| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/shaders/SkImageShader.h" |
| |
| #include "src/core/SkArenaAlloc.h" |
| #include "src/core/SkBitmapController.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "src/core/SkColorSpaceXformSteps.h" |
| #include "src/core/SkMatrixProvider.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkRasterPipeline.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkScopeExit.h" |
| #include "src/core/SkVM.h" |
| #include "src/core/SkWriteBuffer.h" |
| #include "src/image/SkImage_Base.h" |
| #include "src/shaders/SkBitmapProcShader.h" |
| #include "src/shaders/SkEmptyShader.h" |
| |
| SkM44 SkImageShader::CubicResamplerMatrix(float B, float C) { |
| #if 0 |
| constexpr SkM44 kMitchell = SkM44( 1.f/18.f, -9.f/18.f, 15.f/18.f, -7.f/18.f, |
| 16.f/18.f, 0.f/18.f, -36.f/18.f, 21.f/18.f, |
| 1.f/18.f, 9.f/18.f, 27.f/18.f, -21.f/18.f, |
| 0.f/18.f, 0.f/18.f, -6.f/18.f, 7.f/18.f); |
| |
| constexpr SkM44 kCatmull = SkM44(0.0f, -0.5f, 1.0f, -0.5f, |
| 1.0f, 0.0f, -2.5f, 1.5f, |
| 0.0f, 0.5f, 2.0f, -1.5f, |
| 0.0f, 0.0f, -0.5f, 0.5f); |
| |
| if (B == 1.0f/3 && C == 1.0f/3) { |
| return kMitchell; |
| } |
| if (B == 0 && C == 0.5f) { |
| return kCatmull; |
| } |
| #endif |
| return SkM44( (1.f/6)*B, -(3.f/6)*B - C, (3.f/6)*B + 2*C, - (1.f/6)*B - C, |
| 1 - (2.f/6)*B, 0, -3 + (12.f/6)*B + C, 2 - (9.f/6)*B - C, |
| (1.f/6)*B, (3.f/6)*B + C, 3 - (15.f/6)*B - 2*C, -2 + (9.f/6)*B + C, |
| 0, 0, -C, (1.f/6)*B + C); |
| } |
| |
| /** |
| * We are faster in clamp, so always use that tiling when we can. |
| */ |
| static SkTileMode optimize(SkTileMode tm, int dimension) { |
| SkASSERT(dimension > 0); |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| // need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow |
| // for transforming to clamp. |
| return tm; |
| #else |
| return dimension == 1 ? SkTileMode::kClamp : tm; |
| #endif |
| } |
| |
| SkImageShader::SkImageShader(sk_sp<SkImage> img, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions* sampling, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) |
| : INHERITED(localMatrix) |
| , fImage(std::move(img)) |
| , fSampling(sampling ? *sampling : SkSamplingOptions()) |
| , fTileModeX(optimize(tmx, fImage->width())) |
| , fTileModeY(optimize(tmy, fImage->height())) |
| , fClampAsIfUnpremul(clampAsIfUnpremul) |
| , fUseSamplingOptions(sampling != nullptr) |
| {} |
| |
| // just used for legacy-unflattening |
| enum class LegacyFilterEnum { |
| kNone, |
| kLow, |
| kMedium, |
| kHigh, |
| // this is the special value for backward compatibility |
| kInheritFromPaint, |
| // this signals we should use the new SkFilterOptions |
| kUseFilterOptions, |
| // use fCubic and ignore FilterOptions |
| kUseCubicResampler, |
| |
| kLast = kUseCubicResampler, |
| }; |
| |
| sk_sp<SkFlattenable> SkImageShader::PreSamplingCreate(SkReadBuffer& buffer) { |
| SkASSERT(buffer.isVersionLT(SkPicturePriv::kSamplingInImageShader_Version)); |
| |
| auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| |
| LegacyFilterEnum fe = LegacyFilterEnum::kInheritFromPaint; |
| if (!buffer.isVersionLT(SkPicturePriv::kFilterEnumInImageShader_Version)) { |
| fe = buffer.read32LE<LegacyFilterEnum>(LegacyFilterEnum::kLast); |
| } |
| |
| SkSamplingOptions op; |
| |
| if (buffer.isVersionLT(SkPicturePriv::kCubicResamplerImageShader_Version)) { |
| if (!buffer.isVersionLT(SkPicturePriv::kFilterOptionsInImageShader_Version)) { |
| op.fUseCubic = false; |
