| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <algorithm> |
| #include "Sk4fLinearGradient.h" |
| #include "SkColorSpace_XYZ.h" |
| #include "SkColorSpaceXformer.h" |
| #include "SkFloatBits.h" |
| #include "SkGradientBitmapCache.h" |
| #include "SkGradientShaderPriv.h" |
| #include "SkHalf.h" |
| #include "SkLinearGradient.h" |
| #include "SkMallocPixelRef.h" |
| #include "SkRadialGradient.h" |
| #include "SkReadBuffer.h" |
| #include "SkSweepGradient.h" |
| #include "SkTwoPointConicalGradient.h" |
| #include "SkWriteBuffer.h" |
| #include "../../jumper/SkJumper.h" |
| |
| |
| enum GradientSerializationFlags { |
| // Bits 29:31 used for various boolean flags |
| kHasPosition_GSF = 0x80000000, |
| kHasLocalMatrix_GSF = 0x40000000, |
| kHasColorSpace_GSF = 0x20000000, |
| |
| // Bits 12:28 unused |
| |
| // Bits 8:11 for fTileMode |
| kTileModeShift_GSF = 8, |
| kTileModeMask_GSF = 0xF, |
| |
| // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80) |
| kGradFlagsShift_GSF = 0, |
| kGradFlagsMask_GSF = 0xFF, |
| }; |
| |
| void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { |
| uint32_t flags = 0; |
| if (fPos) { |
| flags |= kHasPosition_GSF; |
| } |
| if (fLocalMatrix) { |
| flags |= kHasLocalMatrix_GSF; |
| } |
| sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; |
| if (colorSpaceData) { |
| flags |= kHasColorSpace_GSF; |
| } |
| SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF); |
| flags |= (fTileMode << kTileModeShift_GSF); |
| SkASSERT(fGradFlags <= kGradFlagsMask_GSF); |
| flags |= (fGradFlags << kGradFlagsShift_GSF); |
| |
| buffer.writeUInt(flags); |
| |
| buffer.writeColor4fArray(fColors, fCount); |
| if (colorSpaceData) { |
| buffer.writeDataAsByteArray(colorSpaceData.get()); |
| } |
| if (fPos) { |
| buffer.writeScalarArray(fPos, fCount); |
| } |
| if (fLocalMatrix) { |
| buffer.writeMatrix(*fLocalMatrix); |
| } |
| } |
| |
| bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { |
| // New gradient format. Includes floating point color, color space, densely packed flags |
| uint32_t flags = buffer.readUInt(); |
| |
| fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); |
| fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF; |
| |
| fCount = buffer.getArrayCount(); |
| if (fCount > kStorageCount) { |
| size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount; |
| fDynamicStorage.reset(allocSize); |
| fColors = (SkColor4f*)fDynamicStorage.get(); |
| fPos = (SkScalar*)(fColors + fCount); |
| } else { |
| fColors = fColorStorage; |
| fPos = fPosStorage; |
| } |
| if (!buffer.readColor4fArray(mutableColors(), fCount)) { |
| return false; |
| } |
| if (SkToBool(flags & kHasColorSpace_GSF)) { |
| sk_sp<SkData> data = buffer.readByteArrayAsData(); |
| fColorSpace = SkColorSpace::Deserialize(data->data(), data->size()); |
| } else { |
| fColorSpace = nullptr; |
| } |
| if (SkToBool(flags & kHasPosition_GSF)) { |
| if (!buffer.readScalarArray(mutablePos(), fCount)) { |
| return false; |
| } |
| } else { |
| fPos = nullptr; |
| } |
| if (SkToBool(flags & kHasLocalMatrix_GSF)) { |
| fLocalMatrix = &fLocalMatrixStorage; |
| buffer.readMatrix(&fLocalMatrixStorage); |
| } else { |
| fLocalMatrix = nullptr; |
| } |
| return buffer.isValid(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) |
| : INHERITED(desc.fLocalMatrix) |
| , fPtsToUnit(ptsToUnit) |
| , fColorsAreOpaque(true) |
| { |
| fPtsToUnit.getType(); // Precache so reads are threadsafe. |
| SkASSERT(desc.fCount > 1); |
| |
| fGradFlags = static_cast<uint8_t>(desc.fGradFlags); |
| |
| SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount); |
| fTileMode = desc.fTileMode; |
| |
| /* Note: we let the caller skip the first and/or last position. |
| i.e. pos[0] = 0.3, pos[1] = 0.7 |
| In these cases, we insert dummy entries to ensure that the final data |
| will be bracketed by [0, 1]. |
| i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 |
| |
| Thus colorCount (the caller's value, and fColorCount (our value) may |
| differ by up to 2. In the above example: |
| colorCount = 2 |
| fColorCount = 4 |
| */ |
| fColorCount = desc.fCount; |
| // check if we need to add in dummy start and/or end position/colors |
| bool dummyFirst = false; |
| bool dummyLast = false; |
| if (desc.fPos) { |
| dummyFirst = desc.fPos[0] != 0; |
| dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; |
| fColorCount += dummyFirst + dummyLast; |
| } |
| |
| size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0)); |
| fOrigColors4f = reinterpret_cast<SkColor4f*>(fStorage.reset(storageSize)); |
| fOrigPos = desc.fPos ? reinterpret_cast<SkScalar*>(fOrigColors4f + fColorCount) |
| : nullptr; |
| |
| // Now copy over the colors, adding the dummies as needed |
| SkColor4f* origColors = fOrigColors4f; |
| if (dummyFirst) { |
| *origColors++ = desc.fColors[0]; |
| } |
| for (int i = 0; i < desc.fCount; ++i) { |
| origColors[i] = desc.fColors[i]; |
| fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1); |
| } |
| if (dummyLast) { |
| origColors += desc.fCount; |
| *origColors = desc.fColors[desc.fCount - 1]; |
| } |
| |
| if (!desc.fColorSpace) { |
| // This happens if we were constructed from SkColors, so our colors are really sRGB |
| fColorSpace = SkColorSpace::MakeSRGBLinear(); |
| } else { |
| // The color space refers to the float colors, so it must be linear gamma |
| // TODO: GPU code no longer requires this (see GrGradientEffect). Remove this restriction? |
| SkASSERT(desc.fColorSpace->gammaIsLinear()); |
