| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Fuzz.h" |
| #include "SkCanvas.h" |
| #include "SkCodec.h" |
| #include "SkCommandLineFlags.h" |
| #include "SkData.h" |
| #include "SkImage.h" |
| #include "SkImageEncoder.h" |
| #include "SkMallocPixelRef.h" |
| #include "SkPicture.h" |
| #include "SkStream.h" |
| |
| #include <cmath> |
| #include <signal.h> |
| #include <stdlib.h> |
| |
| DEFINE_string2(bytes, b, "", "A path to a file. This can be the fuzz bytes or a binary to parse."); |
| DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name."); |
| |
| DEFINE_string2(type, t, "api", "How to interpret --bytes, either 'image_scale', 'image_mode', 'skp', 'icc', or 'api'."); |
| DEFINE_string2(dump, d, "", "If not empty, dump 'image*' or 'skp' types as a PNG with this name."); |
| |
| static int printUsage(const char* name) { |
| SkDebugf("Usage: %s -t <type> -b <path/to/file> [-n api-to-fuzz]\n", name); |
| return 1; |
| } |
| static uint8_t calculate_option(SkData*); |
| |
| static int fuzz_api(SkData*); |
| static int fuzz_img(SkData*, uint8_t, uint8_t); |
| static int fuzz_skp(SkData*); |
| static int fuzz_icc(SkData*); |
| static int fuzz_color_deserialize(SkData*); |
| |
| int main(int argc, char** argv) { |
| SkCommandLineFlags::Parse(argc, argv); |
| |
| const char* path = FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0]; |
| SkAutoTUnref<SkData> bytes(SkData::NewFromFileName(path)); |
| if (!bytes) { |
| SkDebugf("Could not read %s\n", path); |
| return 2; |
| } |
| |
| uint8_t option = calculate_option(bytes); |
| |
| if (!FLAGS_type.isEmpty()) { |
| switch (FLAGS_type[0][0]) { |
| case 'a': return fuzz_api(bytes); |
| |
| case 'c': return fuzz_color_deserialize(bytes); |
| |
| case 'i': |
| if (FLAGS_type[0][1] == 'c') { //icc |
| return fuzz_icc(bytes); |
| } |
| // We only allow one degree of freedom to avoid a search space explosion for afl-fuzz. |
| if (FLAGS_type[0][6] == 's') { // image_scale |
| return fuzz_img(bytes, option, 0); |
| } |
| // image_mode |
| return fuzz_img(bytes, 0, option); |
| case 's': return fuzz_skp(bytes); |
| } |
| } |
| return printUsage(argv[0]); |
| } |
| |
| // This adds up the first 1024 bytes and returns it as an 8 bit integer. This allows afl-fuzz to |
| // deterministically excercise different paths, or *options* (such as different scaling sizes or |
| // different image modes) without needing to introduce a parameter. This way we don't need a |
| // image_scale1, image_scale2, image_scale4, etc fuzzer, we can just have a image_scale fuzzer. |
| // Clients are expected to transform this number into a different range, e.g. with modulo (%). |
| static uint8_t calculate_option(SkData* bytes) { |
| uint8_t total = 0; |
| const uint8_t* data = bytes->bytes(); |
| for (size_t i = 0; i < 1024 && i < bytes->size(); i++) { |
| total += data[i]; |
| } |
| return total; |
| } |
| |
| int fuzz_api(SkData* bytes) { |
| const char* name = FLAGS_name.isEmpty() ? "" : FLAGS_name[0]; |
| |
| for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) { |
| auto fuzzable = r->factory(); |
| if (0 == strcmp(name, fuzzable.name)) { |
| SkDebugf("Fuzzing %s...\n", fuzzable.name); |
| Fuzz fuzz(bytes); |
| fuzzable.fn(&fuzz); |
| SkDebugf("[terminated] Success!\n"); |
| return 0; |
| } |
| } |
| |
| SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n"); |
| for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) { |
| auto fuzzable = r->factory(); |
| SkDebugf("\t%s\n", fuzzable.name); |
| } |
| return 1; |
| } |
| |
| static void dump_png(SkBitmap bitmap) { |
| if (!FLAGS_dump.isEmpty()) { |
| SkImageEncoder::EncodeFile(FLAGS_dump[0], bitmap, SkImageEncoder::kPNG_Type, 100); |
| SkDebugf("Dumped to %s\n", FLAGS_dump[0]); |