| op.fFilter = buffer.read32LE<SkFilterMode>(SkFilterMode::kLinear); |
| op.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear); |
| } |
| } else { |
| switch (fe) { |
| case LegacyFilterEnum::kUseFilterOptions: |
| op.fUseCubic = false; |
| op.fFilter = buffer.read32LE<SkFilterMode>(SkFilterMode::kLinear); |
| op.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear); |
| break; |
| case LegacyFilterEnum::kUseCubicResampler: |
| op.fUseCubic = true; |
| op.fCubic.B = buffer.readScalar(); |
| op.fCubic.C = buffer.readScalar(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| SkMatrix localMatrix; |
| buffer.readMatrix(&localMatrix); |
| sk_sp<SkImage> img = buffer.readImage(); |
| if (!img) { |
| return nullptr; |
| } |
| |
| switch (fe) { |
| case LegacyFilterEnum::kUseFilterOptions: |
| case LegacyFilterEnum::kUseCubicResampler: |
| return SkImageShader::Make(std::move(img), tmx, tmy, &op, &localMatrix); |
| default: |
| break; |
| } |
| return SkImageShader::Make(std::move(img), tmx, tmy, nullptr, &localMatrix); |
| } |
| |
| static void write_sampling(SkWriteBuffer& buffer, SkSamplingOptions sampling) { |
| buffer.writeBool(sampling.fUseCubic); |
| if (sampling.fUseCubic) { |
| buffer.writeScalar(sampling.fCubic.B); |
| buffer.writeScalar(sampling.fCubic.C); |
| } else { |
| buffer.writeUInt((unsigned)sampling.fFilter); |
| buffer.writeUInt((unsigned)sampling.fMipmap); |
| } |
| } |
| |
| static SkSamplingOptions read_sampling(SkReadBuffer& buffer) { |
| SkSamplingOptions sampling; |
| sampling.fUseCubic = buffer.readBool(); |
| if (sampling.fUseCubic) { |
| sampling.fCubic.B = buffer.readScalar(); |
| sampling.fCubic.C = buffer.readScalar(); |
| } else { |
| sampling.fFilter = buffer.read32LE<SkFilterMode>(SkFilterMode::kLinear); |
| sampling.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear); |
| } |
| return sampling; |
| } |
| |
| // fClampAsIfUnpremul is always false when constructed through public APIs, |
| // so there's no need to read or write it here. |
| |
| sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) { |
| if (buffer.isVersionLT(SkPicturePriv::kSamplingInImageShader_Version)) { |
| return PreSamplingCreate(buffer); |
| } |
| |
| auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| |
| SkSamplingOptions sampling, |
| *samplingPtr = nullptr; |
| |
| if (buffer.readBool()) { // fUseSamplingOptions |
| sampling = read_sampling(buffer); |
| samplingPtr = &sampling; |
| } |
| |
| SkMatrix localMatrix; |
| buffer.readMatrix(&localMatrix); |
| sk_sp<SkImage> img = buffer.readImage(); |
| if (!img) { |
| return nullptr; |
| } |
| |
| return SkImageShader::Make(std::move(img), tmx, tmy, samplingPtr, &localMatrix); |
| } |
| |
| void SkImageShader::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeUInt((unsigned)fTileModeX); |
| buffer.writeUInt((unsigned)fTileModeY); |
| |
| buffer.writeBool(fUseSamplingOptions); |
| if (fUseSamplingOptions) { |
| write_sampling(buffer, fSampling); |
| } |
| |
| buffer.writeMatrix(this->getLocalMatrix()); |
| buffer.writeImage(fImage.get()); |
| SkASSERT(fClampAsIfUnpremul == false); |
| } |
| |
| bool SkImageShader::isOpaque() const { |
| return fImage->isOpaque() && |
| fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal; |
| } |
| |
| constexpr SkCubicResampler kDefaultCubicResampler{1.0f/3, 1.0f/3}; |
| |
| static bool is_default_cubic_resampler(SkCubicResampler cubic) { |
| return SkScalarNearlyEqual(cubic.B, kDefaultCubicResampler.B) && |
