blob: 823087ec5cca84738b2e401f421a033f716a1882 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/codec/SkWuffsCodec.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/private/SkMalloc.h"
#include "src/codec/SkFrameHolder.h"
#include "src/codec/SkSampler.h"
#include "src/codec/SkScalingCodec.h"
#include "src/core/SkDraw.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkUtils.h"
#include <limits.h>
// Documentation on the Wuffs language and standard library (in general) and
// its image decoding API (in particular) is at:
//
// - https://github.com/google/wuffs/tree/master/doc
// - https://github.com/google/wuffs/blob/master/doc/std/image-decoders.md
// Wuffs ships as a "single file C library" or "header file library" as per
// https://github.com/nothings/stb/blob/master/docs/stb_howto.txt
//
// As we have not #define'd WUFFS_IMPLEMENTATION, the #include here is
// including a header file, even though that file name ends in ".c".
#if defined(WUFFS_IMPLEMENTATION)
#error "SkWuffsCodec should not #define WUFFS_IMPLEMENTATION"
#endif
#include "wuffs-v0.2.c"
#if WUFFS_VERSION_BUILD_METADATA_COMMIT_COUNT < 1942
#error "Wuffs version is too old. Upgrade to the latest version."
#endif
#define SK_WUFFS_CODEC_BUFFER_SIZE 4096
// Configuring a Skia build with
// SK_WUFFS_FAVORS_PERFORMANCE_OVER_ADDITIONAL_MEMORY_SAFETY can improve decode
// performance by some fixed amount (independent of the image size), which can
// be a noticeable proportional improvement if the input is relatively small.
//
// The Wuffs library is still memory-safe either way, in that there are no
// out-of-bounds reads or writes, and the library endeavours not to read
// uninitialized memory. There are just fewer compiler-enforced guarantees
// against reading uninitialized memory. For more detail, see
// https://github.com/google/wuffs/blob/master/doc/note/initialization.md#partial-zero-initialization
#if defined(SK_WUFFS_FAVORS_PERFORMANCE_OVER_ADDITIONAL_MEMORY_SAFETY)
#define SK_WUFFS_INITIALIZE_FLAGS WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED
#else
#define SK_WUFFS_INITIALIZE_FLAGS WUFFS_INITIALIZE__DEFAULT_OPTIONS
#endif
static bool fill_buffer(wuffs_base__io_buffer* b, SkStream* s) {
b->compact();
size_t num_read = s->read(b->data.ptr + b->meta.wi, b->data.len - b->meta.wi);
b->meta.wi += num_read;
b->meta.closed = s->isAtEnd();
return num_read > 0;
}
static bool seek_buffer(wuffs_base__io_buffer* b, SkStream* s, uint64_t pos) {
// Try to re-position the io_buffer's meta.ri read-index first, which is
// cheaper than seeking in the backing SkStream.
if ((pos >= b->meta.pos) && (pos - b->meta.pos <= b->meta.wi)) {
b->meta.ri = pos - b->meta.pos;
return true;
}
// Seek in the backing SkStream.
if ((pos > SIZE_MAX) || (!s->seek(pos))) {
return false;
}
b->meta.wi = 0;
b->meta.ri = 0;
b->meta.pos = pos;
b->meta.closed = false;
return true;
}
static SkEncodedInfo::Alpha wuffs_blend_to_skia_alpha(wuffs_base__animation_blend w) {
return (w == WUFFS_BASE__ANIMATION_BLEND__OPAQUE) ? SkEncodedInfo::kOpaque_Alpha
: SkEncodedInfo::kUnpremul_Alpha;
}
static SkCodecAnimation::Blend wuffs_blend_to_skia_blend(wuffs_base__animation_blend w) {
return (w == WUFFS_BASE__ANIMATION_BLEND__SRC) ? SkCodecAnimation::Blend::kBG
: SkCodecAnimation::Blend::kPriorFrame;
}
static SkCodecAnimation::DisposalMethod wuffs_disposal_to_skia_disposal(
wuffs_base__animation_disposal w) {
switch (w) {
case WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_BACKGROUND:
return SkCodecAnimation::DisposalMethod::kRestoreBGColor;
case WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_PREVIOUS:
return SkCodecAnimation::DisposalMethod::kRestorePrevious;
default:
return SkCodecAnimation::DisposalMethod::kKeep;
}
}
static SkAlphaType to_alpha_type(bool opaque) {
return opaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
}
static SkCodec::Result reset_and_decode_image_config(wuffs_gif__decoder* decoder,
wuffs_base__image_config* imgcfg,
wuffs_base__io_buffer* b,
SkStream* s) {
// Calling decoder->initialize will memset most or all of it to zero,
// depending on SK_WUFFS_INITIALIZE_FLAGS.
const char* status =
decoder->initialize(sizeof__wuffs_gif__decoder(), WUFFS_VERSION, SK_WUFFS_INITIALIZE_FLAGS);
if (status != nullptr) {
SkCodecPrintf("initialize: %s", status);
return SkCodec::kInternalError;
}
while (true) {
status = decoder->decode_image_config(imgcfg, b);
if (status == nullptr) {
break;
} else if (status != wuffs_base__suspension__short_read) {
SkCodecPrintf("decode_image_config: %s", status);
return SkCodec::kErrorInInput;
} else if (!fill_buffer(b, s)) {
return SkCodec::kIncompleteInput;
}
}
// A GIF image's natural color model is indexed color: 1 byte per pixel,
// indexing a 256-element palette.