| fColorSpace = desc.fColorSpace; |
| } |
| |
| if (desc.fPos) { |
| SkScalar prev = 0; |
| SkScalar* origPosPtr = fOrigPos; |
| *origPosPtr++ = prev; // force the first pos to 0 |
| |
| int startIndex = dummyFirst ? 0 : 1; |
| int count = desc.fCount + dummyLast; |
| |
| bool uniformStops = true; |
| const SkScalar uniformStep = desc.fPos[startIndex] - prev; |
| for (int i = startIndex; i < count; i++) { |
| // Pin the last value to 1.0, and make sure pos is monotonic. |
| auto curr = (i == desc.fCount) ? 1 : SkScalarPin(desc.fPos[i], prev, 1); |
| uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev); |
| |
| *origPosPtr++ = prev = curr; |
| } |
| |
| #ifndef SK_SUPPORT_LEGACY_UNIFORM_GRADIENTS |
| // If the stops are uniform, treat them as implicit. |
| if (uniformStops) { |
| fOrigPos = nullptr; |
| } |
| #endif |
| } |
| } |
| |
| SkGradientShaderBase::~SkGradientShaderBase() {} |
| |
| void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { |
| Descriptor desc; |
| desc.fColors = fOrigColors4f; |
| desc.fColorSpace = fColorSpace; |
| desc.fPos = fOrigPos; |
| desc.fCount = fColorCount; |
| desc.fTileMode = fTileMode; |
| desc.fGradFlags = fGradFlags; |
| |
| const SkMatrix& m = this->getLocalMatrix(); |
| desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; |
| desc.flatten(buffer); |
| } |
| |
| static void add_stop_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f Fs, SkPM4f Bs) { |
| (ctx->fs[0])[stop] = Fs.r(); |
| (ctx->fs[1])[stop] = Fs.g(); |
| (ctx->fs[2])[stop] = Fs.b(); |
| (ctx->fs[3])[stop] = Fs.a(); |
| (ctx->bs[0])[stop] = Bs.r(); |
| (ctx->bs[1])[stop] = Bs.g(); |
| (ctx->bs[2])[stop] = Bs.b(); |
| (ctx->bs[3])[stop] = Bs.a(); |
| } |
| |
| static void add_const_color(SkJumper_GradientCtx* ctx, size_t stop, SkPM4f color) { |
| add_stop_color(ctx, stop, SkPM4f::FromPremulRGBA(0,0,0,0), color); |
| } |
| |
| // Calculate a factor F and a bias B so that color = F*t + B when t is in range of |
| // the stop. Assume that the distance between stops is 1/gapCount. |
| static void init_stop_evenly( |
| SkJumper_GradientCtx* ctx, float gapCount, size_t stop, SkPM4f c_l, SkPM4f c_r) { |
| // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar... |
| SkPM4f Fs = {{ |
| (c_r.r() - c_l.r()) * gapCount, |
| (c_r.g() - c_l.g()) * gapCount, |
| (c_r.b() - c_l.b()) * gapCount, |
| (c_r.a() - c_l.a()) * gapCount, |
| }}; |
| SkPM4f Bs = {{ |
| c_l.r() - Fs.r()*(stop/gapCount), |
| c_l.g() - Fs.g()*(stop/gapCount), |
| c_l.b() - Fs.b()*(stop/gapCount), |
| c_l.a() - Fs.a()*(stop/gapCount), |
| }}; |
| add_stop_color(ctx, stop, Fs, Bs); |
| } |
| |
| // For each stop we calculate a bias B and a scale factor F, such that |
| // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. |
| static void init_stop_pos( |
| SkJumper_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPM4f c_l, SkPM4f c_r) { |
| // See note about Clankium's old compiler in init_stop_evenly(). |
| SkPM4f Fs = {{ |
| (c_r.r() - c_l.r()) / (t_r - t_l), |
| (c_r.g() - c_l.g()) / (t_r - t_l), |
| (c_r.b() - c_l.b()) / (t_r - t_l), |
| (c_r.a() - c_l.a()) / (t_r - t_l), |
| }}; |
| SkPM4f Bs = {{ |
| c_l.r() - Fs.r()*t_l, |
| c_l.g() - Fs.g()*t_l, |
| c_l.b() - Fs.b()*t_l, |
| c_l.a() - Fs.a()*t_l, |
| }}; |
| ctx->ts[stop] = t_l; |
| add_stop_color(ctx, stop, Fs, Bs); |
| } |
| |
| bool SkGradientShaderBase::onAppendStages(const StageRec& rec) const { |
| SkRasterPipeline* p = rec.fPipeline; |
| SkArenaAlloc* alloc = rec.fAlloc; |
| SkColorSpace* dstCS = rec.fDstCS; |
| |
| SkMatrix matrix; |
| if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) { |
| return false; |
| } |
| matrix.postConcat(fPtsToUnit); |
| |
| SkRasterPipeline_<256> postPipeline; |
| |
| p->append_seed_shader(); |
| p->append_matrix(alloc, matrix); |
| this->appendGradientStages(alloc, p, &postPipeline); |
| |
| switch(fTileMode) { |
| case kMirror_TileMode: p->append(SkRasterPipeline::mirror_x_1); break; |
| case kRepeat_TileMode: p->append(SkRasterPipeline::repeat_x_1); break; |
| case kClamp_TileMode: |
| if (!fOrigPos) { |
| // We clamp only when the stops are evenly spaced. |
| // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1. |
| // In that case, we must make sure we're using the general "gradient" stage, |
| // which is the only stage that will correctly handle unclamped t. |
| p->append(SkRasterPipeline::clamp_x_1); |
| } |
| } |
| |
| const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag; |
| auto prepareColor = [premulGrad, dstCS, this](int i) { |
| SkColor4f c = this->getXformedColor(i, dstCS); |
| return premulGrad ? c.premul() |
| : SkPM4f::From4f(Sk4f::Load(&c)); |
| }; |
| |
| // The two-stop case with stops at 0 and 1. |
| if (fColorCount == 2 && fOrigPos == nullptr) { |
| const SkPM4f c_l = prepareColor(0), |
| c_r = prepareColor(1); |
| |
| // See F and B below. |
| auto* f_and_b = alloc->makeArrayDefault<SkPM4f>(2); |
| f_and_b[0] = SkPM4f::From4f(c_r.to4f() - c_l.to4f()); |
| f_and_b[1] = c_l; |
| |
| p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, f_and_b); |
| } else { |
| auto* ctx = alloc->make<SkJumper_GradientCtx>(); |
| |
| // Note: In order to handle clamps in search, the search assumes a stop conceptully placed |
| // at -inf. Therefore, the max number of stops is fColorCount+1. |
| for (int i = 0; i < 4; i++) { |
| // Allocate at least at for the AVX2 gather from a YMM register. |
| ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
| ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
| } |
| |
| if (fOrigPos == nullptr) { |
| // Handle evenly distributed stops. |
| |
| size_t stopCount = fColorCount; |
| float gapCount = stopCount - 1; |
| |
| SkPM4f c_l = prepareColor(0); |
| for (size_t i = 0; i < stopCount - 1; i++) { |
| SkPM4f c_r = prepareColor(i + 1); |
| init_stop_evenly(ctx, gapCount, i, c_l, c_r); |
| c_l = c_r; |
| } |
| add_const_color(ctx, stopCount - 1, c_l); |
| |
| ctx->stopCount = stopCount; |
| p->append(SkRasterPipeline::evenly_spaced_gradient, ctx); |
| } else { |
| // Handle arbitrary stops. |
| |
| ctx->ts = alloc->makeArray<float>(fColorCount+1); |
| |
| // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase |
| // because they are naturally handled by the search method. |
| int firstStop; |
| int lastStop; |
| if (fColorCount > 2) { |
| firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1; |
| lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1] |
| ? fColorCount - 1 : fColorCount - 2; |
| } else { |
| firstStop = 0; |
| lastStop = 1; |
| } |
| |
| size_t stopCount = 0; |
| float t_l = fOrigPos[firstStop]; |
| SkPM4f c_l = prepareColor(firstStop); |
| add_const_color(ctx, stopCount++, c_l); |
| // N.B. lastStop is the index of the last stop, not one after. |
| for (int i = firstStop; i < lastStop; i++) { |
| float t_r = fOrigPos[i + 1]; |
| SkPM4f c_r = prepareColor(i + 1); |
| SkASSERT(t_l <= t_r); |
| if (t_l < t_r) { |
| init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r); |
| stopCount += 1; |
| } |
| t_l = t_r; |
| c_l = c_r; |
| } |
| |
| ctx->ts[stopCount] = t_l; |
| add_const_color(ctx, stopCount++, c_l); |
| |
| ctx->stopCount = stopCount; |
| p->append(SkRasterPipeline::gradient, ctx); |
| } |
| } |
| |
| if (!premulGrad && !this->colorsAreOpaque()) { |
| p->append(SkRasterPipeline::premul); |
| } |
| |
| p->extend(postPipeline); |
| |
| return true; |
| } |
| |
| |
| bool SkGradientShaderBase::isOpaque() const { |
| return fColorsAreOpaque; |
| } |
| |
| static unsigned rounded_divide(unsigned numer, unsigned denom) { |
| return (numer + (denom >> 1)) / denom; |
| } |
| |
| bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { |
| // we just compute an average color. |
| // possibly we could weight this based on the proportional width for each color |
| // assuming they are not evenly distributed in the fPos array. |
| int r = 0; |
| int g = 0; |
| int b = 0; |
| const int n = fColorCount; |
| // TODO: use linear colors? |
| for (int i = 0; i < n; ++i) { |
| SkColor c = this->getLegacyColor(i); |
| r += SkColorGetR(c); |
| g += SkColorGetG(c); |
| b += SkColorGetB(c); |
| } |
| *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); |
| return true; |
| } |
| |
| SkGradientShaderBase::AutoXformColors::AutoXformColors(const SkGradientShaderBase& grad, |
| SkColorSpaceXformer* xformer) |
| : fColors(grad.fColorCount) { |
| // TODO: stay in 4f to preserve precision? |
| |
| SkAutoSTMalloc<8, SkColor> origColors(grad.fColorCount); |
| for (int i = 0; i < grad.fColorCount; ++i) { |
| origColors[i] = grad.getLegacyColor(i); |
| } |
| |
| xformer->apply(fColors.get(), origColors.get(), grad.fColorCount); |
| } |
| |
| static constexpr int kGradientTextureSize = 256; |
| |
| void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap, GradientBitmapType bitmapType) const { |
| const bool interpInPremul = SkToBool(fGradFlags & |
| SkGradientShader::kInterpolateColorsInPremul_Flag); |
| SkHalf* pixelsF16 = reinterpret_cast<SkHalf*>(bitmap->getPixels()); |
| uint32_t* pixels32 = reinterpret_cast<uint32_t*>(bitmap->getPixels()); |
| |
| typedef std::function<void(const Sk4f&, int)> pixelWriteFn_t; |
| |
| pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) { |
| Sk4h c = SkFloatToHalf_finite_ftz(x); |
| pixelsF16[4*index+0] = c[0]; |
| pixelsF16[4*index+1] = c[1]; |
| pixelsF16[4*index+2] = c[2]; |
| pixelsF16[4*index+3] = c[3]; |
| }; |
| pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) { |
| pixels32[index] = Sk4f_toS32(c); |
| }; |
| pixelWriteFn_t writeL32Pixel = [&](const Sk4f& c, int index) { |
| pixels32[index] = Sk4f_toL32(c); |
| }; |
| |
| pixelWriteFn_t writeSizedPixel = |
| (bitmapType == GradientBitmapType::kHalfFloat) ? writeF16Pixel : |
| (bitmapType == GradientBitmapType::kSRGB ) ? writeS32Pixel : writeL32Pixel; |
| pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) { |
| writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index); |
| }; |
| |
| pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel; |
| |
| // When not in legacy mode, we just want the original 4f colors - so we pass in |
| // our own CS for identity/no transform. |
| auto* cs = bitmapType != GradientBitmapType::kLegacy ? fColorSpace.get() : nullptr; |
| |
| int prevIndex = 0; |
| for (int i = 1; i < fColorCount; i++) { |
| // Historically, stops have been mapped to [0, 256], with 256 then nudged to the |
| // next smaller value, then truncate for the texture index. This seems to produce |
| // the best results for some common distributions, so we preserve the behavior. |
| int nextIndex = SkTMin(this->getPos(i) * kGradientTextureSize, |
| SkIntToScalar(kGradientTextureSize - 1)); |
| |
| if (nextIndex > prevIndex) { |
| SkColor4f color0 = this->getXformedColor(i - 1, cs), |
| color1 = this->getXformedColor(i , cs); |
| Sk4f c0 = Sk4f::Load(color0.vec()), |
| c1 = Sk4f::Load(color1.vec()); |
| |
| if (interpInPremul) { |
| c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f); |
