraw::ShouldDrawTextAsPaths(paint, fContext->getMatrix())) { |
| draw.drawText_asPaths((const char*)text, byteLength, x, y, paint); |
| #if SK_DISTANCEFIELD_FONTS |
| } else if (!paint.getRasterizer()) { |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| GrDistanceFieldTextContext context(fContext, grPaint, paint); |
| |
| SkAutoGlyphCache autoCache(context.getSkPaint(), &this->fLeakyProperties, NULL); |
| SkGlyphCache* cache = autoCache.getCache(); |
| GrFontScaler* fontScaler = get_gr_font_scaler(cache); |
| |
| context.drawText((const char *)text, byteLength, x, y, cache, fontScaler); |
| #endif |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| GrBitmapTextContext context(fContext, grPaint, paint.getColor()); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, |
| size_t byteLength, const SkScalar pos[], |
| SkScalar constY, int scalarsPerPos, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| if (SkDraw::ShouldDrawTextAsPaths(paint, fContext->getMatrix())) { |
| // this guy will just call our drawPath() |
| draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| #if SK_DISTANCEFIELD_FONTS |
| } else if (!paint.getRasterizer()) { |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| GrDistanceFieldTextContext context(fContext, grPaint, paint); |
| |
| SkAutoGlyphCache autoCache(context.getSkPaint(), &this->fLeakyProperties, NULL); |
| SkGlyphCache* cache = autoCache.getCache(); |
| GrFontScaler* fontScaler = get_gr_font_scaler(cache); |
| |
| context.drawPosText((const char *)text, byteLength, pos, constY, scalarsPerPos, |
| cache, fontScaler); |
| #endif |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) { |
| return; |
| } |
| GrBitmapTextContext context(fContext, grPaint, paint.getColor()); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, |
| size_t len, const SkPath& path, |
| const SkMatrix* m, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkASSERT(draw.fDevice == this); |
| draw.drawTextOnPath((const char*)text, len, path, m, paint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { |
| if (!paint.isLCDRenderText()) { |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| if (paint.getShader() || |
| paint.getXfermode() || // unless its srcover |
| paint.getMaskFilter() || |
| paint.getRasterizer() || |
| paint.getColorFilter() || |
| paint.getPathEffect() || |
| paint.isFakeBoldText() || |
| paint.getStyle() != SkPaint::kFill_Style) { |
| // turn off lcd |
| flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; |
| flags->fHinting = paint.getHinting(); |
| return true; |
| } |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| void SkGpuDevice::flush() { |
| DO_DEFERRED_CLEAR(); |
| fContext->resolveRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBaseDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config, |
| int width, int height, |
| bool isOpaque, |
| Usage usage) { |
| GrTextureDesc desc; |
| desc.fConfig = fRenderTarget->config(); |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fSampleCnt = fRenderTarget->numSamples(); |
| |
| SkAutoTUnref<GrTexture> texture; |
| // Skia's convention is to only clear a device if it is non-opaque. |
| bool needClear = !isOpaque; |
| |
| #if CACHE_COMPATIBLE_DEVICE_TEXTURES |
| // layers are never draw in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? |
| GrContext::kApprox_ScratchTexMatch : |
| GrContext::kExact_ScratchTexMatch; |
| texture.reset(fContext->lockAndRefScratchTexture(desc, match)); |
| #else |
| texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); |
| #endif |
| if (NULL != texture.get()) { |
| return SkNEW_ARGS(SkGpuDevice,(fContext, texture, needClear)); |
| } else { |
| GrPrintf("---- failed to create compatible device texture [%d %d]\n", width, height); |
| return NULL; |
| } |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| GrTexture* texture, |
| bool needClear) |
| : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { |
| |
| SkASSERT(texture && texture->asRenderTarget()); |
| // This constructor is called from onCreateCompatibleDevice. It has locked the RT in the texture |
| // cache. We pass true for the third argument so that it will get unlocked. |
| this->initFromRenderTarget(context, texture->asRenderTarget(), true); |
| fNeedClear = needClear; |
| } |