//
// For Skia, we override that to decode to 4 bytes per pixel, BGRA or RGBA.
wuffs_base__pixel_format pixfmt = 0;
switch (kN32_SkColorType) {
case kBGRA_8888_SkColorType:
pixfmt = WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL;
break;
case kRGBA_8888_SkColorType:
pixfmt = WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL;
break;
default:
return SkCodec::kInternalError;
}
if (imgcfg) {
imgcfg->pixcfg.set(pixfmt, WUFFS_BASE__PIXEL_SUBSAMPLING__NONE, imgcfg->pixcfg.width(),
imgcfg->pixcfg.height());
}
return SkCodec::kSuccess;
}
// -------------------------------- Class definitions
class SkWuffsCodec;
class SkWuffsFrame final : public SkFrame {
public:
SkWuffsFrame(wuffs_base__frame_config* fc);
SkCodec::FrameInfo frameInfo(bool fullyReceived) const;
uint64_t ioPosition() const;
// SkFrame overrides.
SkEncodedInfo::Alpha onReportedAlpha() const override;
private:
uint64_t fIOPosition;
SkEncodedInfo::Alpha fReportedAlpha;
typedef SkFrame INHERITED;
};
// SkWuffsFrameHolder is a trivial indirector that forwards its calls onto a
// SkWuffsCodec. It is a separate class as SkWuffsCodec would otherwise
// inherit from both SkCodec and SkFrameHolder, and Skia style discourages
// multiple inheritance (e.g. with its "typedef Foo INHERITED" convention).
class SkWuffsFrameHolder final : public SkFrameHolder {
public:
SkWuffsFrameHolder() : INHERITED() {}
void init(SkWuffsCodec* codec, int width, int height);
// SkFrameHolder overrides.
const SkFrame* onGetFrame(int i) const override;
private:
const SkWuffsCodec* fCodec;
typedef SkFrameHolder INHERITED;
};
class SkWuffsCodec final : public SkScalingCodec {
public:
SkWuffsCodec(SkEncodedInfo&& encodedInfo,
std::unique_ptr<SkStream> stream,
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)> dec,
std::unique_ptr<uint8_t, decltype(&sk_free)> workbuf_ptr,
size_t workbuf_len,
wuffs_base__image_config imgcfg,
wuffs_base__io_buffer iobuf);
const SkWuffsFrame* frame(int i) const;
private:
// It is valid, in terms of the SkCodec API, to call SkCodec::getFrameCount
// while in an incremental decode (after onStartIncrementalDecode returns
// and before the rest of the image is decoded). Some Skia users expect
// getFrameCount to increase, and the SkStream to advance, when given more
// data.
//
// On the other hand, while in an incremental decode, the underlying Wuffs
// object is suspended in a coroutine. To keep its internal proof-of-safety
// invariants consistent, there's only two things you can safely do with a
// suspended Wuffs object: resume the coroutine, or reset all state (memset
// to zero and start again).
//
// The Wuffs API provides a limited, optional form of seeking, to the start
// of an animation frame's data, but does not provide arbitrary save and
// load of its internal state whilst in the middle of an animation frame.
//
// SkWuffsCodec therefore uses two Wuffs decoders: a primary decoder
// (kIncrDecode) to support startIncrementalDecode / incrementalDecode, and
// a secondary decoder (kFrameCount) to support getFrameCount. The two
// decoders' states can change independently.
//
// As of Wuffs version 0.2, both of these decoders have the same type. A
// future Wuffs version might let us use a different type for kFrameCount,
// one that is much lighter weight (in terms of memory requirements), as it
// doesn't have to handle decompressing pixel data.
enum WhichDecoder {
kIncrDecode,
kFrameCount,
kNumDecoders,
};
// SkCodec overrides.
SkEncodedImageFormat onGetEncodedFormat() const override;
Result onGetPixels(const SkImageInfo&, void*, size_t, const Options&, int*) override;
const SkFrameHolder* getFrameHolder() const override;
Result onStartIncrementalDecode(const SkImageInfo& dstInfo,
void* dst,
size_t rowBytes,
const SkCodec::Options& options) override;
Result onIncrementalDecode(int* rowsDecoded) override;
int onGetFrameCount() override;
bool onGetFrameInfo(int, FrameInfo*) const override;
int onGetRepetitionCount() override;
// Two separate implementations of onStartIncrementalDecode and
// onIncrementalDecode, named "one pass" and "two pass" decoding. One pass
// decoding writes directly from the Wuffs image decoder to the dst buffer
// (the dst argument to onStartIncrementalDecode). Two pass decoding first
// writes into an intermediate buffer, and then composites and transforms
// the intermediate buffer into the dst buffer.
//
// In the general case, we need the two pass decoder, because of Skia API
// features that Wuffs doesn't support (e.g. color correction, scaling,
// RGB565). But as an optimization, we use one pass decoding (it's faster
// and uses less memory) if applicable (see the assignment to
// fIncrDecOnePass that calculates when we can do so).