| c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f); |
| } |
| |
| Sk4f step = Sk4f(1.0f / static_cast<float>(nextIndex - prevIndex)); |
| Sk4f delta = (c1 - c0) * step; |
| |
| for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) { |
| writePixel(c0, curIndex); |
| c0 += delta; |
| } |
| } |
| prevIndex = nextIndex; |
| } |
| SkASSERT(prevIndex == kGradientTextureSize - 1); |
| } |
| |
| SkColor4f SkGradientShaderBase::getXformedColor(size_t i, SkColorSpace* dstCS) const { |
| if (dstCS) { |
| return to_colorspace(fOrigColors4f[i], fColorSpace.get(), dstCS); |
| } |
| |
| // Legacy/srgb color. |
| // We quantize upfront to ensure stable SkColor round-trips. |
| auto rgb255 = sk_linear_to_srgb(Sk4f::Load(fOrigColors4f[i].vec())); |
| auto rgb = SkNx_cast<float>(rgb255) * (1/255.0f); |
| return { rgb[0], rgb[1], rgb[2], fOrigColors4f[i].fA }; |
| } |
| |
| SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex); |
| /* |
| * Because our caller might rebuild the same (logically the same) gradient |
| * over and over, we'd like to return exactly the same "bitmap" if possible, |
| * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). |
| * To do that, we maintain a private cache of built-bitmaps, based on our |
| * colors and positions. |
| */ |
| void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap, |
| GradientBitmapType bitmapType) const { |
| // build our key: [numColors + colors[] + {positions[]} + flags + colorType ] |
| static_assert(sizeof(SkColor4f) % sizeof(int32_t) == 0, ""); |
| const int colorsAsIntCount = fColorCount * sizeof(SkColor4f) / sizeof(int32_t); |
| int count = 1 + colorsAsIntCount + 1 + 1; |
| if (fColorCount > 2) { |
| count += fColorCount - 1; |
| } |
| |
| SkAutoSTMalloc<64, int32_t> storage(count); |
| int32_t* buffer = storage.get(); |
| |
| *buffer++ = fColorCount; |
| memcpy(buffer, fOrigColors4f, fColorCount * sizeof(SkColor4f)); |
| buffer += colorsAsIntCount; |
| if (fColorCount > 2) { |
| for (int i = 1; i < fColorCount; i++) { |
| *buffer++ = SkFloat2Bits(this->getPos(i)); |
| } |
| } |
| *buffer++ = fGradFlags; |
| *buffer++ = static_cast<int32_t>(bitmapType); |
| SkASSERT(buffer - storage.get() == count); |
| |
| /////////////////////////////////// |
| |
| static SkGradientBitmapCache* gCache; |
| // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp |
| static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; |
| SkAutoMutexAcquire ama(gGradientCacheMutex); |
| |
| if (nullptr == gCache) { |
| gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS); |
| } |
| size_t size = count * sizeof(int32_t); |
| |
| if (!gCache->find(storage.get(), size, bitmap)) { |
| // For these cases we use the bitmap cache, but not the GradientShaderCache. So just |
| // allocate and populate the bitmap's data directly. |
| |
| SkImageInfo info; |
| switch (bitmapType) { |
| case GradientBitmapType::kLegacy: |
| info = SkImageInfo::Make(kGradientTextureSize, 1, kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType); |
| break; |
| case GradientBitmapType::kSRGB: |
| info = SkImageInfo::Make(kGradientTextureSize, 1, kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); |
| break; |
| case GradientBitmapType::kHalfFloat: |
| info = SkImageInfo::Make(kGradientTextureSize, 1, kRGBA_F16_SkColorType, |
| kPremul_SkAlphaType, SkColorSpace::MakeSRGBLinear()); |
| break; |
| } |
| |
| bitmap->allocPixels(info); |
| this->initLinearBitmap(bitmap, bitmapType); |
| gCache->add(storage.get(), size, *bitmap); |
| } |
| } |
| |
| void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const { |
| if (info) { |
| if (info->fColorCount >= fColorCount) { |
| if (info->fColors) { |
| for (int i = 0; i < fColorCount; ++i) { |
| info->fColors[i] = this->getLegacyColor(i); |
| } |
| } |
| if (info->fColorOffsets) { |
| for (int i = 0; i < fColorCount; ++i) { |
| info->fColorOffsets[i] = this->getPos(i); |
| } |
| } |
| } |
| info->fColorCount = fColorCount; |
| info->fTileMode = fTileMode; |
| info->fGradientFlags = fGradFlags; |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkGradientShaderBase::toString(SkString* str) const { |
| |
| str->appendf("%d colors: ", fColorCount); |
| |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendHex(this->getLegacyColor(i), 8); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| |
| if (fColorCount > 2) { |
| str->append(" points: ("); |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendScalar(this->getPos(i)); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| str->append(")"); |
| } |
| |
| static const char* gTileModeName[SkShader::kTileModeCount] = { |
| "clamp", "repeat", "mirror" |
| }; |
| |
| str->append(" "); |
| str->append(gTileModeName[fTileMode]); |
| |
| this->INHERITED::toString(str); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Return true if these parameters are valid/legal/safe to construct a gradient |
| // |
| static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count, |
| unsigned tileMode) { |
| return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount; |
| } |
| |
| static void desc_init(SkGradientShaderBase::Descriptor* desc, |
| const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { |
| SkASSERT(colorCount > 1); |
| |
| desc->fColors = colors; |
| desc->fColorSpace = std::move(colorSpace); |
| desc->fPos = pos; |
| desc->fCount = colorCount; |
| desc->fTileMode = mode; |
| desc->fGradFlags = flags; |
| desc->fLocalMatrix = localMatrix; |
| } |
| |
