blob: cf1bcfc9efaba94cca53ec52343314fc175fc26c [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkShader.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkGradientShader.h"
#include "include/private/SkTemplates.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkTLazy.h"
#include "src/gpu/GrColorInfo.h"
#include "src/shaders/SkColorShader.h"
#include "tests/Test.h"
// https://code.google.com/p/chromium/issues/detail?id=448299
// Giant (inverse) matrix causes overflow when converting/computing using 32.32
// Before the fix, we would assert (and then crash).
static void test_big_grad(skiatest::Reporter* reporter) {
const SkColor colors[] = { SK_ColorRED, SK_ColorBLUE };
const SkPoint pts[] = {{ 15, 14.7112684f }, { 0.709064007f, 12.6108112f }};
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkTileMode::kClamp));
SkBitmap bm;
bm.allocN32Pixels(2000, 1);
SkCanvas c(bm);
const SkScalar affine[] = {
1.06608627e-06f, 4.26434525e-07f, 6.2855f, 2.6611f, 273.4393f, 244.0046f
};
SkMatrix matrix;
matrix.setAffine(affine);
c.concat(matrix);
c.drawPaint(paint);
}
struct GradRec {
int fColorCount;
const SkColor* fColors;
const SkScalar* fPos;
const SkPoint* fPoint; // 2
const SkScalar* fRadius; // 2
SkTileMode fTileMode;
void gradCheck(skiatest::Reporter* reporter, const sk_sp<SkShader>& shader,
SkShader::GradientInfo* info,
SkShader::GradientType gt) const {
SkAutoTMalloc<SkColor> colorStorage(fColorCount);
SkAutoTMalloc<SkScalar> posStorage(fColorCount);
info->fColorCount = fColorCount;
info->fColors = colorStorage;
info->fColorOffsets = posStorage.get();
REPORTER_ASSERT(reporter, shader->asAGradient(info) == gt);
REPORTER_ASSERT(reporter, info->fColorCount == fColorCount);
REPORTER_ASSERT(reporter,
!memcmp(info->fColors, fColors, fColorCount * sizeof(SkColor)));
REPORTER_ASSERT(reporter,
!memcmp(info->fColorOffsets, fPos, fColorCount * sizeof(SkScalar)));
REPORTER_ASSERT(reporter, fTileMode == (SkTileMode)info->fTileMode);
}
};
static void none_gradproc(skiatest::Reporter* reporter, const GradRec&, const GradRec&) {
sk_sp<SkShader> s(SkShaders::Empty());
REPORTER_ASSERT(reporter, SkShader::kNone_GradientType == s->asAGradient(nullptr));
}
static void color_gradproc(skiatest::Reporter* reporter, const GradRec& rec, const GradRec&) {
sk_sp<SkShader> s(new SkColorShader(rec.fColors[0]));
REPORTER_ASSERT(reporter, SkShader::kColor_GradientType == s->asAGradient(nullptr));
SkShader::GradientInfo info;
info.fColors = nullptr;
info.fColorCount = 0;
s->asAGradient(&info);
REPORTER_ASSERT(reporter, 1 == info.fColorCount);
}
static void linear_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec,
const GradRec& checkRec) {
sk_sp<SkShader> s(SkGradientShader::MakeLinear(buildRec.fPoint, buildRec.fColors, buildRec.fPos,
buildRec.fColorCount, buildRec.fTileMode));
SkShader::GradientInfo info;
checkRec.gradCheck(reporter, s, &info, SkShader::kLinear_GradientType);
REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint)));
}
static void radial_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec,
const GradRec& checkRec) {
sk_sp<SkShader> s(SkGradientShader::MakeRadial(buildRec.fPoint[0], buildRec.fRadius[0],