Result onStartIncrementalDecodeOnePass(const SkImageInfo& dstInfo,
uint8_t* dst,
size_t rowBytes,
const SkCodec::Options& options,
wuffs_base__pixel_format pixelFormat,
size_t bytesPerPixel);
Result onStartIncrementalDecodeTwoPass();
Result onIncrementalDecodeOnePass();
Result onIncrementalDecodeTwoPass();
void onGetFrameCountInternal();
Result seekFrame(WhichDecoder which, int frameIndex);
Result resetDecoder(WhichDecoder which);
const char* decodeFrameConfig(WhichDecoder which);
const char* decodeFrame(WhichDecoder which);
void updateNumFullyReceivedFrames(WhichDecoder which);
SkWuffsFrameHolder fFrameHolder;
std::unique_ptr<SkStream> fStream;
std::unique_ptr<uint8_t, decltype(&sk_free)> fWorkbufPtr;
size_t fWorkbufLen;
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)> fDecoders[WhichDecoder::kNumDecoders];
const uint64_t fFirstFrameIOPosition;
wuffs_base__frame_config fFrameConfigs[WhichDecoder::kNumDecoders];
wuffs_base__pixel_config fPixelConfig;
wuffs_base__pixel_buffer fPixelBuffer;
wuffs_base__io_buffer fIOBuffer;
// Incremental decoding state.
uint8_t* fIncrDecDst;
uint64_t fIncrDecReaderIOPosition;
size_t fIncrDecRowBytes;
bool fIncrDecOnePass;
bool fFirstCallToIncrementalDecode;
// Lazily allocated intermediate pixel buffer, for two pass decoding.
std::unique_ptr<uint8_t, decltype(&sk_free)> fTwoPassPixbufPtr;
size_t fTwoPassPixbufLen;
uint64_t fFrameCountReaderIOPosition;
uint64_t fNumFullyReceivedFrames;
std::vector<SkWuffsFrame> fFrames;
bool fFramesComplete;
// If calling an fDecoders[which] method returns an incomplete status, then
// fDecoders[which] is suspended in a coroutine (i.e. waiting on I/O or
// halted on a non-recoverable error). To keep its internal proof-of-safety
// invariants consistent, there's only two things you can safely do with a
// suspended Wuffs object: resume the coroutine, or reset all state (memset
// to zero and start again).
//
// If fDecoderIsSuspended[which], and we aren't sure that we're going to
// resume the coroutine, then we will need to call this->resetDecoder
// before calling other fDecoders[which] methods.
bool fDecoderIsSuspended[WhichDecoder::kNumDecoders];
uint8_t fBuffer[SK_WUFFS_CODEC_BUFFER_SIZE];
typedef SkScalingCodec INHERITED;
};
// -------------------------------- SkWuffsFrame implementation
SkWuffsFrame::SkWuffsFrame(wuffs_base__frame_config* fc)
: INHERITED(fc->index()),
fIOPosition(fc->io_position()),
fReportedAlpha(wuffs_blend_to_skia_alpha(fc->blend())) {
wuffs_base__rect_ie_u32 r = fc->bounds();
this->setXYWH(r.min_incl_x, r.min_incl_y, r.width(), r.height());
this->setDisposalMethod(wuffs_disposal_to_skia_disposal(fc->disposal()));
this->setDuration(fc->duration() / WUFFS_BASE__FLICKS_PER_MILLISECOND);
this->setBlend(wuffs_blend_to_skia_blend(fc->blend()));
}
SkCodec::FrameInfo SkWuffsFrame::frameInfo(bool fullyReceived) const {
SkCodec::FrameInfo ret;
ret.fRequiredFrame = getRequiredFrame();
ret.fDuration = getDuration();
ret.fFullyReceived = fullyReceived;
ret.fAlphaType = hasAlpha() ? kUnpremul_SkAlphaType : kOpaque_SkAlphaType;
ret.fDisposalMethod = getDisposalMethod();
return ret;
}
uint64_t SkWuffsFrame::ioPosition() const {
return fIOPosition;
}
SkEncodedInfo::Alpha SkWuffsFrame::onReportedAlpha() const {
return fReportedAlpha;
}
// -------------------------------- SkWuffsFrameHolder implementation
void SkWuffsFrameHolder::init(SkWuffsCodec* codec, int width, int height) {
fCodec = codec;
// Initialize SkFrameHolder's (the superclass) fields.
fScreenWidth = width;
fScreenHeight = height;
}
const SkFrame* SkWuffsFrameHolder::onGetFrame(int i) const {
return fCodec->frame(i);
};
// -------------------------------- SkWuffsCodec implementation
SkWuffsCodec::SkWuffsCodec(SkEncodedInfo&& encodedInfo,
std::unique_ptr<SkStream> stream,
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)> dec,
std::unique_ptr<uint8_t, decltype(&sk_free)> workbuf_ptr,
size_t workbuf_len,
wuffs_base__image_config imgcfg,
wuffs_base__io_buffer iobuf)
: INHERITED(std::move(encodedInfo),
skcms_PixelFormat_RGBA_8888,
// Pass a nullptr SkStream to the SkCodec constructor. We
// manage the stream ourselves, as the default SkCodec behavior
// is too trigger-happy on rewinding the stream.
