blob: e6daa9ca4eac1fbb5f27acf8d2648e46df430cc4 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "GrAllocator.h"
#include "GrEffect.h"
#include "GrGLEffect.h"
#include "GrGpuGL.h"
#include "GrGLShaderVar.h"
#include "GrBackendEffectFactory.h"
#include "SkTrace.h"
#include "SkXfermode.h"
#include "SkRTConf.h"
SK_DEFINE_INST_COUNT(GrGLProgram)
#define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X)
SK_CONF_DECLARE(bool, c_PrintShaders, "gpu.printShaders", false, "Print the source code for all shaders generated.");
#define COL_ATTR_NAME "aColor"
#define COV_ATTR_NAME "aCoverage"
#define EDGE_ATTR_NAME "aEdge"
namespace {
inline void tex_attr_name(int coordIdx, SkString* s) {
*s = "aTexCoord";
s->appendS32(coordIdx);
}
inline const char* declared_color_output_name() { return "fsColorOut"; }
inline const char* dual_source_output_name() { return "dualSourceOut"; }
}
GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl,
const Desc& desc,
const GrEffectStage* stages[]) {
GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages));
if (!program->succeeded()) {
delete program;
program = NULL;
}
return program;
}
GrGLProgram::GrGLProgram(const GrGLContextInfo& gl,
const Desc& desc,
const GrEffectStage* stages[])
: fContextInfo(gl)
, fUniformManager(gl) {
fDesc = desc;
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
fViewMatrix = SkMatrix::InvalidMatrix();
fViewportSize.set(-1, -1);
fColor = GrColor_ILLEGAL;
fColorFilterColor = GrColor_ILLEGAL;
fRTHeight = -1;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
fEffects[s] = NULL;
}
this->genProgram(stages);
}
GrGLProgram::~GrGLProgram() {
if (fVShaderID) {
GL_CALL(DeleteShader(fVShaderID));
}
if (fGShaderID) {
GL_CALL(DeleteShader(fGShaderID));
}
if (fFShaderID) {
GL_CALL(DeleteShader(fFShaderID));
}
if (fProgramID) {
GL_CALL(DeleteProgram(fProgramID));
}
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
delete fEffects[i];
}
}
void GrGLProgram::abandon() {
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
}
void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
switch (fDesc.fDualSrcOutput) {
case Desc::kNone_DualSrcOutput:
break;
// the prog will write a coverage value to the secondary
// output and the dst is blended by one minus that value.
case Desc::kCoverage_DualSrcOutput:
case Desc::kCoverageISA_DualSrcOutput:
case Desc::kCoverageISC_DualSrcOutput:
*dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
break;
default:
GrCrash("Unexpected dual source blend output");
break;
}
}
namespace {
// given two blend coeffecients determine whether the src
// and/or dst computation can be omitted.
inline void need_blend_inputs(SkXfermode::Coeff srcCoeff,
SkXfermode::Coeff dstCoeff,
bool* needSrcValue,
bool* needDstValue) {
if (SkXfermode::kZero_Coeff == srcCoeff) {
switch (dstCoeff) {
// these all read the src
case SkXfermode::kSC_Coeff:
case SkXfermode::kISC_Coeff:
case SkXfermode::kSA_Coeff:
case SkXfermode::kISA_Coeff:
*needSrcValue = true;
break;
default:
*needSrcValue = false;
break;
}
} else {
*needSrcValue = true;
}
if (SkXfermode::kZero_Coeff == dstCoeff) {
switch (srcCoeff) {
// these all read the dst
case SkXfermode::kDC_Coeff:
case SkXfermode::kIDC_Coeff:
case SkXfermode::kDA_Coeff:
case SkXfermode::kIDA_Coeff:
*needDstValue = true;
break;
default:
*needDstValue = false;
break;
}
} else {
*needDstValue = true;
}
}
/**
* Create a blend_coeff * value string to be used in shader code. Sets empty
* string if result is trivially zero.