| } |
| } |
| |
| int fuzz_img(SkData* bytes, uint8_t scale, uint8_t mode) { |
| // We can scale 1x, 2x, 4x, 8x, 16x |
| scale = scale % 5; |
| float fscale = (float)pow(2.0f, scale); |
| SkDebugf("Scaling factor: %f\n", fscale); |
| |
| // We have 4 different modes of decoding, just like DM. |
| mode = mode % 4; |
| SkDebugf("Mode: %d\n", mode); |
| |
| // This is mostly copied from DMSrcSink's CodecSrc::draw method. |
| SkDebugf("Decoding\n"); |
| SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(bytes)); |
| if (nullptr == codec.get()) { |
| SkDebugf("[terminated] Couldn't create codec.\n"); |
| return 3; |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo(); |
| |
| SkISize size = codec->getScaledDimensions(fscale); |
| decodeInfo = decodeInfo.makeWH(size.width(), size.height()); |
| |
| // Construct a color table for the decode if necessary |
| SkAutoTUnref<SkColorTable> colorTable(nullptr); |
| SkPMColor* colorPtr = nullptr; |
| int* colorCountPtr = nullptr; |
| int maxColors = 256; |
| if (kIndex_8_SkColorType == decodeInfo.colorType()) { |
| SkPMColor colors[256]; |
| colorTable.reset(new SkColorTable(colors, maxColors)); |
| colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); |
| colorCountPtr = &maxColors; |
| } |
| |
| SkBitmap bitmap; |
| SkMallocPixelRef::ZeroedPRFactory zeroFactory; |
| SkCodec::Options options; |
| options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; |
| |
| if (!bitmap.tryAllocPixels(decodeInfo, &zeroFactory, colorTable.get())) { |
| SkDebugf("[terminated] Could not allocate memory. Image might be too large (%d x %d)", |
| decodeInfo.width(), decodeInfo.height()); |
| return 4; |
| } |
| |
| switch (mode) { |
| case 0: {//kCodecZeroInit_Mode, kCodec_Mode |
| switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options, |
| colorPtr, colorCountPtr)) { |
| case SkCodec::kSuccess: |
| SkDebugf("[terminated] Success!\n"); |
| break; |
| case SkCodec::kIncompleteInput: |
| SkDebugf("[terminated] Partial Success\n"); |
| break; |
| case SkCodec::kInvalidConversion: |
| SkDebugf("Incompatible colortype conversion\n"); |
| // Crash to allow afl-fuzz to know this was a bug. |
| raise(SIGSEGV); |
| default: |
| SkDebugf("[terminated] Couldn't getPixels.\n"); |
| return 6; |
| } |
| break; |
| } |
| case 1: {//kScanline_Mode |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, |
| colorCountPtr)) { |
| SkDebugf("[terminated] Could not start scanline decoder\n"); |
| return 7; |
| } |
| |
| void* dst = bitmap.getAddr(0, 0); |
| size_t rowBytes = bitmap.rowBytes(); |
| uint32_t height = decodeInfo.height(); |
| switch (codec->getScanlineOrder()) { |
| case SkCodec::kTopDown_SkScanlineOrder: |
| case SkCodec::kBottomUp_SkScanlineOrder: |
| case SkCodec::kNone_SkScanlineOrder: |
| // We do not need to check the return value. On an incomplete |
| // image, memory will be filled with a default value. |
| codec->getScanlines(dst, height, rowBytes); |
| break; |
| case SkCodec::kOutOfOrder_SkScanlineOrder: { |
| for (int y = 0; y < decodeInfo.height(); y++) { |
| int dstY = codec->outputScanline(y); |
| void* dstPtr = bitmap.getAddr(0, dstY); |
| // We complete the loop, even if this call begins to fail |
| // due to an incomplete image. This ensures any uninitialized |
| // memory will be filled with the proper value. |
| codec->getScanlines(dstPtr, 1, bitmap.rowBytes()); |
| } |
| break; |
| } |
| } |
| SkDebugf("[terminated] Success!\n"); |
| break; |
| } |
| case 2: { //kStripe_Mode |
| const int height = decodeInfo.height(); |
| // This value is chosen arbitrarily. We exercise more cases by choosing a value that |
| // does not align with image blocks. |
| const int stripeHeight = 37; |