nullptr),
fFrameHolder(),
fStream(std::move(stream)),
fWorkbufPtr(std::move(workbuf_ptr)),
fWorkbufLen(workbuf_len),
fDecoders{
std::move(dec),
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)>(nullptr, sk_free),
},
fFirstFrameIOPosition(imgcfg.first_frame_io_position()),
fFrameConfigs{
wuffs_base__null_frame_config(),
wuffs_base__null_frame_config(),
},
fPixelConfig(imgcfg.pixcfg),
fPixelBuffer(wuffs_base__null_pixel_buffer()),
fIOBuffer(wuffs_base__empty_io_buffer()),
fIncrDecDst(nullptr),
fIncrDecReaderIOPosition(0),
fIncrDecRowBytes(0),
fIncrDecOnePass(false),
fFirstCallToIncrementalDecode(false),
fTwoPassPixbufPtr(nullptr, &sk_free),
fTwoPassPixbufLen(0),
fFrameCountReaderIOPosition(0),
fNumFullyReceivedFrames(0),
fFramesComplete(false),
fDecoderIsSuspended{
false,
false,
} {
fFrameHolder.init(this, imgcfg.pixcfg.width(), imgcfg.pixcfg.height());
// Initialize fIOBuffer's fields, copying any outstanding data from iobuf to
// fIOBuffer, as iobuf's backing array may not be valid for the lifetime of
// this SkWuffsCodec object, but fIOBuffer's backing array (fBuffer) is.
SkASSERT(iobuf.data.len == SK_WUFFS_CODEC_BUFFER_SIZE);
memmove(fBuffer, iobuf.data.ptr, iobuf.meta.wi);
fIOBuffer.data = wuffs_base__make_slice_u8(fBuffer, SK_WUFFS_CODEC_BUFFER_SIZE);
fIOBuffer.meta = iobuf.meta;
}
const SkWuffsFrame* SkWuffsCodec::frame(int i) const {
if ((0 <= i) && (static_cast<size_t>(i) < fFrames.size())) {
return &fFrames[i];
}
return nullptr;
}
SkEncodedImageFormat SkWuffsCodec::onGetEncodedFormat() const {
return SkEncodedImageFormat::kGIF;
}
SkCodec::Result SkWuffsCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst,
size_t rowBytes,
const Options& options,
int* rowsDecoded) {
SkCodec::Result result = this->onStartIncrementalDecode(dstInfo, dst, rowBytes, options);
if (result != kSuccess) {
return result;
}
return this->onIncrementalDecode(rowsDecoded);
}
const SkFrameHolder* SkWuffsCodec::getFrameHolder() const {
return &fFrameHolder;
}
SkCodec::Result SkWuffsCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo,
void* dst,
size_t rowBytes,
const SkCodec::Options& options) {
if (!dst) {
return SkCodec::kInvalidParameters;
}
if (options.fSubset) {
return SkCodec::kUnimplemented;
}
if (options.fFrameIndex > 0 && SkColorTypeIsAlwaysOpaque(dstInfo.colorType())) {
return SkCodec::kInvalidConversion;
}
SkCodec::Result result = this->seekFrame(WhichDecoder::kIncrDecode, options.fFrameIndex);
if (result != SkCodec::kSuccess) {
return result;
}
const char* status = this->decodeFrameConfig(WhichDecoder::kIncrDecode);
if (status == wuffs_base__suspension__short_read) {
return SkCodec::kIncompleteInput;
} else if (status != nullptr) {
SkCodecPrintf("decodeFrameConfig: %s", status);
return SkCodec::kErrorInInput;
}
wuffs_base__pixel_format pixelFormat = WUFFS_BASE__PIXEL_FORMAT__INVALID;
size_t bytesPerPixel = 0;
switch (dstInfo.colorType()) {
case kBGRA_8888_SkColorType:
pixelFormat = WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL;
bytesPerPixel = 4;
break;
case kRGBA_8888_SkColorType:
pixelFormat = WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL;
bytesPerPixel = 4;
break;
default:
break;
}
// We can use "one pass" decoding if we have a Skia pixel format that Wuffs
// supports...
fIncrDecOnePass =
(pixelFormat != WUFFS_BASE__PIXEL_FORMAT__INVALID) &&
// ...and no color profile (as Wuffs does not support them)...
(!getEncodedInfo().profile()) &&
// ...and we have an independent frame (as Wuffs does not support the
// equivalent of SkBlendMode::kSrcOver)...
((options.fFrameIndex == 0) ||
(this->frame(options.fFrameIndex)->getRequiredFrame() == SkCodec::kNoFrame)) &&
// ...and we use the identity transform (as Wuffs does not support
// scaling).
(this->dimensions() == dstInfo.dimensions());
result = fIncrDecOnePass ? this->onStartIncrementalDecodeOnePass(
dstInfo, static_cast<uint8_t*>(dst), rowBytes, options,
pixelFormat, bytesPerPixel)
: this->onStartIncrementalDecodeTwoPass();
if (result != SkCodec::kSuccess) {
return result;
}
fIncrDecDst = static_cast<uint8_t*>(dst);
fIncrDecReaderIOPosition = fIOBuffer.reader_io_position();
fIncrDecRowBytes = rowBytes;
fFirstCallToIncrementalDecode = true;
return SkCodec::kSuccess;
}
SkCodec::Result SkWuffsCodec::onStartIncrementalDecodeOnePass(const SkImageInfo& dstInfo,
uint8_t* dst,
size_t rowBytes,
const SkCodec::Options& options,
wuffs_base__pixel_format pixelFormat,
size_t bytesPerPixel) {
wuffs_base__pixel_config pixelConfig;
pixelConfig.set(pixelFormat, WUFFS_BASE__PIXEL_SUBSAMPLING__NONE, dstInfo.width(),
dstInfo.height());
wuffs_base__table_u8 table;
table.ptr = dst;
table.width = static_cast<size_t>(dstInfo.width()) * bytesPerPixel;
table.height = dstInfo.height();
table.stride = rowBytes;
const char* status = fPixelBuffer.set_from_table(&pixelConfig, table);
if (status != nullptr) {
SkCodecPrintf("set_from_table: %s", status);
return SkCodec::kInternalError;
}
SkSampler::Fill(dstInfo, dst, rowBytes, options.fZeroInitialized);
return SkCodec::kSuccess;
}
SkCodec::Result SkWuffsCodec::onStartIncrementalDecodeTwoPass() {
// Either re-use the previously allocated "two pass" pixel buffer (and
// memset to zero), or allocate (and zero initialize) a new one.