buildRec.fColors, buildRec.fPos,
buildRec.fColorCount, buildRec.fTileMode));
SkShader::GradientInfo info;
checkRec.gradCheck(reporter, s, &info, SkShader::kRadial_GradientType);
REPORTER_ASSERT(reporter, info.fPoint[0] == checkRec.fPoint[0]);
REPORTER_ASSERT(reporter, info.fRadius[0] == checkRec.fRadius[0]);
}
static void sweep_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec,
const GradRec& checkRec) {
sk_sp<SkShader> s(SkGradientShader::MakeSweep(buildRec.fPoint[0].fX, buildRec.fPoint[0].fY,
buildRec.fColors, buildRec.fPos,
buildRec.fColorCount));
SkShader::GradientInfo info;
checkRec.gradCheck(reporter, s, &info, SkShader::kSweep_GradientType);
REPORTER_ASSERT(reporter, info.fPoint[0] == checkRec.fPoint[0]);
}
static void conical_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec,
const GradRec& checkRec) {
sk_sp<SkShader> s(SkGradientShader::MakeTwoPointConical(buildRec.fPoint[0],
buildRec.fRadius[0],
buildRec.fPoint[1],
buildRec.fRadius[1],
buildRec.fColors,
buildRec.fPos,
buildRec.fColorCount,
buildRec.fTileMode));
SkShader::GradientInfo info;
checkRec.gradCheck(reporter, s, &info, SkShader::kConical_GradientType);
REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint)));
REPORTER_ASSERT(reporter, !memcmp(info.fRadius, checkRec.fRadius, 2 * sizeof(SkScalar)));
}
// Ensure that repeated color gradients behave like drawing a single color
static void TestConstantGradient(skiatest::Reporter*) {
const SkPoint pts[] = {
{ 0, 0 },
{ SkIntToScalar(10), 0 }
};
SkColor colors[] = { SK_ColorBLUE, SK_ColorBLUE };
const SkScalar pos[] = { 0, SK_Scalar1 };
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp));
SkBitmap outBitmap;
outBitmap.allocN32Pixels(10, 1);
SkCanvas canvas(outBitmap);
canvas.drawPaint(paint);
for (int i = 0; i < 10; i++) {
// The following is commented out because it currently fails
// Related bug: https://code.google.com/p/skia/issues/detail?id=1098
// REPORTER_ASSERT(reporter, SK_ColorBLUE == outBitmap.getColor(i, 0));
}
}
typedef void (*GradProc)(skiatest::Reporter* reporter, const GradRec&, const GradRec&);
static void TestGradientShaders(skiatest::Reporter* reporter) {
static const SkColor gColors[] = { SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE };
static const SkScalar gPos[] = { 0, SK_ScalarHalf, SK_Scalar1 };
static const SkPoint gPts[] = {
{ 0, 0 },
{ SkIntToScalar(10), SkIntToScalar(20) }
};
static const SkScalar gRad[] = { SkIntToScalar(1), SkIntToScalar(2) };
GradRec rec;
rec.fColorCount = SK_ARRAY_COUNT(gColors);
rec.fColors = gColors;
rec.fPos = gPos;
rec.fPoint = gPts;
rec.fRadius = gRad;
rec.fTileMode = SkTileMode::kClamp;
static const GradProc gProcs[] = {
none_gradproc,
color_gradproc,
linear_gradproc,
radial_gradproc,
sweep_gradproc,
conical_gradproc,
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gProcs); ++i) {
gProcs[i](reporter, rec, rec);
}
}
static void TestGradientOptimization(skiatest::Reporter* reporter) {
static const struct {
GradProc fProc;
bool fIsClampRestricted;
} gProcInfo[] = {
{ linear_gradproc , false },
{ radial_gradproc , false },
{ sweep_gradproc , true }, // sweep is funky in that it always pretends to be kClamp.