| // assumes colors is SkColor4f* and pos is SkScalar* |
| #define EXPAND_1_COLOR(count) \ |
| SkColor4f tmp[2]; \ |
| do { \ |
| if (1 == count) { \ |
| tmp[0] = tmp[1] = colors[0]; \ |
| colors = tmp; \ |
| pos = nullptr; \ |
| count = 2; \ |
| } \ |
| } while (0) |
| |
| struct ColorStopOptimizer { |
| ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, |
| int count, SkShader::TileMode mode) |
| : fColors(colors) |
| , fPos(pos) |
| , fCount(count) { |
| |
| if (!pos || count != 3) { |
| return; |
| } |
| |
| if (SkScalarNearlyEqual(pos[0], 0.0f) && |
| SkScalarNearlyEqual(pos[1], 0.0f) && |
| SkScalarNearlyEqual(pos[2], 1.0f)) { |
| |
| if (SkShader::kRepeat_TileMode == mode || |
| SkShader::kMirror_TileMode == mode || |
| colors[0] == colors[1]) { |
| |
| // Ignore the leftmost color/pos. |
| fColors += 1; |
| fPos += 1; |
| fCount = 2; |
| } |
| } else if (SkScalarNearlyEqual(pos[0], 0.0f) && |
| SkScalarNearlyEqual(pos[1], 1.0f) && |
| SkScalarNearlyEqual(pos[2], 1.0f)) { |
| |
| if (SkShader::kRepeat_TileMode == mode || |
| SkShader::kMirror_TileMode == mode || |
| colors[1] == colors[2]) { |
| |
| // Ignore the rightmost color/pos. |
| fCount = 2; |
| } |
| } |
| } |
| |
| const SkColor4f* fColors; |
| const SkScalar* fPos; |
| int fCount; |
| }; |
| |
| struct ColorConverter { |
| ColorConverter(const SkColor* colors, int count) { |
| for (int i = 0; i < count; ++i) { |
| fColors4f.push_back(SkColor4f::FromColor(colors[i])); |
| } |
| } |
| |
| SkSTArray<2, SkColor4f, true> fColors4f; |
| }; |
| |
| sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, |
| localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkLinearGradient>(pts, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, |
| flags, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (radius <= 0) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return sk_make_sp<SkRadialGradient>(center, radius, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(), |
| nullptr, pos, colorCount, mode, flags, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (startRadius < 0 || endRadius < 0) { |
| return nullptr; |
| } |
| if (SkScalarNearlyZero((start - end).length()) && SkScalarNearlyZero(startRadius)) { |
| // We can treat this gradient as radial, which is faster. |
| return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount, |
| mode, flags, localMatrix); |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (startRadius == endRadius) { |
| if (start == end || startRadius == 0) { |
| return SkShader::MakeEmptyShader(); |
| } |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| SkScalar startAngle, |
| SkScalar endAngle, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| ColorConverter converter(colors, colorCount); |
| return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, |
| mode, startAngle, endAngle, flags, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
| const SkColor4f colors[], |
| sk_sp<SkColorSpace> colorSpace, |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| SkScalar startAngle, |
| SkScalar endAngle, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (1 == colorCount) { |
| return SkShader::MakeColorShader(colors[0], std::move(colorSpace)); |
| } |
| if (startAngle >= endAngle) { |
| return nullptr; |
| } |
| if (localMatrix && !localMatrix->invert(nullptr)) { |
| return nullptr; |
| } |
| |
| if (startAngle <= 0 && endAngle >= 360) { |
| // If the t-range includes [0,1], then we can always use clamping (presumably faster). |
| mode = SkShader::kClamp_TileMode; |
| } |
| |
| ColorStopOptimizer opt(colors, pos, colorCount, mode); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
| localMatrix); |
| |
| const SkScalar t0 = startAngle / 360, |
| t1 = endAngle / 360; |
| |
| return sk_make_sp<SkSweepGradient>(SkPoint::Make(cx, cy), t0, t1, desc); |
| } |
| |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "GrColorSpaceXform.h" |
| #include "GrContext.h" |
| #include "GrShaderCaps.h" |
| #include "GrTextureStripAtlas.h" |
| #include "gl/GrGLContext.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "SkGr.h" |
| |
| static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) { |
| switch (colorType) { |
| case GrGradientEffect::kSingleHardStop_ColorType: |
| return 4; |
| case GrGradientEffect::kHardStopLeftEdged_ColorType: |
| case GrGradientEffect::kHardStopRightEdged_ColorType: |
| return 3; |
| case GrGradientEffect::kTwo_ColorType: |
| return 2; |
| case GrGradientEffect::kThree_ColorType: |
| return 3; |
| case GrGradientEffect::kTexture_ColorType: |
| return 0; |
| } |
| |
| SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()"); |
| return -1; |
| } |
| |
| GrGradientEffect::ColorType GrGradientEffect::determineColorType( |
| const SkGradientShaderBase& shader) { |
| if (shader.fOrigPos) { |
| if (4 == shader.fColorCount) { |
| if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) && |
| SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) { |
| |
| return kSingleHardStop_ColorType; |
| } |
| } else if (3 == shader.fColorCount) { |
| if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { |
| |
| return kHardStopLeftEdged_ColorType; |
| } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) && |
| SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) { |
| |
| return kHardStopRightEdged_ColorType; |
| } |
| } |
| } |
| |
| if (2 == shader.fColorCount) { |
| return kTwo_ColorType; |
| } else if (3 == shader.fColorCount) { |
| return kThree_ColorType; |