*/
inline void blend_term_string(SkString* str, SkXfermode::Coeff coeff,
const char* src, const char* dst,
const char* value) {
switch (coeff) {
case SkXfermode::kZero_Coeff: /** 0 */
*str = "";
break;
case SkXfermode::kOne_Coeff: /** 1 */
*str = value;
break;
case SkXfermode::kSC_Coeff:
str->printf("(%s * %s)", src, value);
break;
case SkXfermode::kISC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
break;
case SkXfermode::kDC_Coeff:
str->printf("(%s * %s)", dst, value);
break;
case SkXfermode::kIDC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
break;
case SkXfermode::kSA_Coeff: /** src alpha */
str->printf("(%s.a * %s)", src, value);
break;
case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
str->printf("((1.0 - %s.a) * %s)", src, value);
break;
case SkXfermode::kDA_Coeff: /** dst alpha */
str->printf("(%s.a * %s)", dst, value);
break;
case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
str->printf("((1.0 - %s.a) * %s)", dst, value);
break;
default:
GrCrash("Unexpected xfer coeff.");
break;
}
}
/**
* Adds a line to the fragment shader code which modifies the color by
* the specified color filter.
*/
void add_color_filter(SkString* fsCode, const char * outputVar,
SkXfermode::Coeff uniformCoeff,
SkXfermode::Coeff colorCoeff,
const char* filterColor,
const char* inColor) {
SkString colorStr, constStr;
blend_term_string(&colorStr, colorCoeff, filterColor, inColor, inColor);
blend_term_string(&constStr, uniformCoeff, filterColor, inColor, filterColor);
fsCode->appendf("\t%s = ", outputVar);
GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str());
fsCode->append(";\n");
}
}
bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
GrGLShaderBuilder* builder) const {
if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) {
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kAttribute_TypeModifier,
EDGE_ATTR_NAME);
builder->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
switch (fDesc.fVertexEdgeType) {
case GrDrawState::kHairLine_EdgeType:
builder->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName);
builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
break;
case GrDrawState::kQuad_EdgeType:
builder->fFSCode.append("\tfloat edgeAlpha;\n");
// keep the derivative instructions outside the conditional
builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
builder->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
// today we know z and w are in device space. We could use derivatives
builder->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
builder->fFSCode.append ("\t} else {\n");
builder->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
"\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
fsName, fsName);
builder->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
builder->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
"\t}\n");
if (kES2_GrGLBinding == fContextInfo.binding()) {
builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
}
break;
case GrDrawState::kHairQuad_EdgeType:
builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
builder->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
"\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
fsName, fsName);
builder->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
builder->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
if (kES2_GrGLBinding == fContextInfo.binding()) {
builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
}
break;
case GrDrawState::kCircle_EdgeType:
builder->fFSCode.append("\tfloat edgeAlpha;\n");
builder->fFSCode.appendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName);
builder->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
builder->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
builder->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n");
break;
case GrDrawState::kEllipse_EdgeType:
builder->fFSCode.append("\tfloat edgeAlpha;\n");
builder->fFSCode.appendf("\tvec2 offset = (%s.xy - %s.xy);\n", builder->fragmentPosition(), fsName);
builder->fFSCode.appendf("\toffset.y *= %s.w;\n", fsName);
builder->fFSCode.append("\tfloat d = length(offset);\n");
builder->fFSCode.appendf("\tedgeAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
break;
default:
GrCrash("Unknown Edge Type!");
break;
}
if (fDesc.fDiscardIfOutsideEdge) {
builder->fFSCode.appendf("\tif (edgeAlpha <= 0.0) {\n\t\tdiscard;\n\t}\n");
}
*coverageVar = "edgeAlpha";
return true;
} else {
coverageVar->reset();
return false;
}
}
void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
switch (fDesc.fColorInput) {
case GrGLProgram::Desc::kAttribute_ColorInput: {
builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kAttribute_TypeModifier,
COL_ATTR_NAME);
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
*inColor = fsName;
} break;
case GrGLProgram::Desc::kUniform_ColorInput: {
const char* name;
fUniformHandles.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "Color", &name);
*inColor = name;
break;
}