| SkScalarNearlyEqual(cubic.C, kDefaultCubicResampler.C); |
| } |
| |
| static bool sampling_to_quality(SkSamplingOptions sampling, SkFilterQuality* quality) { |
| int q = -1; // not a legal quality enum |
| |
| if (sampling.fUseCubic) { |
| if (is_default_cubic_resampler(sampling.fCubic)) { |
| q = kHigh_SkFilterQuality; |
| } |
| } else { |
| switch (sampling.fMipmap) { |
| case SkMipmapMode::kNone: |
| q = sampling.fFilter == SkFilterMode::kLinear ? |
| kLow_SkFilterQuality : |
| kNone_SkFilterQuality; |
| break; |
| case SkMipmapMode::kNearest: |
| if (sampling.fFilter == SkFilterMode::kLinear) { |
| q = kMedium_SkFilterQuality; |
| } |
| break; |
| case SkMipmapMode::kLinear: |
| break; |
| } |
| } |
| if (q >= 0) { |
| *quality = (SkFilterQuality)q; |
| return true; |
| } |
| return false; |
| } |
| |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| static bool legacy_shader_can_handle(const SkMatrix& inv) { |
| SkASSERT(!inv.hasPerspective()); |
| |
| // Scale+translate methods are always present, but affine might not be. |
| if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) { |
| return false; |
| } |
| |
| // legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates |
| // out of range. |
| const SkScalar max_dev_coord = 32767.0f; |
| const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord)); |
| |
| // take 1/4 of max signed 32bits so we have room to subtract local values |
| const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f; |
| if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32, |
| +max_fixed32dot32, +max_fixed32dot32).contains(src)) { |
| return false; |
| } |
| |
| // legacy shader impl should be able to handle these matrices |
| return true; |
| } |
| |
| SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec, |
| SkArenaAlloc* alloc) const { |
| if (fImage->alphaType() == kUnpremul_SkAlphaType) { |
| return nullptr; |
| } |
| if (fImage->colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| if (fTileModeX != fTileModeY) { |
| return nullptr; |
| } |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| return nullptr; |
| } |
| |
| SkFilterQuality quality = rec.fPaint->getFilterQuality(); |
| if (fUseSamplingOptions) { |
| // we turn our sampling backwards into a quality (if possible) |
| // Note: if/when we can retool the legacy shader to explicitly take SkFilterOptions |
| // we can skip this funny step. |
| if (!sampling_to_quality(fSampling, &quality)) { |
| return nullptr; |
| } |
| } |
| if (quality == kHigh_SkFilterQuality) { |
| return nullptr; |
| } |
| |
| // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, |
| // so it can't handle bitmaps larger than 65535. |
| // |
| // We back off another bit to 32767 to make small amounts of |
| // intermediate math safe, e.g. in |
| // |
| // SkFixed fx = ...; |
| // fx = tile(fx + SK_Fixed1); |
| // |
| // we want to make sure (fx + SK_Fixed1) never overflows. |
| if (fImage-> width() > 32767 || |
| fImage->height() > 32767) { |
| return nullptr; |
| } |
| |
| SkMatrix inv; |
| if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) || |
| !legacy_shader_can_handle(inv)) { |
| return nullptr; |
| } |
| |
| if (!rec.isLegacyCompatible(fImage->colorSpace())) { |
| return nullptr; |
| } |
| |
| // Send in a modified paint with different filter-quality if we don't agree with the paint |
| SkPaint modifiedPaint; |
| ContextRec modifiedRec = rec; |
| if (quality != rec.fPaint->getFilterQuality()) { |
| modifiedPaint = *rec.fPaint; |