| const int numStripes = (height + stripeHeight - 1) / stripeHeight; |
| |
| // Decode odd stripes |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, |
| colorCountPtr) |
| || SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { |
| // This mode was designed to test the new skip scanlines API in libjpeg-turbo. |
| // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting |
| // to run this test for image types that do not have this scanline ordering. |
| SkDebugf("[terminated] Could not start top-down scanline decoder\n"); |
| return 8; |
| } |
| |
| for (int i = 0; i < numStripes; i += 2) { |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); |
| codec->skipScanlines(linesToSkip); |
| |
| // Read a stripe |
| const int startY = (i + 1) * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| if (linesToRead > 0) { |
| codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); |
| } |
| } |
| |
| // Decode even stripes |
| const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr, |
| colorPtr, colorCountPtr); |
| if (SkCodec::kSuccess != startResult) { |
| SkDebugf("[terminated] Failed to restart scanline decoder with same parameters.\n"); |
| return 9; |
| } |
| for (int i = 0; i < numStripes; i += 2) { |
| // Read a stripe |
| const int startY = i * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); |
| |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); |
| if (linesToSkip > 0) { |
| codec->skipScanlines(linesToSkip); |
| } |
| } |
| SkDebugf("[terminated] Success!\n"); |
| break; |
| } |
| case 3: { //kSubset_Mode |
| // Arbitrarily choose a divisor. |
| int divisor = 2; |
| // Total width/height of the image. |
| const int W = codec->getInfo().width(); |
| const int H = codec->getInfo().height(); |
| if (divisor > W || divisor > H) { |
| SkDebugf("[terminated] Cannot codec subset: divisor %d is too big " |
| "with dimensions (%d x %d)\n", divisor, W, H); |
| return 10; |
| } |
| // subset dimensions |
| // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. |
| const int w = SkAlign2(W / divisor); |
| const int h = SkAlign2(H / divisor); |
| SkIRect subset; |
| SkCodec::Options opts; |
| opts.fSubset = ⊂ |
| SkBitmap subsetBm; |
| // We will reuse pixel memory from bitmap. |
| void* pixels = bitmap.getPixels(); |
| // Keep track of left and top (for drawing subsetBm into canvas). We could use |
| // fscale * x and fscale * y, but we want integers such that the next subset will start |
| // where the last one ended. So we'll add decodeInfo.width() and height(). |
| int left = 0; |
| for (int x = 0; x < W; x += w) { |
| int top = 0; |
| for (int y = 0; y < H; y+= h) { |
| // Do not make the subset go off the edge of the image. |
| const int preScaleW = SkTMin(w, W - x); |
| const int preScaleH = SkTMin(h, H - y); |
| subset.setXYWH(x, y, preScaleW, preScaleH); |
| // And fscale |
| // FIXME: Should we have a version of getScaledDimensions that takes a subset |
| // into account? |
| decodeInfo = decodeInfo.makeWH( |
| SkTMax(1, SkScalarRoundToInt(preScaleW * fscale)), |
| SkTMax(1, SkScalarRoundToInt(preScaleH * fscale))); |
| size_t rowBytes = decodeInfo.minRowBytes(); |
| if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(), |
| nullptr, nullptr)) { |
| SkDebugf("[terminated] Could not install pixels.\n"); |
| return 11; |
| } |
| const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes, |
| &opts, colorPtr, colorCountPtr); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| SkDebugf("okay\n"); |
| break; |
| case SkCodec::kInvalidConversion: |
| if (0 == (x|y)) { |
| // First subset is okay to return unimplemented. |
| SkDebugf("[terminated] Incompatible colortype conversion\n"); |
| return 12; |
| } |
| // If the first subset succeeded, a later one should not fail. |