| } |
| |
| return kTexture_ColorType; |
| } |
| |
| void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler, |
| const GrGradientEffect& ge) { |
| if (int colorCount = color_type_to_color_count(ge.getColorType())) { |
| fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, |
| kHalf4_GrSLType, |
| "Colors", |
| colorCount); |
| if (kSingleHardStop_ColorType == ge.fColorType || kThree_ColorType == ge.fColorType) { |
| fExtraStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat4_GrSLType, |
| kHigh_GrSLPrecision, "ExtraStopT"); |
| } |
| } else { |
| fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, |
| "GradientYCoordFS"); |
| } |
| } |
| |
| void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| switch (e.getColorType()) { |
| case GrGradientEffect::kSingleHardStop_ColorType: |
| case GrGradientEffect::kThree_ColorType: |
| // ( t, 1/t, 1/(1-t), t/(1-t) ) |
| // This lets us compute relative t on either side of the stop with at most a single FMA |
| pdman.set4f(fExtraStopT, e.fPositions[1], |
| 1.0f / e.fPositions[1], |
| 1.0f / (1.0f - e.fPositions[1]), |
| e.fPositions[1] / (1.0f - e.fPositions[1])); |
| // fall through |
| case GrGradientEffect::kHardStopLeftEdged_ColorType: |
| case GrGradientEffect::kHardStopRightEdged_ColorType: |
| case GrGradientEffect::kTwo_ColorType: { |
| pdman.set4fv(fColorsUni, e.fColors4f.count(), (float*)&e.fColors4f[0]); |
| break; |
| } |
| |
| case GrGradientEffect::kTexture_ColorType: { |
| SkScalar yCoord = e.getYCoord(); |
| if (yCoord != fCachedYCoord) { |
| pdman.set1f(fFSYUni, yCoord); |
| fCachedYCoord = yCoord; |
| } |
| break; |
| } |
| } |
| } |
| |
| void GrGradientEffect::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { |
| b->add32(GLSLProcessor::GenBaseGradientKey(*this)); |
| } |
| |
| uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) { |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| uint32_t key = 0; |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| key |= kPremulBeforeInterpKey; |
| } |
| |
| if (GrGradientEffect::kTwo_ColorType == e.getColorType()) { |
| key |= kTwoColorKey; |
| } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) { |
| key |= kThreeColorKey; |
| } else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) { |
| key |= kHardStopCenteredKey; |
| } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) { |
| key |= kHardStopZeroZeroOneKey; |
| } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) { |
| key |= kHardStopZeroOneOneKey; |
| } |
| |
| switch (e.fWrapMode) { |
| case GrSamplerState::WrapMode::kClamp: |
| key |= kClampTileMode; |
| break; |
| case GrSamplerState::WrapMode::kRepeat: |
| key |= kRepeatTileMode; |
| break; |
| case GrSamplerState::WrapMode::kMirrorRepeat: |
| key |= kMirrorTileMode; |
| break; |
| } |
| |
| return key; |
| } |
| |
| void GrGradientEffect::GLSLProcessor::emitAnalyticalColor(GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLUniformHandler* uniformHandler, |
| const GrShaderCaps* shaderCaps, |
| const GrGradientEffect& ge, |
| const char* t, |
| const char* outputColor, |
| const char* inputColor) { |
| // First, apply tiling rules. |
| switch (ge.fWrapMode) { |
| case GrSamplerState::WrapMode::kClamp: |
| fragBuilder->codeAppendf("half clamp_t = clamp(%s, 0.0, 1.0);", t); |
| break; |
| case GrSamplerState::WrapMode::kRepeat: |
| fragBuilder->codeAppendf("half clamp_t = fract(%s);", t); |
| break; |
| case GrSamplerState::WrapMode::kMirrorRepeat: |
| fragBuilder->codeAppendf("half t_1 = %s - 1.0;", t); |
| fragBuilder->codeAppendf("half clamp_t = abs(t_1 - 2.0 * floor(t_1 * 0.5) - 1.0);"); |
| break; |
| } |
| |
| // Calculate the color. |
| const char* colors = uniformHandler->getUniformCStr(fColorsUni); |
| switch (ge.getColorType()) { |
| case kSingleHardStop_ColorType: { |
| // (t, 1/t, 1/(1-t), t/(1-t)) |
| const char* stopT = uniformHandler->getUniformCStr(fExtraStopT); |
| |
| fragBuilder->codeAppend ("half4 start, end;"); |
| fragBuilder->codeAppend ("half relative_t;"); |
| fragBuilder->codeAppendf("if (clamp_t < %s.x) {", stopT); |
| fragBuilder->codeAppendf(" start = %s[0];", colors); |
| fragBuilder->codeAppendf(" end = %s[1];", colors); |
| fragBuilder->codeAppendf(" relative_t = clamp_t * %s.y;", stopT); |
| fragBuilder->codeAppend ("} else {"); |
| fragBuilder->codeAppendf(" start = %s[2];", colors); |
| fragBuilder->codeAppendf(" end = %s[3];", colors); |
| // Want: (t-s)/(1-s), but arrange it as: t/(1-s) - s/(1-s), for FMA form |
| fragBuilder->codeAppendf(" relative_t = (clamp_t * %s.z) - %s.w;", stopT, stopT); |
| fragBuilder->codeAppend ("}"); |
| fragBuilder->codeAppend ("half4 colorTemp = mix(start, end, relative_t);"); |
| |
| break; |
| } |
| |
| case kHardStopLeftEdged_ColorType: { |
| fragBuilder->codeAppendf("half4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors, |
| colors); |
| if (GrSamplerState::WrapMode::kClamp == ge.fWrapMode) { |
| fragBuilder->codeAppendf("if (%s < 0.0) {", t); |
| fragBuilder->codeAppendf(" colorTemp = %s[0];", colors); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| break; |
| } |
| |
| case kHardStopRightEdged_ColorType: { |
| fragBuilder->codeAppendf("half4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors, |
| colors); |
| if (GrSamplerState::WrapMode::kClamp == ge.fWrapMode) { |
| fragBuilder->codeAppendf("if (%s > 1.0) {", t); |
| fragBuilder->codeAppendf(" colorTemp = %s[2];", colors); |
| fragBuilder->codeAppendf("}"); |
| } |
| |
| break; |