{ conical_gradproc, false },
};
static const SkColor gC_00[] = { 0xff000000, 0xff000000 };
static const SkColor gC_01[] = { 0xff000000, 0xffffffff };
static const SkColor gC_11[] = { 0xffffffff, 0xffffffff };
static const SkColor gC_001[] = { 0xff000000, 0xff000000, 0xffffffff };
static const SkColor gC_011[] = { 0xff000000, 0xffffffff, 0xffffffff };
static const SkColor gC_0011[] = { 0xff000000, 0xff000000, 0xffffffff, 0xffffffff };
static const SkScalar gP_01[] = { 0, 1 };
static const SkScalar gP_001[] = { 0, 0, 1 };
static const SkScalar gP_011[] = { 0, 1, 1 };
static const SkScalar gP_0x1[] = { 0, .5f, 1 };
static const SkScalar gP_0011[] = { 0, 0, 1, 1 };
static const SkPoint gPts[] = { {0, 0}, {1, 1} };
static const SkScalar gRadii[] = { 1, 2 };
static const struct {
const SkColor* fCol;
const SkScalar* fPos;
int fCount;
const SkColor* fExpectedCol;
const SkScalar* fExpectedPos;
int fExpectedCount;
bool fRequiresNonClamp;
} gTests[] = {
{ gC_001, gP_001, 3, gC_01, gP_01, 2, false },
{ gC_001, gP_011, 3, gC_00, gP_01, 2, true },
{ gC_001, gP_0x1, 3, gC_001, gP_0x1, 3, false },
{ gC_001, nullptr, 3, gC_001, gP_0x1, 3, false },
{ gC_011, gP_001, 3, gC_11, gP_01, 2, true },
{ gC_011, gP_011, 3, gC_01, gP_01, 2, false },
{ gC_011, gP_0x1, 3, gC_011, gP_0x1, 3, false },
{ gC_011, nullptr, 3, gC_011, gP_0x1, 3, false },
{ gC_0011, gP_0011, 4, gC_0011, gP_0011, 4, false },
};
const SkTileMode modes[] = {
SkTileMode::kClamp, SkTileMode::kRepeat, SkTileMode::kMirror,
// TODO: add kDecal_TileMode when it is implemented
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gProcInfo); ++i) {
for (auto mode : modes) {
if (gProcInfo[i].fIsClampRestricted && mode != SkTileMode::kClamp) {
continue;
}
for (size_t t = 0; t < SK_ARRAY_COUNT(gTests); ++t) {
GradRec rec;
rec.fColorCount = gTests[t].fCount;
rec.fColors = gTests[t].fCol;
rec.fPos = gTests[t].fPos;
rec.fTileMode = mode;
rec.fPoint = gPts;
rec.fRadius = gRadii;
GradRec expected = rec;
if (!gTests[t].fRequiresNonClamp || mode != SkTileMode::kClamp) {
expected.fColorCount = gTests[t].fExpectedCount;
expected.fColors = gTests[t].fExpectedCol;
expected.fPos = gTests[t].fExpectedPos;
}
gProcInfo[i].fProc(reporter, rec, expected);
}
}
}
}
static void test_nearly_vertical(skiatest::Reporter* reporter) {
auto surface(SkSurface::MakeRasterN32Premul(200, 200));
const SkPoint pts[] = {{ 100, 50 }, { 100.0001f, 50000 }};
const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE };
const SkScalar pos[] = { 0, 1 };
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp));
surface->getCanvas()->drawPaint(paint);
}
static void test_vertical(skiatest::Reporter* reporter) {
auto surface(SkSurface::MakeRasterN32Premul(200, 200));
const SkPoint pts[] = {{ 100, 50 }, { 100, 50 }};
const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE };
const SkScalar pos[] = { 0, 1 };
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp));
surface->getCanvas()->drawPaint(paint);
}
// A linear gradient interval can, due to numerical imprecision (likely in the divide)
// finish an interval with the final fx not landing outside of [p0...p1].
// The old code had an assert which this test triggered.
// We now explicitly clamp the resulting fx value.
static void test_linear_fuzz(skiatest::Reporter* reporter) {
auto surface(SkSurface::MakeRasterN32Premul(1300, 630));
const SkPoint pts[] = {{ 179.5f, -179.5f }, { 1074.5f, 715.5f }};
const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorBLACK, SK_ColorWHITE };
const SkScalar pos[] = {0, 0.200000003f, 0.800000012f, 1 };
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 4, SkTileMode::kClamp));
SkRect r = {0, 83, 1254, 620};
surface->getCanvas()->drawRect(r, paint);
}
// https://bugs.chromium.org/p/skia/issues/detail?id=5023
// We should still shade pixels for which the radius is exactly 0.
static void test_two_point_conical_zero_radius(skiatest::Reporter* reporter) {
auto surface(SkSurface::MakeRasterN32Premul(5, 5));
surface->getCanvas()->clear(SK_ColorRED);
const SkColor colors[] = { SK_ColorGREEN, SK_ColorBLUE };
SkPaint p;
p.setShader(SkGradientShader::MakeTwoPointConical(
SkPoint::Make(2.5f, 2.5f), 0,
SkPoint::Make(3.0f, 3.0f), 10,
colors, nullptr, SK_ARRAY_COUNT(colors), SkTileMode::kClamp));
surface->getCanvas()->drawPaint(p);
// r == 0 for the center pixel.