bool already_zeroed = false;
if (!fTwoPassPixbufPtr) {
uint64_t pixbuf_len = fPixelConfig.pixbuf_len();
void* pixbuf_ptr_raw = (pixbuf_len <= SIZE_MAX)
? sk_malloc_flags(pixbuf_len, SK_MALLOC_ZERO_INITIALIZE)
: nullptr;
if (!pixbuf_ptr_raw) {
return SkCodec::kInternalError;
}
fTwoPassPixbufPtr.reset(reinterpret_cast<uint8_t*>(pixbuf_ptr_raw));
fTwoPassPixbufLen = SkToSizeT(pixbuf_len);
already_zeroed = true;
}
const char* status = fPixelBuffer.set_from_slice(
&fPixelConfig, wuffs_base__make_slice_u8(fTwoPassPixbufPtr.get(), fTwoPassPixbufLen));
if (status != nullptr) {
SkCodecPrintf("set_from_slice: %s", status);
return SkCodec::kInternalError;
}
if (!already_zeroed) {
uint32_t src_bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(fPixelConfig.pixel_format());
if ((src_bits_per_pixel == 0) || (src_bits_per_pixel % 8 != 0)) {
return SkCodec::kInternalError;
}
size_t src_bytes_per_pixel = src_bits_per_pixel / 8;
wuffs_base__rect_ie_u32 frame_rect = fFrameConfigs[WhichDecoder::kIncrDecode].bounds();
wuffs_base__table_u8 pixels = fPixelBuffer.plane(0);
uint8_t* ptr = pixels.ptr + (frame_rect.min_incl_y * pixels.stride) +
(frame_rect.min_incl_x * src_bytes_per_pixel);
size_t len = frame_rect.width() * src_bytes_per_pixel;
// As an optimization, issue a single sk_bzero call, if possible.
// Otherwise, zero out each row separately.
if ((len == pixels.stride) && (frame_rect.min_incl_y < frame_rect.max_excl_y)) {
sk_bzero(ptr, len * (frame_rect.max_excl_y - frame_rect.min_incl_y));
} else {
for (uint32_t y = frame_rect.min_incl_y; y < frame_rect.max_excl_y; y++) {
sk_bzero(ptr, len);
ptr += pixels.stride;
}
}
}
return SkCodec::kSuccess;
}
SkCodec::Result SkWuffsCodec::onIncrementalDecode(int* rowsDecoded) {
if (!fIncrDecDst) {
return SkCodec::kInternalError;
}
// If multiple SkCodec::incrementalDecode calls are made consecutively (or
// if SkCodec::incrementalDecode is called immediately after
// SkCodec::startIncrementalDecode), then this seek should be a no-op.
// However, it is possible to interleave SkCodec::getFrameCount calls in
// between SkCodec::incrementalDecode calls, and those other calls may
// advance the stream. This seek restores the stream to where the last
// SkCodec::startIncrementalDecode or SkCodec::incrementalDecode stopped.
if (!seek_buffer(&fIOBuffer, fStream.get(), fIncrDecReaderIOPosition)) {
return SkCodec::kInternalError;
}
if (rowsDecoded) {
*rowsDecoded = dstInfo().height();
}
SkCodec::Result result =
fIncrDecOnePass ? this->onIncrementalDecodeOnePass() : this->onIncrementalDecodeTwoPass();
if (result == SkCodec::kSuccess) {
fIncrDecDst = nullptr;
fIncrDecReaderIOPosition = 0;
fIncrDecRowBytes = 0;
fIncrDecOnePass = false;
} else {
fIncrDecReaderIOPosition = fIOBuffer.reader_io_position();
}
return result;
}
SkCodec::Result SkWuffsCodec::onIncrementalDecodeOnePass() {
const char* status = this->decodeFrame(WhichDecoder::kIncrDecode);
if (status != nullptr) {
if (status == wuffs_base__suspension__short_read) {
return SkCodec::kIncompleteInput;
} else {
SkCodecPrintf("decodeFrame: %s", status);
return SkCodec::kErrorInInput;
}
}
return SkCodec::kSuccess;
}
SkCodec::Result SkWuffsCodec::onIncrementalDecodeTwoPass() {
SkCodec::Result result = SkCodec::kSuccess;
const char* status = this->decodeFrame(WhichDecoder::kIncrDecode);
bool independent;
SkAlphaType alphaType;
const int index = options().fFrameIndex;
if (index == 0) {
independent = true;
alphaType = to_alpha_type(getEncodedInfo().opaque());
} else {
const SkWuffsFrame* f = this->frame(index);
independent = f->getRequiredFrame() == SkCodec::kNoFrame;
alphaType = to_alpha_type(f->reportedAlpha() == SkEncodedInfo::kOpaque_Alpha);
}
if (status != nullptr) {
if (status == wuffs_base__suspension__short_read) {
result = SkCodec::kIncompleteInput;
} else {
SkCodecPrintf("decodeFrame: %s", status);
result = SkCodec::kErrorInInput;
}
if (!independent) {
// For a dependent frame, we cannot blend the partial result, since
// that will overwrite the contribution from prior frames.