| } |
| |
| case kTwo_ColorType: { |
| fragBuilder->codeAppendf("half4 colorTemp = mix(%s[0], %s[1], clamp_t);", |
| colors, colors); |
| |
| break; |
| } |
| |
| case kThree_ColorType: { |
| // (t, 1/t, 1/(1-t), t/(1-t)) |
| const char* stopT = uniformHandler->getUniformCStr(fExtraStopT); |
| |
| fragBuilder->codeAppend("half4 start, end;"); |
| fragBuilder->codeAppend("half relative_t;"); |
| fragBuilder->codeAppendf("if (clamp_t < %s.x) {", stopT); |
| fragBuilder->codeAppendf(" start = %s[0];", colors); |
| fragBuilder->codeAppendf(" end = %s[1];", colors); |
| fragBuilder->codeAppendf(" relative_t = clamp_t * %s.y;", stopT); |
| fragBuilder->codeAppend("} else {"); |
| fragBuilder->codeAppendf(" start = %s[1];", colors); |
| fragBuilder->codeAppendf(" end = %s[2];", colors); |
| // Want: (t-s)/(1-s), but arrange it as: t/(1-s) - s/(1-s), for FMA form |
| fragBuilder->codeAppendf(" relative_t = (clamp_t * %s.z) - %s.w;", stopT, stopT); |
| fragBuilder->codeAppend("}"); |
| fragBuilder->codeAppend("half4 colorTemp = mix(start, end, relative_t);"); |
| |
| break; |
| } |
| |
| default: |
| SkASSERT(false); |
| break; |
| } |
| |
| // We could skip this step if all colors are known to be opaque. Two considerations: |
| // The gradient SkShader reporting opaque is more restrictive than necessary in the two |
| // pt case. Make sure the key reflects this optimization (and note that it can use the |
| // same shader as the kBeforeInterp case). |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;"); |
| } |
| |
| // If the input colors were floats, or there was a color space xform, we may end up out of |
| // range. The simplest solution is to always clamp our (premul) value here. We only need to |
| // clamp RGB, but that causes hangs on the Tegra3 Nexus7. Clamping RGBA avoids the problem. |
| fragBuilder->codeAppend("colorTemp = clamp(colorTemp, 0, colorTemp.a);"); |
| |
| fragBuilder->codeAppendf("%s = %s * colorTemp;", outputColor, inputColor); |
| } |
| |
| void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLUniformHandler* uniformHandler, |
| const GrShaderCaps* shaderCaps, |
| const GrGradientEffect& ge, |
| const char* gradientTValue, |
| const char* outputColor, |
| const char* inputColor, |
| const TextureSamplers& texSamplers) { |
| if (ge.getColorType() != kTexture_ColorType) { |
| this->emitAnalyticalColor(fragBuilder, uniformHandler, shaderCaps, ge, gradientTValue, |
| outputColor, inputColor); |
| return; |
| } |
| |
| const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni); |
| |
| fragBuilder->codeAppendf("half2 coord = half2(%s, %s);", gradientTValue, fsyuni); |
| fragBuilder->codeAppendf("%s = ", outputColor); |
| fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord", |
| kFloat2_GrSLType); |
| fragBuilder->codeAppend(";"); |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) { |
| return isOpaque |
| ? kPreservesOpaqueInput_OptimizationFlag | |
| kCompatibleWithCoverageAsAlpha_OptimizationFlag |
| : kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } |
| |
| GrGradientEffect::GrGradientEffect(ClassID classID, const CreateArgs& args, bool isOpaque) |
| : INHERITED(classID, OptFlags(isOpaque)) { |
| const SkGradientShaderBase& shader(*args.fShader); |
| |
| fIsOpaque = shader.isOpaque(); |
| |
| fColorType = this->determineColorType(shader); |
| fWrapMode = args.fWrapMode; |
| |
| if (kTexture_ColorType == fColorType) { |
| // Doesn't matter how this is set, just be consistent because it is part of the effect key. |
| fPremulType = kBeforeInterp_PremulType; |
| } else { |
| if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) { |
| fPremulType = kBeforeInterp_PremulType; |
| } else { |
| fPremulType = kAfterInterp_PremulType; |
| } |
| |
| // Convert input colors to GrColor4f, possibly premul, and apply color space xform. |
| // The xform is constructed assuming floats as input, but the color space can have a |
| // transfer function on it, which will be applied below. |
| auto colorSpaceXform = GrColorSpaceXform::Make(shader.fColorSpace.get(), |
| kRGBA_float_GrPixelConfig, |
| args.fDstColorSpace); |
| SkASSERT(shader.fOrigColors4f); |
| fColors4f.setCount(shader.fColorCount); |
| for (int i = 0; i < shader.fColorCount; ++i) { |
| // We apply the dest CS transform separately, so we only use this as a selector |
| // for linear vs. legacy colors. |
| auto* cs = args.fDstColorSpace ? shader.fColorSpace.get() : nullptr; |
| fColors4f[i] = GrColor4f::FromSkColor4f(shader.getXformedColor(i, cs)); |
| |
| if (kBeforeInterp_PremulType == fPremulType) { |
| fColors4f[i] = fColors4f[i].premul(); |
| } |
| |
| if (colorSpaceXform) { |
| // We defer clamping to after interpolation (see emitAnalyticalColor) |
| fColors4f[i] = colorSpaceXform->unclampedXform(fColors4f[i]); |
| } |
| } |
| |
| if (shader.fOrigPos) { |
| fPositions = SkTDArray<SkScalar>(shader.fOrigPos, shader.fColorCount); |
| } else if (kThree_ColorType == fColorType) { |
| const SkScalar symmetricStops[] = { 0.0f, 0.5f, 1.0f }; |
| fPositions = SkTDArray<SkScalar>(symmetricStops, 3); |
| } |
| } |
| |
| switch (fColorType) { |
| case kTwo_ColorType: |
| case kThree_ColorType: |
| case kHardStopLeftEdged_ColorType: |
| case kHardStopRightEdged_ColorType: |
| case kSingleHardStop_ColorType: |
| fRow = -1; |
| fCoordTransform.reset(*args.fMatrix); |
| break; |
| |
| case kTexture_ColorType: |
| SkGradientShaderBase::GradientBitmapType bitmapType = |
| SkGradientShaderBase::GradientBitmapType::kLegacy; |
