| #include "CubicIntersection.h" |
| |
| /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
| * |
| * This paper proves that Syvester's method can compute the implicit form of |
| * the quadratic from the parameterzied form. |
| * |
| * Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form) |
| * y = e*t*t*t + f*t*t + g*t + h |
| * |
| * we want to find an equation of the implicit form: |
| * |
| * A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0 |
| * |
| * The implicit form can be expressed as a 6x6 determinant, as shown. |
| * |
| * The resultant obtained by Syvester's method is |
| * |
| * | a b c (d - x) 0 0 | |
| * | 0 a b c (d - x) 0 | |
| * | 0 0 a b c (d - x) | |
| * | e f g (h - y) 0 0 | |
| * | 0 e f g (h - y) 0 | |
| * | 0 0 e f g (h - y) | |
| * |
| * which, according to Mathematica, expands as shown below. |
| * |
| * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t] |
| * |
| * -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + |
| * 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - |
| * b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - |
| * 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + |
| * a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - |
| * 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + |
| * a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + |
| * a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - |
| * 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - |
| * 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + |
| * b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + |
| * 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + |
| * 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - |
| * 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + |
| * 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - |
| * c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - |
| * 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - |
| * b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - |
| * 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + |
| * 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - |
| * 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + |
| * a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - |
| * 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - |
| * 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + |
| * 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3 |
| */ |
| |
| enum { |
| xxx_coeff, |
| xxy_coeff, |
| xyy_coeff, |
| yyy_coeff, |
| xx_coeff, |
| xy_coeff, |
| yy_coeff, |
| x_coeff, |
| y_coeff, |
| c_coeff, |
| coeff_count |
| }; |
| |
| // FIXME: factoring version unwritten |
| // static bool straight_forward = true; |
| |
| /* from CubicParameterizationCode.cpp output: |
| * double A = e * e * e; |
| * double B = -3 * a * e * e; |
| * double C = 3 * a * a * e; |
| * double D = -a * a * a; |
| */ |
| static void calc_ABCD(double a, double e, double p[coeff_count]) { |
| double ee = e * e; |
| p[xxx_coeff] = e * ee; |
| p[xxy_coeff] = -3 * a * ee; |
| double aa = a * a; |
| p[xyy_coeff] = 3 * aa * e; |
| p[yyy_coeff] = -aa * a; |
| } |
| |
| /* CubicParameterizationCode.cpp turns Mathematica output into C. |
| * Rather than edit the lines below, please edit the code there instead. |
| */ |
| // start of generated code |
| static double calc_E(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -3 * d * e * e * e |
| + c * e * e * f |
| - b * e * f * f |
| + a * f * f * f |
| + 2 * b * e * e * g |
| - 3 * a * e * f * g |
| + 3 * a * e * e * h; |
| } |
| |
| static double calc_F(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -3 * b * c * e * e |
| + 6 * a * d * e * e |
| + 2 * b * b * e * f |
| + a * c * e * f |
| - 2 * a * b * f * f |
| - a * b * e * g |
| + 3 * a * a * f * g |
| - 6 * a * a * e * h; |
| } |
| |
| static double calc_G(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -b * b * b * e |
| + 3 * a * b * c * e |
| - 3 * a * a * d * e |
| + a * b * b * f |
| - 2 * a * a * c * f |
| - a * a * b * g |
| + 3 * a * a * a * h; |
| } |
| |
| static double calc_H(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| 3 * d * d * e * e * e |
| - 2 * c * d * e * e * f |
| + 2 * b * d * e * f * f |
| - 2 * a * d * f * f * f |
| + c * c * e * e * g |
| - 4 * b * d * e * e * g |
| - b * c * e * f * g |
| + 6 * a * d * e * f * g |
| + a * c * f * f * g |
| + b * b * e * g * g |
| - 2 * a * c * e * g * g |
| - a * b * f * g * g |
| + a * a * g * g * g |
| + 3 * b * c * e * e * h |
| - 6 * a * d * e * e * h |