case GrGLProgram::Desc::kTransBlack_ColorInput:
GrAssert(!"needComputedColor should be false.");
break;
case GrGLProgram::Desc::kSolidWhite_ColorInput:
break;
default:
GrCrash("Unknown color type.");
break;
}
}
void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
const char* covUniName;
fUniformHandles.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "Coverage", &covUniName);
if (inOutCoverage->size()) {
builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
covUniName, inOutCoverage->c_str());
*inOutCoverage = "uniCoverage";
} else {
*inOutCoverage = covUniName;
}
}
namespace {
void gen_attribute_coverage(GrGLShaderBuilder* segments,
SkString* inOutCoverage) {
segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kAttribute_TypeModifier,
COV_ATTR_NAME);
const char *vsName, *fsName;
segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
if (inOutCoverage->size()) {
segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
fsName, inOutCoverage->c_str());
*inOutCoverage = "attrCoverage";
} else {
*inOutCoverage = fsName;
}
}
}
void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const {
#if GR_GL_EXPERIMENTAL_GS
if (fDesc.fExperimentalGS) {
GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration);
segments->fGSHeader.append("layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 6) out;\n");
segments->fGSCode.append("\tfor (int i = 0; i < 3; ++i) {\n"
"\t\tgl_Position = gl_in[i].gl_Position;\n");
if (fDesc.fEmitsPointSize) {
segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
}
GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
int count = segments->fGSInputs.count();
for (int i = 0; i < count; ++i) {
segments->fGSCode.appendf("\t\t%s = %s[i];\n",
segments->fGSOutputs[i].getName().c_str(),
segments->fGSInputs[i].getName().c_str());
}
segments->fGSCode.append("\t\tEmitVertex();\n"
"\t}\n"
"\tEndPrimitive();\n");
}
#endif
}
const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
if (inColor.size()) {
return inColor.c_str();
} else {
if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
return GrGLSLOnesVecf(4);
} else {
return GrGLSLZerosVecf(4);
}
}
}
namespace {
// prints a shader using params similar to glShaderSource
void print_shader(GrGLint stringCnt,
const GrGLchar** strings,
GrGLint* stringLengths) {
for (int i = 0; i < stringCnt; ++i) {
if (NULL == stringLengths || stringLengths[i] < 0) {
GrPrintf(strings[i]);
} else {
GrPrintf("%.*s", stringLengths[i], strings[i]);
}
}
}
// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
GrGLuint compile_shader(const GrGLContextInfo& gl,
GrGLenum type,
int stringCnt,
const char** strings,
int* stringLengths) {
SK_TRACE_EVENT1("GrGLProgram::CompileShader",
"stringCount", SkStringPrintf("%i", stringCnt).c_str());
GrGLuint shader;
GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
if (0 == shader) {
return 0;
}
const GrGLInterface* gli = gl.interface();
GrGLint compiled = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
GR_GL_CALL(gli, CompileShader(shader));
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
if (!compiled) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround bug in chrome cmd buffer
// param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
&length, (char*)log.get()));
print_shader(stringCnt, strings, stringLengths);
GrPrintf("\n%s", log.get());
}
GrAssert(!"Shader compilation failed!");
GR_GL_CALL(gli, DeleteShader(shader));
return 0;
}
return shader;
}
// helper version of above for when shader is already flattened into a single SkString
GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) {
const GrGLchar* str = shader.c_str();
int length = shader.size();
return compile_shader(gl, type, 1, &str, &length);
}
}
// compiles all the shaders from builder and stores the shader IDs
bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
SkString shader;
builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) {
return false;
}
if (builder.fUsesGS) {
builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) {
return false;
}
} else {
fGShaderID = 0;
}
builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) {
return false;
}
return true;
}
bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
GrAssert(0 == fProgramID);
GrGLShaderBuilder builder(fContextInfo, fUniformManager);
const uint32_t& layout = fDesc.fVertexLayout;
#if GR_GL_EXPERIMENTAL_GS
builder.fUsesGS = fDesc.fExperimentalGS;
#endif
SkXfermode::Coeff colorCoeff, uniformCoeff;
// The rest of transfer mode color filters have not been implemented
if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
GR_DEBUGCODE(bool success =)
SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
(fDesc.fColorFilterXfermode),
&uniformCoeff, &colorCoeff);
GR_DEBUGASSERT(success);
} else {
colorCoeff = SkXfermode::kOne_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
}
// no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
// All the dual source outputs are scaled by the coverage as well.