// verify that we draw it (no red bleed)
SkPMColor centerPMColor;
surface->readPixels(SkImageInfo::MakeN32Premul(1, 1), &centerPMColor, sizeof(SkPMColor), 2, 2);
REPORTER_ASSERT(reporter, SkGetPackedR32(centerPMColor) == 0);
}
// http://crbug.com/599458
static void test_clamping_overflow(skiatest::Reporter*) {
SkPaint p;
const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN };
const SkPoint pts1[] = { SkPoint::Make(1001, 1000001), SkPoint::Make(1000.99f, 1000000) };
p.setShader(SkGradientShader::MakeLinear(pts1, colors, nullptr, 2, SkTileMode::kClamp));
sk_sp<SkSurface> surface(SkSurface::MakeRasterN32Premul(50, 50));
surface->getCanvas()->scale(100, 100);
surface->getCanvas()->drawPaint(p);
const SkPoint pts2[] = { SkPoint::Make(10000.99f, 1000000), SkPoint::Make(10001, 1000001) };
p.setShader(SkGradientShader::MakeLinear(pts2, colors, nullptr, 2, SkTileMode::kClamp));
surface->getCanvas()->drawPaint(p);
// Passes if we don't trigger asserts.
}
// http://crbug.com/636194
static void test_degenerate_linear(skiatest::Reporter*) {
SkPaint p;
const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN };
const SkPoint pts[] = {
SkPoint::Make(-46058024627067344430605278824628224.0f, 0),
SkPoint::Make(SK_ScalarMax, 0)
};
p.setShader(SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkTileMode::kClamp));
sk_sp<SkSurface> surface(SkSurface::MakeRasterN32Premul(50, 50));
surface->getCanvas()->drawPaint(p);
// Passes if we don't trigger asserts.
}
// http://crbug.com/1149216
static void test_unsorted_degenerate(skiatest::Reporter* r) {
// Passes if a valid solid color is computed for the degenerate gradient
// (unsorted positions are fixed during regular gradient construction, so this ensures the
// same fixing happens for degenerate gradients as well). If they aren't fixed, this test
// case produces a negative alpha, which asserts during SkPMColor4f::isOpaque().
const SkColor4f colors[] = { {0.f, 0.f, 0.f, 0.f},
{0.00784314f, 0.f, 0.f, 0.0627451f},
{0.f, 0.00392157f, 0.f, 0.f} };
const SkScalar positions[] = {0.00753367f, 8.54792e-44f, 1.46955e-39f};
const SkPoint points[] { { 0.f, 0.f }, { 1e-20f, -1e-8f }}; // must be degenerate
// Use kMirror to go through average color stop calculation, vs. kClamp which would pick a color
sk_sp<SkShader> gradient = SkGradientShader::MakeLinear(points, colors, nullptr, positions, 3,
SkTileMode::kMirror);
// The degenerate gradient shouldn't be null
REPORTER_ASSERT(r, SkToBool(gradient));
// And it shouldn't crash when creating a fragment processor
SkSimpleMatrixProvider provider(SkMatrix::I());
GrColorInfo dstColorInfo(GrColorType::kRGBA_8888, kPremul_SkAlphaType,
SkColorSpace::MakeSRGB());
GrMockOptions options;
auto context = GrDirectContext::MakeMock(&options);
GrFPArgs args(context.get(), provider, &dstColorInfo);
as_SB(gradient)->asFragmentProcessor(args);
}
// "Interesting" fuzzer values.