| // fall through to failure |
| case SkCodec::kUnimplemented: |
| if (0 == (x|y)) { |
| // First subset is okay to return unimplemented. |
| SkDebugf("[terminated] subset codec not supported\n"); |
| return 13; |
| } |
| // If the first subset succeeded, why would a later one fail? |
| // fall through to failure |
| default: |
| SkDebugf("[terminated] subset codec failed to decode (%d, %d, %d, %d) " |
| "with dimensions (%d x %d)\t error %d\n", |
| x, y, decodeInfo.width(), decodeInfo.height(), |
| W, H, result); |
| return 14; |
| } |
| // translate by the scaled height. |
| top += decodeInfo.height(); |
| } |
| // translate by the scaled width. |
| left += decodeInfo.width(); |
| } |
| SkDebugf("[terminated] Success!\n"); |
| break; |
| } |
| default: |
| SkDebugf("[terminated] Mode not implemented yet\n"); |
| } |
| |
| dump_png(bitmap); |
| return 0; |
| } |
| |
| int fuzz_skp(SkData* bytes) { |
| SkMemoryStream stream(bytes); |
| SkDebugf("Decoding\n"); |
| sk_sp<SkPicture> pic(SkPicture::MakeFromStream(&stream)); |
| if (!pic) { |
| SkDebugf("[terminated] Couldn't decode as a picture.\n"); |
| return 3; |
| } |
| SkDebugf("Rendering\n"); |
| SkBitmap bitmap; |
| if (!FLAGS_dump.isEmpty()) { |
| SkIRect size = pic->cullRect().roundOut(); |
| bitmap.allocN32Pixels(size.width(), size.height()); |
| } |
| SkCanvas canvas(bitmap); |
| canvas.drawPicture(pic); |
| SkDebugf("[terminated] Success! Decoded and rendered an SkPicture!\n"); |
| dump_png(bitmap); |
| return 0; |
| } |
| |
| int fuzz_icc(SkData* bytes) { |
| sk_sp<SkColorSpace> space(SkColorSpace::NewICC(bytes->data(), bytes->size())); |
| if (!space) { |
| SkDebugf("[terminated] Couldn't decode ICC.\n"); |
| return 1; |
| } |
| SkDebugf("[terminated] Success! Decoded ICC.\n"); |
| return 0; |
| } |
| |
| int fuzz_color_deserialize(SkData* bytes) { |
| sk_sp<SkColorSpace> space(SkColorSpace::Deserialize(bytes->data(), bytes->size())); |
| if (!space) { |
| SkDebugf("[terminated] Couldn't deserialize Colorspace.\n"); |
| return 1; |
| } |
| SkDebugf("[terminated] Success! deserialized Colorspace.\n"); |
| return 0; |
| } |
| |
| Fuzz::Fuzz(SkData* bytes) : fBytes(SkSafeRef(bytes)), fNextByte(0) {} |
| |
| void Fuzz::signalBug () { SkDebugf("Signal bug\n"); raise(SIGSEGV); } |
| void Fuzz::signalBoring() { SkDebugf("Signal boring\n"); exit(0); } |
| |
| template <typename T> |
| T Fuzz::nextT() { |
| if (fNextByte + sizeof(T) > fBytes->size()) { |
| this->signalBoring(); |
| } |
| |
| T val; |
| memcpy(&val, fBytes->bytes() + fNextByte, sizeof(T)); |
| fNextByte += sizeof(T); |
| return val; |
| } |
| |
| uint8_t Fuzz::nextB() { return this->nextT<uint8_t >(); } |
| bool Fuzz::nextBool() { return nextB()&1; } |
| uint32_t Fuzz::nextU() { return this->nextT<uint32_t>(); } |
| float Fuzz::nextF() { return this->nextT<float >(); } |
| |
| float Fuzz::nextF1() { |
| // This is the same code as is in SkRandom's nextF() |
| unsigned int floatint = 0x3f800000 | (this->nextU() >> 9); |
| float f = SkBits2Float(floatint) - 1.0f; |
| return f; |
| } |
| |
| uint32_t Fuzz::nextRangeU(uint32_t min, uint32_t max) { |
| if (min > max) { |
| SkDebugf("Check mins and maxes (%d, %d)\n", min, max); |
| this->signalBoring(); |
| } |
| uint32_t range = max - min + 1; |
| if (0 == range) { |
| return this->nextU(); |
| } else { |
| return min + this->nextU() % range; |
| } |
| } |
| float Fuzz::nextRangeF(float min, float max) { |
| if (min > max) { |
| SkDebugf("Check mins and maxes (%f, %f)\n", min, max); |
| this->signalBoring(); |
| } |
| float f = std::abs(this->nextF()); |
| if (!std::isnormal(f) && f != 0.0) { |
| this->signalBoring(); |
| } |
| return min + fmod(f, (max - min + 1)); |
| } |