| modifiedPaint.setFilterQuality(quality); |
| modifiedRec.fPaint = &modifiedPaint; |
| } |
| return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY, |
| as_IB(fImage.get()), modifiedRec, alloc); |
| } |
| #endif |
| |
| SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const { |
| if (texM) { |
| *texM = this->getLocalMatrix(); |
| } |
| if (xy) { |
| xy[0] = fTileModeX; |
| xy[1] = fTileModeY; |
| } |
| return const_cast<SkImage*>(fImage.get()); |
| } |
| |
| sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkSamplingOptions* options, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) { |
| auto is_unit = [](float x) { |
| return x >= 0 && x <= 1; |
| }; |
| if (options && options->fUseCubic) { |
| if (!is_unit(options->fCubic.B) || !is_unit(options->fCubic.C)) { |
| return nullptr; |
| } |
| } |
| if (!image) { |
| return sk_make_sp<SkEmptyShader>(); |
| } |
| return sk_sp<SkShader>{ |
| new SkImageShader(image, tmx, tmy, options, localMatrix, clampAsIfUnpremul) |
| }; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/gpu/GrBitmapTextureMaker.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrColorInfo.h" |
| #include "src/gpu/GrImageTextureMaker.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrTextureAdjuster.h" |
| #include "src/gpu/SkGr.h" |
| #include "src/gpu/effects/GrBicubicEffect.h" |
| #include "src/gpu/effects/GrBlendFragmentProcessor.h" |
| #include "src/gpu/effects/GrTextureEffect.h" |
| |
| std::unique_ptr<GrFragmentProcessor> SkImageShader::asFragmentProcessor( |
| const GrFPArgs& args) const { |
| const auto lm = this->totalLocalMatrix(args.fPreLocalMatrix); |
| SkMatrix lmInverse; |
| if (!lm->invert(&lmInverse)) { |
| return nullptr; |
| } |
| |
| // This would all be much nicer with std::variant. |
| static constexpr size_t kSize = std::max({sizeof(GrYUVAImageTextureMaker), |
| sizeof(GrTextureAdjuster ), |
| sizeof(GrImageTextureMaker ), |
| sizeof(GrBitmapTextureMaker )}); |
| static constexpr size_t kAlign = std::max({alignof(GrYUVAImageTextureMaker), |
| alignof(GrTextureAdjuster ), |
| alignof(GrImageTextureMaker ), |
| alignof(GrBitmapTextureMaker )}); |
| alignas(kAlign) char storage[kSize]; |
| GrTextureProducer* producer = nullptr; |
| SkScopeExit destroyProducer([&producer]{ if (producer) { producer->~GrTextureProducer(); } }); |
| |
| uint32_t pinnedUniqueID; |
| SkBitmap bm; |
| if (as_IB(fImage)->isYUVA()) { |
| producer = new (&storage) GrYUVAImageTextureMaker(args.fContext, fImage.get()); |
| } else if (GrSurfaceProxyView view = |
| as_IB(fImage)->refPinnedView(args.fContext, &pinnedUniqueID)) { |
| GrColorInfo colorInfo; |
| if (args.fContext->priv().caps()->isFormatSRGB(view.proxy()->backendFormat())) { |
| SkASSERT(fImage->colorType() == kRGBA_8888_SkColorType); |
| colorInfo = GrColorInfo(GrColorType::kRGBA_8888_SRGB, fImage->alphaType(), |
| fImage->refColorSpace()); |
| } else { |
| colorInfo = fImage->imageInfo().colorInfo(); |
| } |
| producer = new (&storage) |
| GrTextureAdjuster(args.fContext, std::move(view), colorInfo, pinnedUniqueID); |
| } else if (fImage->isLazyGenerated()) { |
| producer = new (&storage) |
| GrImageTextureMaker(args.fContext, fImage.get(), GrImageTexGenPolicy::kDraw); |
| } else if (as_IB(fImage)->getROPixels(nullptr, &bm)) { |
| producer = |
| new (&storage) GrBitmapTextureMaker(args.fContext, bm, GrImageTexGenPolicy::kDraw); |
| } else { |
| return nullptr; |
| } |
| GrSamplerState::WrapMode wmX = SkTileModeToWrapMode(fTileModeX), |
