blob: fb68a29420cf5dd72b6e030857d1f8ca36b1cf0e [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrConvolutionEffect.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
// For brevity
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
class GrGLConvolutionEffect : public GrGLSLFragmentProcessor {
public:
GrGLConvolutionEffect(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor&) override;
private:
int width() const { return Gr1DKernelEffect::WidthFromRadius(fRadius); }
bool useBounds() const { return fUseBounds; }
Gr1DKernelEffect::Direction direction() const { return fDirection; }
int fRadius;
bool fUseBounds;
Gr1DKernelEffect::Direction fDirection;
UniformHandle fKernelUni;
UniformHandle fImageIncrementUni;
UniformHandle fBoundsUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
GrGLConvolutionEffect::GrGLConvolutionEffect(const GrProcessor& processor) {
const GrConvolutionEffect& c = processor.cast<GrConvolutionEffect>();
fRadius = c.radius();
fUseBounds = c.useBounds();
fDirection = c.direction();
}
void GrGLConvolutionEffect::emitCode(EmitArgs& args) {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
if (this->useBounds()) {
fBoundsUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
}
fKernelUni = uniformHandler->addUniformArray(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Kernel", this->width());
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
int width = this->width();
const GrGLSLShaderVar& kernel = uniformHandler->getUniformVariable(fKernelUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
fragBuilder->codeAppendf("\t\tvec2 coord = %s - %d.0 * %s;\n", coords2D.c_str(), fRadius, imgInc);
// Manually unroll loop because some drivers don't; yields 20-30% speedup.
for (int i = 0; i < width; i++) {
SkString index;
SkString kernelIndex;
index.appendS32(i);
kernel.appendArrayAccess(index.c_str(), &kernelIndex);
if (this->useBounds()) {
// We used to compute a bool indicating whether we're in bounds or not, cast it to a
// float, and then mul weight*texture_sample by the float. However, the Adreno 430 seems
// to have a bug that caused corruption.
const char* bounds = uniformHandler->getUniformCStr(fBoundsUni);
const char* component = this->direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x";
fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {",
component, bounds, component, bounds);
}
fragBuilder->codeAppendf("\t\t%s += ", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
if (this->useBounds()) {
fragBuilder->codeAppend("}");
}
fragBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& processor) {
const GrConvolutionEffect& conv = processor.cast<GrConvolutionEffect>();
GrTexture& texture = *conv.texture(0);
// the code we generated was for a specific kernel radius
SkASSERT(conv.radius() == fRadius);
float imageIncrement[2] = { 0 };
float ySign = texture.origin() != kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
switch (conv.direction()) {
case Gr1DKernelEffect::kX_Direction:
imageIncrement[0] = 1.0f / texture.width();
break;
case Gr1DKernelEffect::kY_Direction:
imageIncrement[1] = ySign / texture.height();
break;
default:
SkFAIL("Unknown filter direction.");
}
pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
if (conv.useBounds()) {
const float* bounds = conv.bounds();
if (Gr1DKernelEffect::kY_Direction == conv.direction() &&
texture.origin() != kTopLeft_GrSurfaceOrigin) {
pdman.set2f(fBoundsUni, 1.0f - bounds[1], 1.0f - bounds[0]);
} else {
pdman.set2f(fBoundsUni, bounds[0], bounds[1]);
}
}
pdman.set1fv(fKernelUni, this->width(), conv.kernel());
}
void GrGLConvolutionEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const GrConvolutionEffect& conv = processor.cast<GrConvolutionEffect>();
uint32_t key = conv.radius();
key <<= 2;
if (conv.useBounds()) {
key |= 0x2;
key |= GrConvolutionEffect::kY_Direction == conv.direction() ? 0x1 : 0x0;
}
b->add32(key);
}
///////////////////////////////////////////////////////////////////////////////
GrConvolutionEffect::GrConvolutionEffect(GrTexture* texture,
Direction direction,
int radius,
const float* kernel,
bool useBounds,
float bounds[2])
: INHERITED(texture, direction, radius), fUseBounds(useBounds) {
this->initClassID<GrConvolutionEffect>();
SkASSERT(radius <= kMaxKernelRadius);
SkASSERT(kernel);
int width = this->width();
for (int i = 0; i < width; i++) {
fKernel[i] = kernel[i];
}
memcpy(fBounds, bounds, sizeof(fBounds));
}
GrConvolutionEffect::GrConvolutionEffect(GrTexture* texture,
Direction direction,
int radius,
float gaussianSigma,
bool useBounds,
float bounds[2])
: INHERITED(texture, direction, radius), fUseBounds(useBounds) {
this->initClassID<GrConvolutionEffect>();
SkASSERT(radius <= kMaxKernelRadius);
int width = this->width();
float sum = 0.0f;
float denom = 1.0f / (2.0f * gaussianSigma * gaussianSigma);
for (int i = 0; i < width; ++i) {
float x = static_cast<float>(i - this->radius());
// Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
// is dropped here, since we renormalize the kernel below.
fKernel[i] = sk_float_exp(- x * x * denom);
sum += fKernel[i];
}
// Normalize the kernel
float scale = 1.0f / sum;
for (int i = 0; i < width; ++i) {
fKernel[i] *= scale;
}
memcpy(fBounds, bounds, sizeof(fBounds));
}
GrConvolutionEffect::~GrConvolutionEffect() {
}
void GrConvolutionEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLConvolutionEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrConvolutionEffect::onCreateGLSLInstance() const {
return new GrGLConvolutionEffect(*this);
}
bool GrConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrConvolutionEffect& s = sBase.cast<GrConvolutionEffect>();
return (this->radius() == s.radius() &&
this->direction() == s.direction() &&
this->useBounds() == s.useBounds() &&
0 == memcmp(fBounds, s.fBounds, sizeof(fBounds)) &&
0 == memcmp(fKernel, s.fKernel, this->width() * sizeof(float)));
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConvolutionEffect);
const GrFragmentProcessor* GrConvolutionEffect::TestCreate(GrProcessorTestData* d) {
int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
Direction dir = d->fRandom->nextBool() ? kX_Direction : kY_Direction;
int radius = d->fRandom->nextRangeU(1, kMaxKernelRadius);
float kernel[kMaxKernelWidth];
for (size_t i = 0; i < SK_ARRAY_COUNT(kernel); ++i) {
kernel[i] = d->fRandom->nextSScalar1();
}
float bounds[2];
for (size_t i = 0; i < SK_ARRAY_COUNT(bounds); ++i) {
bounds[i] = d->fRandom->nextF();
}
bool useBounds = d->fRandom->nextBool();
return GrConvolutionEffect::Create(d->fTextures[texIdx],
dir,
radius,
kernel,
useBounds,
bounds);
}