return result;
}
}
uint32_t src_bits_per_pixel =
wuffs_base__pixel_format__bits_per_pixel(fPixelBuffer.pixcfg.pixel_format());
if ((src_bits_per_pixel == 0) || (src_bits_per_pixel % 8 != 0)) {
return SkCodec::kInternalError;
}
size_t src_bytes_per_pixel = src_bits_per_pixel / 8;
wuffs_base__rect_ie_u32 frame_rect = fFrameConfigs[WhichDecoder::kIncrDecode].bounds();
if (fFirstCallToIncrementalDecode) {
if (frame_rect.width() > (SIZE_MAX / src_bytes_per_pixel)) {
return SkCodec::kInternalError;
}
auto bounds = SkIRect::MakeLTRB(frame_rect.min_incl_x, frame_rect.min_incl_y,
frame_rect.max_excl_x, frame_rect.max_excl_y);
// If the frame rect does not fill the output, ensure that those pixels are not
// left uninitialized.
if (independent && (bounds != this->bounds() || result != kSuccess)) {
SkSampler::Fill(dstInfo(), fIncrDecDst, fIncrDecRowBytes, options().fZeroInitialized);
}
fFirstCallToIncrementalDecode = false;
} else {
// Existing clients intend to only show frames beyond the first if they
// are complete (based on FrameInfo::fFullyReceived), since it might
// look jarring to draw a partial frame over an existing frame. If they
// changed their behavior and expected to continue decoding a partial
// frame after the first one, we'll need to update our blending code.
// Otherwise, if the frame were interlaced and not independent, the
// second pass may have an overlapping dirty_rect with the first,
// resulting in blending with the first pass.
SkASSERT(index == 0);
}
// If the frame's dirty rect is empty, no need to swizzle.
wuffs_base__rect_ie_u32 dirty_rect = fDecoders[WhichDecoder::kIncrDecode]->frame_dirty_rect();
if (!dirty_rect.is_empty()) {
wuffs_base__table_u8 pixels = fPixelBuffer.plane(0);
// The Wuffs model is that the dst buffer is the image, not the frame.
// The expectation is that you allocate the buffer once, but re-use it
// for the N frames, regardless of each frame's top-left co-ordinate.
//
// To get from the start (in the X-direction) of the image to the start
// of the dirty_rect, we adjust s by (dirty_rect.min_incl_x * src_bytes_per_pixel).
uint8_t* s = pixels.ptr + (dirty_rect.min_incl_y * pixels.stride) +
(dirty_rect.min_incl_x * src_bytes_per_pixel);
// Currently, this is only used for GIF, which will never have an ICC profile. When it is
// used for other formats that might have one, we will need to transform from profiles that
// do not have corresponding SkColorSpaces.
SkASSERT(!getEncodedInfo().profile());
auto srcInfo =
getInfo().makeWH(dirty_rect.width(), dirty_rect.height()).makeAlphaType(alphaType);
SkBitmap src;
src.installPixels(srcInfo, s, pixels.stride);
SkPaint paint;
if (independent) {
paint.setBlendMode(SkBlendMode::kSrc);
}
SkDraw draw;
draw.fDst.reset(dstInfo(), fIncrDecDst, fIncrDecRowBytes);
SkMatrix matrix = SkMatrix::MakeRectToRect(SkRect::Make(this->dimensions()),
SkRect::Make(this->dstInfo().dimensions()),
SkMatrix::kFill_ScaleToFit);
draw.fMatrix = &matrix;
SkRasterClip rc(SkIRect::MakeSize(this->dstInfo().dimensions()));
draw.fRC = &rc;
SkMatrix translate = SkMatrix::MakeTrans(dirty_rect.min_incl_x, dirty_rect.min_incl_y);
draw.drawBitmap(src, translate, nullptr, paint);
}
if (result == SkCodec::kSuccess) {
// On success, we are done using the "two pass" pixel buffer for this
// frame. We have the option of releasing its memory, but there is a
// trade-off. If decoding a subsequent frame will also need "two pass"
// decoding, it would have to re-allocate the buffer instead of just
// re-using it. On the other hand, if there is no subsequent frame, and
// the SkWuffsCodec object isn't deleted soon, then we are holding
// megabytes of memory longer than we need to.
//
// For example, when the Chromium web browser decodes the <img> tags in
// a HTML page, the SkCodec object can live until navigating away from
// the page, which can be much longer than when the pixels are fully
// decoded, especially for a still (non-animated) image. Even for
// looping animations, caching the decoded frames (at the higher HTML
// renderer layer) may mean that each frame is only decoded once (at
// the lower SkCodec layer), in sequence.
//
// The heuristic we use here is to free the memory if we have decoded
// the last frame of the animation (or, for still images, the only
// frame). The output of the next decode request (if any) should be the
// same either way, but the steady state memory use should hopefully be
// lower than always keeping the fTwoPassPixbufPtr buffer up until the
// SkWuffsCodec destructor runs.