if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
colorCoeff = SkXfermode::kZero_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
}
// If we know the final color is going to be all zeros then we can
// simplify the color filter coefficients. needComputedColor will then
// come out false below.
if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
colorCoeff = SkXfermode::kZero_Coeff;
if (SkXfermode::kDC_Coeff == uniformCoeff ||
SkXfermode::kDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kZero_Coeff;
} else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kOne_Coeff;
}
}
bool needColorFilterUniform;
bool needComputedColor;
need_blend_inputs(uniformCoeff, colorCoeff,
&needColorFilterUniform, &needComputedColor);
// the dual source output has no canonical var name, have to
// declare an output, which is incompatible with gl_FragColor/gl_FragData.
bool dualSourceOutputWritten = false;
builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(),
fContextInfo.glslGeneration()));
GrGLShaderVar colorOutput;
bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(),
declared_color_output_name(),
&colorOutput);
if (isColorDeclared) {
builder.fFSOutputs.push_back(colorOutput);
}
const char* viewMName;
fUniformHandles.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
kMat33f_GrSLType, "ViewM", &viewMName);
builder.fVSCode.appendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
"\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
viewMName, builder.positionAttribute().getName().c_str());
// incoming color to current stage being processed.
SkString inColor;
if (needComputedColor) {
this->genInputColor(&builder, &inColor);
}
// we output point size in the GS if present
if (fDesc.fEmitsPointSize && !builder.fUsesGS){
builder.fVSCode.append("\tgl_PointSize = 1.0;\n");
}
// add texture coordinates that are used to the list of vertex attr decls
SkString texCoordAttrs[GrDrawState::kMaxTexCoords];
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
tex_attr_name(t, texCoordAttrs + t);
builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
GrGLShaderVar::kAttribute_TypeModifier,
texCoordAttrs[t].c_str());
}
}
///////////////////////////////////////////////////////////////////////////
// compute the final color
// if we have color stages string them together, feeding the output color
// of each to the next and generating code for each stage.
if (needComputedColor) {
SkString outColor;
for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
if (GrGLEffect::kNoEffectKey != fDesc.fEffectKeys[s]) {
// create var to hold stage result
outColor = "color";
outColor.appendS32(s);
builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
const char* inCoords;
// figure out what our input coords are
int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
if (tcIdx < 0) {
inCoords = builder.positionAttribute().c_str();
} else {
// must have input tex coordinates if stage is enabled.
GrAssert(texCoordAttrs[tcIdx].size());
inCoords = texCoordAttrs[tcIdx].c_str();
}
builder.setCurrentStage(s);
fEffects[s] = builder.createAndEmitGLEffect(*stages[s],
fDesc.fEffectKeys[s],
inColor.size() ? inColor.c_str() : NULL,
outColor.c_str(),
inCoords,
&fUniformHandles.fSamplerUnis[s]);
builder.setNonStage();
inColor = outColor;
}
}
}
// if have all ones or zeros for the "dst" input to the color filter then we
// may be able to make additional optimizations.