| - 2 * b * b * e * f * h |
| - a * c * e * f * h |
| + 2 * a * b * f * f * h |
| + a * b * e * g * h |
| - 3 * a * a * f * g * h |
| + 3 * a * a * e * h * h; |
| } |
| |
| static double calc_I(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -c * c * c * e * e |
| + 3 * b * c * d * e * e |
| - 3 * a * d * d * e * e |
| + b * c * c * e * f |
| - 2 * b * b * d * e * f |
| - a * c * d * e * f |
| - a * c * c * f * f |
| + 2 * a * b * d * f * f |
| - b * b * c * e * g |
| + 2 * a * c * c * e * g |
| + a * b * d * e * g |
| + a * b * c * f * g |
| - 3 * a * a * d * f * g |
| - a * a * c * g * g |
| + 2 * b * b * b * e * h |
| - 6 * a * b * c * e * h |
| + 6 * a * a * d * e * h |
| - 2 * a * b * b * f * h |
| + 4 * a * a * c * f * h |
| + 2 * a * a * b * g * h |
| - 3 * a * a * a * h * h; |
| } |
| |
| static double calc_J(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -d * d * d * e * e * e |
| + c * d * d * e * e * f |
| - b * d * d * e * f * f |
| + a * d * d * f * f * f |
| - c * c * d * e * e * g |
| + 2 * b * d * d * e * e * g |
| + b * c * d * e * f * g |
| - 3 * a * d * d * e * f * g |
| - a * c * d * f * f * g |
| - b * b * d * e * g * g |
| + 2 * a * c * d * e * g * g |
| + a * b * d * f * g * g |
| - a * a * d * g * g * g |
| + c * c * c * e * e * h |
| - 3 * b * c * d * e * e * h |
| + 3 * a * d * d * e * e * h |
| - b * c * c * e * f * h |
| + 2 * b * b * d * e * f * h |
| + a * c * d * e * f * h |
| + a * c * c * f * f * h |
| - 2 * a * b * d * f * f * h |
| + b * b * c * e * g * h |
| - 2 * a * c * c * e * g * h |
| - a * b * d * e * g * h |
| - a * b * c * f * g * h |
| + 3 * a * a * d * f * g * h |
| + a * a * c * g * g * h |
| - b * b * b * e * h * h |
| + 3 * a * b * c * e * h * h |
| - 3 * a * a * d * e * h * h |
| + a * b * b * f * h * h |
| - 2 * a * a * c * f * h * h |
| - a * a * b * g * h * h |
| + a * a * a * h * h * h; |
| } |
| // end of generated code |
| |
| static double (*calc_proc[])(double a, double b, double c, double d, |
| double e, double f, double g, double h) = { |
| calc_E, calc_F, calc_G, calc_H, calc_I, calc_J |
| }; |
| |
| /* Control points to parametric coefficients |
| s = 1 - t |
| Attt + 3Btt2 + 3Ctss + Dsss == |
| Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) == |
| Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) == |
| Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt == |
| D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt |
| a = A - 3*B + 3*C - D |
| b = 3*B - 6*C + 3*D |
| c = 3*C - 3*D |
| d = D |
| */ |
| static void set_abcd(const double* cubic, double& a, double& b, double& c, |
| double& d) { |
| a = cubic[0]; // a = A |
| b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily) |
| c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily) |
| d = cubic[6]; // d = D |
| a += -b + c - d; // a = A - 3*B + 3*C - D |
| } |
| |
| static void calc_bc(const double d, double& b, double& c) { |
| b -= 3 * c; // b = 3*B - 3*C |
| c -= 3 * d; // c = 3*C - 3*D |
| b -= c; // b = 3*B - 6*C + 3*D |
| } |
| |
| bool implicit_matches(const Cubic& one, const Cubic& two) { |
| double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc. |
| double p2[coeff_count]; |
| double a1, b1, c1, d1; |
| set_abcd(&one[0].x, a1, b1, c1, d1); |
| double e1, f1, g1, h1; |
| set_abcd(&one[0].y, e1, f1, g1, h1); |
| calc_ABCD(a1, e1, p1); |
| double a2, b2, c2, d2; |
| set_abcd(&two[0].x, a2, b2, c2, d2); |
| double e2, f2, g2, h2; |
| set_abcd(&two[0].y, e2, f2, g2, h2); |
| calc_ABCD(a2, e2, p2); |
| int first = 0; |
| for (int index = 0; index < coeff_count; ++index) { |
| if (index == xx_coeff) { |
| calc_bc(d1, b1, c1); |
| calc_bc(h1, f1, g1); |
| calc_bc(d2, b2, c2); |
| calc_bc(h2, f2, g2); |
| } |
| if (index >= xx_coeff) { |
| int procIndex = index - xx_coeff; |
| p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1); |
| p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2); |
| } |
| if (approximately_zero(p1[index]) || approximately_zero(p2[index])) { |
| first += first == index; |
| continue; |
| } |
| if (first == index) { |
| continue; |
| } |
| if (!approximately_equal(p1[index] * p2[first], |
| p1[first] * p2[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static double tangent(const double* cubic, double t) { |
| double a, b, c, d; |
| set_abcd(cubic, a, b, c, d); |
| calc_bc(d, b, c); |
| return 3 * a * t * t + 2 * b * t + c; |
| } |
| |
| void tangent(const Cubic& cubic, double t, _Point& result) { |
| result.x = tangent(&cubic[0].x, t); |
| result.y = tangent(&cubic[0].y, t); |
| } |
| |