| if (args.fDstColorSpace) { |
| // Try to use F16 if we can |
| if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) { |
| bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat; |
| } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) { |
| bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB; |
| } else { |
| // This can happen, but only if someone explicitly creates an unsupported |
| // (eg sRGB) surface. Just fall back to legacy behavior. |
| } |
| } |
| |
| SkBitmap bitmap; |
| shader.getGradientTableBitmap(&bitmap, bitmapType); |
| SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); |
| |
| |
| GrTextureStripAtlas::Desc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = 32; |
| desc.fRowHeight = bitmap.height(); |
| desc.fContext = args.fContext; |
| desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps()); |
| fAtlas = GrTextureStripAtlas::GetAtlas(desc); |
| SkASSERT(fAtlas); |
| |
| // We always filter the gradient table. Each table is one row of a texture, always |
| // y-clamp. |
| GrSamplerState samplerState(args.fWrapMode, GrSamplerState::Filter::kBilerp); |
| |
| fRow = fAtlas->lockRow(bitmap); |
| if (-1 != fRow) { |
| fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight(); |
| // This is 1/2 places where auto-normalization is disabled |
| fCoordTransform.reset(*args.fMatrix, fAtlas->asTextureProxyRef().get(), false); |
| fTextureSampler.reset(fAtlas->asTextureProxyRef(), samplerState); |
| } else { |
| // In this instance we know the samplerState state is: |
| // clampY, bilerp |
| // and the proxy is: |
| // exact fit, power of two in both dimensions |
| // Only the x-tileMode is unknown. However, given all the other knowns we know |
| // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be |
| // extracted to a subset or mipmapped). |
| sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy( |
| args.fContext->resourceProvider(), |
| bitmap); |
| if (!proxy) { |
| SkDebugf("Gradient won't draw. Could not create texture."); |
| return; |
| } |
| // This is 2/2 places where auto-normalization is disabled |
| fCoordTransform.reset(*args.fMatrix, proxy.get(), false); |
| fTextureSampler.reset(std::move(proxy), samplerState); |
| fYCoord = SK_ScalarHalf; |
| } |
| |
| this->addTextureSampler(&fTextureSampler); |
| |
| break; |
| } |
| |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| GrGradientEffect::GrGradientEffect(const GrGradientEffect& that) |
| : INHERITED(that.classID(), OptFlags(that.fIsOpaque)) |
| , fColors4f(that.fColors4f) |
| , fPositions(that.fPositions) |
| , fWrapMode(that.fWrapMode) |
| , fCoordTransform(that.fCoordTransform) |
| , fTextureSampler(that.fTextureSampler) |
| , fYCoord(that.fYCoord) |
| , fAtlas(that.fAtlas) |
| , fRow(that.fRow) |
| , fIsOpaque(that.fIsOpaque) |
| , fColorType(that.fColorType) |
| , fPremulType(that.fPremulType) { |
| this->addCoordTransform(&fCoordTransform); |
| if (kTexture_ColorType == fColorType) { |
| this->addTextureSampler(&fTextureSampler); |
| } |
| if (this->useAtlas()) { |
| fAtlas->lockRow(fRow); |
| } |
| } |
| |
| GrGradientEffect::~GrGradientEffect() { |
| if (this->useAtlas()) { |
| fAtlas->unlockRow(fRow); |
| } |
| } |
| |
| bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const { |
| const GrGradientEffect& ge = processor.cast<GrGradientEffect>(); |
| |
| if (fWrapMode != ge.fWrapMode || fColorType != ge.getColorType()) { |
| return false; |
| } |
| SkASSERT(this->useAtlas() == ge.useAtlas()); |
| if (kTexture_ColorType == fColorType) { |
| if (fYCoord != ge.getYCoord()) { |
| return false; |
| } |
| } else { |
| if (kSingleHardStop_ColorType == fColorType || kThree_ColorType == fColorType) { |
| if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) { |
| return false; |
| } |
| } |
| if (this->getPremulType() != ge.getPremulType() || |
| this->fColors4f.count() != ge.fColors4f.count()) { |
| return false; |
| } |
| |
| for (int i = 0; i < this->fColors4f.count(); i++) { |
| if (*this->getColors4f(i) != *ge.getColors4f(i)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| #if GR_TEST_UTILS |
| GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) { |
| // Set color count to min of 2 so that we don't trigger the const color optimization and make |
| // a non-gradient processor. |
| fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); |
| fUseColors4f = random->nextBool(); |
| |
| // if one color, omit stops, otherwise randomly decide whether or not to |
| if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { |
| fStops = nullptr; |
| } else { |
| fStops = fStopStorage; |
| } |
| |
| // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) |
| if (fUseColors4f) { |
| fColorSpace = GrTest::TestColorSpace(random); |
| if (fColorSpace) { |
| SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type()); |
| fColorSpace = static_cast<SkColorSpace_XYZ*>(fColorSpace.get())->makeLinearGamma(); |
| } |
| } |
| |
| SkScalar stop = 0.f; |
| for (int i = 0; i < fColorCount; ++i) { |
| if (fUseColors4f) { |
| fColors4f[i].fR = random->nextUScalar1(); |
| fColors4f[i].fG = random->nextUScalar1(); |
| fColors4f[i].fB = random->nextUScalar1(); |
| fColors4f[i].fA = random->nextUScalar1(); |
| } else { |
| fColors[i] = random->nextU(); |
| } |
| if (fStops) { |
| fStops[i] = stop; |
| stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; |
| } |
| } |
| fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount)); |
| } |
| #endif |
| |
| #endif |