//
// This only applies to "two pass" decoding. "One pass" decoding does
// not allocate, free or otherwise use fTwoPassPixbufPtr.
if (fFramesComplete && (static_cast<size_t>(options().fFrameIndex) == fFrames.size() - 1)) {
fTwoPassPixbufPtr.reset(nullptr);
fTwoPassPixbufLen = 0;
}
}
return result;
}
int SkWuffsCodec::onGetFrameCount() {
if (!fFramesComplete && seek_buffer(&fIOBuffer, fStream.get(), fFrameCountReaderIOPosition)) {
this->onGetFrameCountInternal();
fFrameCountReaderIOPosition =
fDecoders[WhichDecoder::kFrameCount] ? fIOBuffer.reader_io_position() : 0;
}
return fFrames.size();
}
void SkWuffsCodec::onGetFrameCountInternal() {
if (!fDecoders[WhichDecoder::kFrameCount]) {
void* decoder_raw = sk_malloc_canfail(sizeof__wuffs_gif__decoder());
if (!decoder_raw) {
return;
}
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)> decoder(
reinterpret_cast<wuffs_gif__decoder*>(decoder_raw), &sk_free);
reset_and_decode_image_config(decoder.get(), nullptr, &fIOBuffer, fStream.get());
fDecoders[WhichDecoder::kFrameCount] = std::move(decoder);
}
// Iterate through the frames, converting from Wuffs'
// wuffs_base__frame_config type to Skia's SkWuffsFrame type.
while (true) {
const char* status = this->decodeFrameConfig(WhichDecoder::kFrameCount);
if (status == nullptr) {
// No-op.
} else if (status == wuffs_base__warning__end_of_data) {
break;
} else {
return;
}
uint64_t i = fDecoders[WhichDecoder::kFrameCount]->num_decoded_frame_configs();
if (i > INT_MAX) {
break;
}
if ((i == 0) || (static_cast<size_t>(i - 1) != fFrames.size())) {
continue;
}
fFrames.emplace_back(&fFrameConfigs[WhichDecoder::kFrameCount]);
SkWuffsFrame* f = &fFrames[fFrames.size() - 1];
fFrameHolder.setAlphaAndRequiredFrame(f);
}
fFramesComplete = true;
// We've seen the end of the animation. There'll be no more frames, so we
// no longer need the kFrameCount decoder. Releasing it earlier than the
// SkWuffsCodec destructor might help peak memory use.
fDecoders[WhichDecoder::kFrameCount].reset(nullptr);
}
bool SkWuffsCodec::onGetFrameInfo(int i, SkCodec::FrameInfo* frameInfo) const {
const SkWuffsFrame* f = this->frame(i);
if (!f) {
return false;
}
if (frameInfo) {
*frameInfo = f->frameInfo(static_cast<uint64_t>(i) < this->fNumFullyReceivedFrames);
}
return true;
}
int SkWuffsCodec::onGetRepetitionCount() {
// Convert from Wuffs's loop count to Skia's repeat count. Wuffs' uint32_t
// number is how many times to play the loop. Skia's int number is how many
// times to play the loop *after the first play*. Wuffs and Skia use 0 and
// kRepetitionCountInfinite respectively to mean loop forever.
uint32_t n = fDecoders[WhichDecoder::kIncrDecode]->num_animation_loops();
if (n == 0) {
return SkCodec::kRepetitionCountInfinite;
}
n--;
return n < INT_MAX ? n : INT_MAX;
}
SkCodec::Result SkWuffsCodec::seekFrame(WhichDecoder which, int frameIndex) {
if (fDecoderIsSuspended[which]) {
SkCodec::Result res = this->resetDecoder(which);
if (res != SkCodec::kSuccess) {
return res;
}
}
uint64_t pos = 0;
if (frameIndex < 0) {
return SkCodec::kInternalError;
} else if (frameIndex == 0) {
pos = fFirstFrameIOPosition;
} else if (static_cast<size_t>(frameIndex) < fFrames.size()) {
pos = fFrames[frameIndex].ioPosition();
} else {
return SkCodec::kInternalError;
}
if (!seek_buffer(&fIOBuffer, fStream.get(), pos)) {
return SkCodec::kInternalError;
}
const char* status =
fDecoders[which]->restart_frame(frameIndex, fIOBuffer.reader_io_position());
if (status != nullptr) {
return SkCodec::kInternalError;
}
return SkCodec::kSuccess;
}
SkCodec::Result SkWuffsCodec::resetDecoder(WhichDecoder which) {
if (!fStream->rewind()) {
return SkCodec::kInternalError;
}
fIOBuffer.meta = wuffs_base__empty_io_buffer_meta();
SkCodec::Result result =
reset_and_decode_image_config(fDecoders[which].get(), nullptr, &fIOBuffer, fStream.get());
if (result == SkCodec::kIncompleteInput) {
return SkCodec::kInternalError;
} else if (result != SkCodec::kSuccess) {
return result;
}
fDecoderIsSuspended[which] = false;
return SkCodec::kSuccess;
}
const char* SkWuffsCodec::decodeFrameConfig(WhichDecoder which) {
while (true) {
const char* status =
fDecoders[which]->decode_frame_config(&fFrameConfigs[which], &fIOBuffer);
if ((status == wuffs_base__suspension__short_read) &&
fill_buffer(&fIOBuffer, fStream.get())) {
continue;
}
fDecoderIsSuspended[which] = !wuffs_base__status__is_complete(status);
this->updateNumFullyReceivedFrames(which);
return status;
}
}
const char* SkWuffsCodec::decodeFrame(WhichDecoder which) {
while (true) {
const char* status = fDecoders[which]->decode_frame(
&fPixelBuffer, &fIOBuffer, wuffs_base__make_slice_u8(fWorkbufPtr.get(), fWorkbufLen),
NULL);
if ((status == wuffs_base__suspension__short_read) &&
fill_buffer(&fIOBuffer, fStream.get())) {
continue;
}
fDecoderIsSuspended[which] = !wuffs_base__status__is_complete(status);
this->updateNumFullyReceivedFrames(which);
return status;
}
}
void SkWuffsCodec::updateNumFullyReceivedFrames(WhichDecoder which) {
// num_decoded_frames's return value, n, can change over time, both up and
// down, as we seek back and forth in the underlying stream.