static void test_linear_fuzzer(skiatest::Reporter*) {
static const SkColor gColors0[] = { 0x30303030, 0x30303030 };
static const SkColor gColors1[] = { 0x30303030, 0x30303030, 0x30303030 };
static const SkScalar gPos1[] = { 0, 0, 1 };
static const SkScalar gMatrix0[9] = {
6.40969056e-10f, 0 , 6.40969056e-10f,
0 , 4.42539023e-39f, 6.40969056e-10f,
0 , 0 , 1
};
static const SkScalar gMatrix1[9] = {
-2.75294113f , 6.40969056e-10f, 6.40969056e-10f,
6.40969056e-10f, 6.40969056e-10f, -3.32810161e+24f,
6.40969056e-10f, 6.40969056e-10f, 0
};
static const SkScalar gMatrix2[9] = {
7.93481258e+17f, 6.40969056e-10f, 6.40969056e-10f,
6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f,
6.40969056e-10f, 6.40969056e-10f, 0.688235283f
};
static const SkScalar gMatrix3[9] = {
1.89180674e+11f, 6.40969056e-10f, 6.40969056e-10f,
6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f,
6.40969056e-10f, 11276.0469f , 8.12524808e+20f
};
static const struct {
SkPoint fPts[2];
const SkColor* fColors;
const SkScalar* fPos;
int fCount;
SkTileMode fTileMode;
uint32_t fFlags;
const SkScalar* fLocalMatrix;
const SkScalar* fGlobalMatrix;
} gConfigs[] = {
{
{{0, -2.752941f}, {0, 0}},
gColors0,
nullptr,
SK_ARRAY_COUNT(gColors0),
SkTileMode::kClamp,
0,
gMatrix0,
nullptr
},
{
{{4.42539023e-39f, -4.42539023e-39f}, {9.78041162e-15f, 4.42539023e-39f}},
gColors1,
gPos1,
SK_ARRAY_COUNT(gColors1),
SkTileMode::kClamp,
0,
nullptr,
gMatrix1
},
{
{{4.42539023e-39f, 6.40969056e-10f}, {6.40969056e-10f, 1.49237238e-19f}},
gColors1,
gPos1,
SK_ARRAY_COUNT(gColors1),
SkTileMode::kClamp,
0,
nullptr,
gMatrix2
},
{
{{6.40969056e-10f, 6.40969056e-10f}, {6.40969056e-10f, -0.688235283f}},
gColors0,
nullptr,
SK_ARRAY_COUNT(gColors0),
SkTileMode::kClamp,
0,
gMatrix3,
nullptr
},
};
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
SkColorSpace* colorSpaces[] = {
nullptr, // hits the legacy gradient impl
srgb.get(), // triggers 4f/raster-pipeline
};
SkPaint paint;
for (const SkColorSpace* colorSpace : colorSpaces) {
sk_sp<SkSurface> surface = SkSurface::MakeRaster(SkImageInfo::Make(100, 100,
kN32_SkColorType,
kPremul_SkAlphaType,
sk_ref_sp(colorSpace)));
SkCanvas* canvas = surface->getCanvas();
for (const auto& config : gConfigs) {
SkAutoCanvasRestore acr(canvas, false);
SkTLazy<SkMatrix> localMatrix;
if (config.fLocalMatrix) {
localMatrix.init();
localMatrix->set9(config.fLocalMatrix);
}
paint.setShader(SkGradientShader::MakeLinear(config.fPts,
config.fColors,
config.fPos,
config.fCount,
config.fTileMode,
config.fFlags,
localMatrix.getMaybeNull()));
if (config.fGlobalMatrix) {
SkMatrix m;
m.set9(config.fGlobalMatrix);
canvas->save();
canvas->concat(m);
}
canvas->drawPaint(paint);
}
}
}
static void test_sweep_fuzzer(skiatest::Reporter*) {
static const SkColor gColors0[] = { 0x30303030, 0x30303030, 0x30303030 };
static const SkScalar gPos0[] = { -47919293023455565225163489280.0f, 0, 1 };
static const SkScalar gMatrix0[9] = {
1.12116716e-13f, 0 , 8.50489682e+16f,
4.1917041e-41f , 3.51369881e-23f, -2.54344271e-26f,
9.61111907e+17f, -3.35263808e-29f, -1.35659403e+14f
};
static const struct {
SkPoint fCenter;
const SkColor* fColors;
const SkScalar* fPos;
int fCount;
const SkScalar* fGlobalMatrix;
} gConfigs[] = {
{
{ 0, 0 },
gColors0,
gPos0,
SK_ARRAY_COUNT(gColors0),
gMatrix0
},
};
sk_sp<SkSurface> surface = SkSurface::MakeRasterN32Premul(100, 100);
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
for (const auto& config : gConfigs) {
paint.setShader(SkGradientShader::MakeSweep(config.fCenter.x(),
config.fCenter.y(),
config.fColors,
config.fPos,
config.fCount));
SkAutoCanvasRestore acr(canvas, false);
if (config.fGlobalMatrix) {
SkMatrix m;
m.set9(config.fGlobalMatrix);
canvas->save();
canvas->concat(m);
}
canvas->drawPaint(paint);
}
}
DEF_TEST(Gradient, reporter) {
TestGradientShaders(reporter);
TestGradientOptimization(reporter);
TestConstantGradient(reporter);
test_big_grad(reporter);
test_nearly_vertical(reporter);
test_vertical(reporter);
test_linear_fuzz(reporter);
test_two_point_conical_zero_radius(reporter);
test_clamping_overflow(reporter);
test_degenerate_linear(reporter);
test_linear_fuzzer(reporter);
test_sweep_fuzzer(reporter);
test_unsorted_degenerate(reporter);
}