if (needColorFilterUniform && needComputedColor && !inColor.size()) {
GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff;
if (uniformCoeffIsZero) {
uniformCoeff = SkXfermode::kZero_Coeff;
bool bogus;
need_blend_inputs(SkXfermode::kZero_Coeff, colorCoeff,
&needColorFilterUniform, &bogus);
}
}
const char* colorFilterColorUniName = NULL;
if (needColorFilterUniform) {
fUniformHandles.fColorFilterUni = builder.addUniform(
GrGLShaderBuilder::kFragment_ShaderType,
kVec4f_GrSLType, "FilterColor",
&colorFilterColorUniName);
}
bool wroteFragColorZero = false;
if (SkXfermode::kZero_Coeff == uniformCoeff &&
SkXfermode::kZero_Coeff == colorCoeff) {
builder.fFSCode.appendf("\t%s = %s;\n",
colorOutput.getName().c_str(),
GrGLSLZerosVecf(4));
wroteFragColorZero = true;
} else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
builder.fFSCode.append("\tvec4 filteredColor;\n");
const char* color = adjustInColor(inColor);
add_color_filter(&builder.fFSCode, "filteredColor", uniformCoeff,
colorCoeff, colorFilterColorUniName, color);
inColor = "filteredColor";
}
///////////////////////////////////////////////////////////////////////////
// compute the partial coverage (coverage stages and edge aa)
SkString inCoverage;
bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
// we don't need to compute coverage at all if we know the final shader
// output will be zero and we don't have a dual src blend output.
if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
if (!coverageIsZero) {
bool inCoverageIsScalar = this->genEdgeCoverage(&inCoverage, &builder);
switch (fDesc.fCoverageInput) {
case Desc::kSolidWhite_ColorInput:
// empty string implies solid white
break;
case Desc::kAttribute_ColorInput:
gen_attribute_coverage(&builder, &inCoverage);
inCoverageIsScalar = false;
break;
case Desc::kUniform_ColorInput:
this->genUniformCoverage(&builder, &inCoverage);
inCoverageIsScalar = false;
break;
default:
GrCrash("Unexpected input coverage.");
}
SkString outCoverage;
const int& startStage = fDesc.fFirstCoverageStage;
for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
if (fDesc.fEffectKeys[s]) {
// create var to hold stage output
outCoverage = "coverage";
outCoverage.appendS32(s);
builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str());
const char* inCoords;
// figure out what our input coords are
int tcIdx =
GrDrawTarget::VertexTexCoordsForStage(s, layout);
if (tcIdx < 0) {
inCoords = builder.positionAttribute().c_str();
} else {
// must have input tex coordinates if stage is
// enabled.
GrAssert(texCoordAttrs[tcIdx].size());
inCoords = texCoordAttrs[tcIdx].c_str();
}
// stages don't know how to deal with a scalar input. (Maybe they should. We
// could pass a GrGLShaderVar)
if (inCoverageIsScalar) {
builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n",
inCoverage.c_str(), inCoverage.c_str());
inCoverage.append("4");
}
builder.setCurrentStage(s);
fEffects[s] = builder.createAndEmitGLEffect(
*stages[s],
fDesc.fEffectKeys[s],
inCoverage.size() ? inCoverage.c_str() : NULL,
outCoverage.c_str(),
inCoords,
&fUniformHandles.fSamplerUnis[s]);
builder.setNonStage();
inCoverage = outCoverage;
}
}
}
if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kOut_TypeModifier,
dual_source_output_name());
bool outputIsZero = coverageIsZero;
SkString coeff;
if (!outputIsZero &&
Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
if (!inColor.size()) {
outputIsZero = true;
} else {
if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
coeff.printf("(1 - %s.a)", inColor.c_str());
} else {
coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
}
}
}
if (outputIsZero) {
builder.fFSCode.appendf("\t%s = %s;\n",
dual_source_output_name(),
GrGLSLZerosVecf(4));
} else {
builder.fFSCode.appendf("\t%s =", dual_source_output_name());
GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str());
builder.fFSCode.append(";\n");