// fNumFullyReceivedFrames is the highest n we've seen.
uint64_t n = fDecoders[which]->num_decoded_frames();
if (fNumFullyReceivedFrames < n) {
fNumFullyReceivedFrames = n;
}
}
// -------------------------------- SkWuffsCodec.h functions
bool SkWuffsCodec_IsFormat(const void* buf, size_t bytesRead) {
constexpr const char* gif_ptr = "GIF8";
constexpr size_t gif_len = 4;
return (bytesRead >= gif_len) && (memcmp(buf, gif_ptr, gif_len) == 0);
}
std::unique_ptr<SkCodec> SkWuffsCodec_MakeFromStream(std::unique_ptr<SkStream> stream,
SkCodec::Result* result) {
uint8_t buffer[SK_WUFFS_CODEC_BUFFER_SIZE];
wuffs_base__io_buffer iobuf =
wuffs_base__make_io_buffer(wuffs_base__make_slice_u8(buffer, SK_WUFFS_CODEC_BUFFER_SIZE),
wuffs_base__empty_io_buffer_meta());
wuffs_base__image_config imgcfg = wuffs_base__null_image_config();
// Wuffs is primarily a C library, not a C++ one. Furthermore, outside of
// the wuffs_base__etc types, the sizeof a file format specific type like
// GIF's wuffs_gif__decoder can vary between Wuffs versions. If p is of
// type wuffs_gif__decoder*, then the supported API treats p as a pointer
// to an opaque type: a private implementation detail. The API is always
// "set_foo(p, etc)" and not "p->foo = etc".
//
// See https://en.wikipedia.org/wiki/Opaque_pointer#C
//
// Thus, we don't use C++'s new operator (which requires knowing the sizeof
// the struct at compile time). Instead, we use sk_malloc_canfail, with
// sizeof__wuffs_gif__decoder returning the appropriate value for the
// (statically or dynamically) linked version of the Wuffs library.
//
// As a C (not C++) library, none of the Wuffs types have constructors or
// destructors.
//
// In RAII style, we can still use std::unique_ptr with these pointers, but
// we pair the pointer with sk_free instead of C++'s delete.
void* decoder_raw = sk_malloc_canfail(sizeof__wuffs_gif__decoder());
if (!decoder_raw) {
*result = SkCodec::kInternalError;
return nullptr;
}
std::unique_ptr<wuffs_gif__decoder, decltype(&sk_free)> decoder(
reinterpret_cast<wuffs_gif__decoder*>(decoder_raw), &sk_free);
SkCodec::Result reset_result =
reset_and_decode_image_config(decoder.get(), &imgcfg, &iobuf, stream.get());
if (reset_result != SkCodec::kSuccess) {
*result = reset_result;
return nullptr;
}
uint32_t width = imgcfg.pixcfg.width();
uint32_t height = imgcfg.pixcfg.height();
if ((width == 0) || (width > INT_MAX) || (height == 0) || (height > INT_MAX)) {
*result = SkCodec::kInvalidInput;
return nullptr;
}
uint64_t workbuf_len = decoder->workbuf_len().max_incl;
void* workbuf_ptr_raw = nullptr;
if (workbuf_len) {
workbuf_ptr_raw = workbuf_len <= SIZE_MAX ? sk_malloc_canfail(workbuf_len) : nullptr;
if (!workbuf_ptr_raw) {
*result = SkCodec::kInternalError;
return nullptr;
}
}
std::unique_ptr<uint8_t, decltype(&sk_free)> workbuf_ptr(
reinterpret_cast<uint8_t*>(workbuf_ptr_raw), &sk_free);
SkEncodedInfo::Color color =
(imgcfg.pixcfg.pixel_format() == WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL)
? SkEncodedInfo::kBGRA_Color
: SkEncodedInfo::kRGBA_Color;
// In Skia's API, the alpha we calculate here and return is only for the
// first frame.
SkEncodedInfo::Alpha alpha = imgcfg.first_frame_is_opaque() ? SkEncodedInfo::kOpaque_Alpha
: SkEncodedInfo::kBinary_Alpha;
SkEncodedInfo encodedInfo = SkEncodedInfo::Make(width, height, color, alpha, 8);
*result = SkCodec::kSuccess;
return std::unique_ptr<SkCodec>(new SkWuffsCodec(std::move(encodedInfo), std::move(stream),
std::move(decoder), std::move(workbuf_ptr),
workbuf_len, imgcfg, iobuf));
}