}
dualSourceOutputWritten = true;
}
}
///////////////////////////////////////////////////////////////////////////
// combine color and coverage as frag color
if (!wroteFragColorZero) {
if (coverageIsZero) {
builder.fFSCode.appendf("\t%s = %s;\n",
colorOutput.getName().c_str(),
GrGLSLZerosVecf(4));
} else {
builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str());
GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str());
builder.fFSCode.append(";\n");
}
}
///////////////////////////////////////////////////////////////////////////
// insert GS
#if GR_DEBUG
this->genGeometryShader(&builder);
#endif
///////////////////////////////////////////////////////////////////////////
// compile and setup attribs and unis
if (!this->compileShaders(builder)) {
return false;
}
if (!this->bindOutputsAttribsAndLinkProgram(builder,
texCoordAttrs,
isColorDeclared,
dualSourceOutputWritten)) {
return false;
}
builder.finished(fProgramID);
this->initSamplerUniforms();
fUniformHandles.fRTHeightUni = builder.getRTHeightUniform();
return true;
}
bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
SkString texCoordAttrNames[],
bool bindColorOut,
bool bindDualSrcOut) {
GL_CALL_RET(fProgramID, CreateProgram());
if (!fProgramID) {
return false;
}
GL_CALL(AttachShader(fProgramID, fVShaderID));
if (fGShaderID) {
GL_CALL(AttachShader(fProgramID, fGShaderID));
}
GL_CALL(AttachShader(fProgramID, fFShaderID));
if (bindColorOut) {
GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
}
if (bindDualSrcOut) {
GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
}
// Bind the attrib locations to same values for all shaders
GL_CALL(BindAttribLocation(fProgramID,
PositionAttributeIdx(),
builder.positionAttribute().c_str()));
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (texCoordAttrNames[t].size()) {
GL_CALL(BindAttribLocation(fProgramID,
TexCoordAttributeIdx(t),
texCoordAttrNames[t].c_str()));
}
}
GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
GL_CALL(LinkProgram(fProgramID));
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(fProgramID,
infoLen+1,
&length,
(char*)log.get()));
GrPrintf((char*)log.get());
}
GrAssert(!"Error linking program");
GL_CALL(DeleteProgram(fProgramID));
fProgramID = 0;
return false;
}
return true;
}
void GrGLProgram::initSamplerUniforms() {
GL_CALL(UseProgram(fProgramID));
// We simply bind the uniforms to successive texture units beginning at 0. setData() assumes this
// behavior.
GrGLint texUnitIdx = 0;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
int numSamplers = fUniformHandles.fSamplerUnis[s].count();
for (int u = 0; u < numSamplers; ++u) {
UniformHandle handle = fUniformHandles.fSamplerUnis[s][u];
if (GrGLUniformManager::kInvalidUniformHandle != handle) {
fUniformManager.setSampler(handle, texUnitIdx);
++texUnitIdx;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLProgram::setData(GrGpuGL* gpu) {
const GrDrawState& drawState = gpu->getDrawState();
int rtHeight = drawState.getRenderTarget()->height();
if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fRTHeightUni &&
fRTHeight != rtHeight) {
fUniformManager.set1f(fUniformHandles.fRTHeightUni, SkIntToScalar(rtHeight));
fRTHeight = rtHeight;
}
GrGLint texUnitIdx = 0;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (NULL != fEffects[s]) {
const GrEffectStage& stage = drawState.getStage(s);
GrAssert(NULL != stage.getEffect());
fEffects[s]->setData(fUniformManager, stage);
int numSamplers = fUniformHandles.fSamplerUnis[s].count();
for (int u = 0; u < numSamplers; ++u) {
UniformHandle handle = fUniformHandles.fSamplerUnis[s][u];
if (GrGLUniformManager::kInvalidUniformHandle != handle) {
const GrTextureAccess& access = (*stage.getEffect())->textureAccess(u);
GrGLTexture* texture = static_cast<GrGLTexture*>(access.getTexture());
gpu->bindTexture(texUnitIdx, access.getParams(), texture);
++texUnitIdx;
}
}
}
}
}