| wmY = SkTileModeToWrapMode(fTileModeY); |
| // Must set wrap and filter on the sampler before requesting a texture. In two places |
| // below we check the matrix scale factors to determine how to interpret the filter |
| // quality setting. This completely ignores the complexity of the drawVertices case |
| // where explicit local coords are provided by the caller. |
| bool sharpen = args.fContext->priv().options().fSharpenMipmappedTextures; |
| GrSamplerState::Filter fm = GrSamplerState::Filter::kNearest; |
| GrSamplerState::MipmapMode mm = GrSamplerState::MipmapMode::kNone; |
| bool bicubic; |
| SkCubicResampler kernel = GrBicubicEffect::gMitchell; |
| |
| if (fUseSamplingOptions) { |
| bicubic = fSampling.fUseCubic; |
| if (bicubic) { |
| kernel = fSampling.fCubic; |
| } else { |
| switch (fSampling.fFilter) { |
| case SkFilterMode::kNearest: fm = GrSamplerState::Filter::kNearest; break; |
| case SkFilterMode::kLinear : fm = GrSamplerState::Filter::kLinear ; break; |
| } |
| switch (fSampling.fMipmap) { |
| case SkMipmapMode::kNone : mm = GrSamplerState::MipmapMode::kNone ; break; |
| case SkMipmapMode::kNearest: mm = GrSamplerState::MipmapMode::kNearest; break; |
| case SkMipmapMode::kLinear : mm = GrSamplerState::MipmapMode::kLinear ; break; |
| } |
| } |
| } else { // inherit filterquality from paint |
| std::tie(fm, mm, bicubic) = |
| GrInterpretFilterQuality(fImage->dimensions(), |
| args.fFilterQuality, |
| args.fMatrixProvider.localToDevice(), |
| *lm, |
| sharpen, |
| args.fAllowFilterQualityReduction); |
| } |
| std::unique_ptr<GrFragmentProcessor> fp; |
| if (bicubic) { |
| fp = producer->createBicubicFragmentProcessor(lmInverse, nullptr, nullptr, wmX, wmY, kernel); |
| } else { |
| fp = producer->createFragmentProcessor(lmInverse, nullptr, nullptr, {wmX, wmY, fm, mm}); |
| } |
| if (!fp) { |
| return nullptr; |
| } |
| fp = GrColorSpaceXformEffect::Make(std::move(fp), fImage->colorSpace(), producer->alphaType(), |
| args.fDstColorInfo->colorSpace(), kPremul_SkAlphaType); |
| fp = GrBlendFragmentProcessor::Make(std::move(fp), nullptr, SkBlendMode::kModulate); |
| bool isAlphaOnly = SkColorTypeIsAlphaOnly(fImage->colorType()); |
| if (isAlphaOnly) { |
| return fp; |
| } else if (args.fInputColorIsOpaque) { |
| return GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false); |
| } |
| return GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); |
| } |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| #include "src/core/SkImagePriv.h" |
| |
| sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, SkCopyPixelsMode cpm) { |
| const SkSamplingOptions* inherit_from_paint = nullptr; |
| return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm), |
| tmx, tmy, inherit_from_paint, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, SkCopyPixelsMode mode) { |
| auto s = SkMakeBitmapShader(src, tmx, tmy, localMatrix, mode); |
| if (!s) { |
| return nullptr; |
| } |
| if (src.colorType() == kAlpha_8_SkColorType && paint.getShader()) { |
| // Compose the image shader with the paint's shader. Alpha images+shaders should output the |
| // texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with |
| // the source image and dst shader (MakeBlend takes dst first, src second). |
| s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s)); |
| } |
| return s; |
| } |
| |
| void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); } |
| |
| class SkImageStageUpdater : public SkStageUpdater { |
| public: |
| SkImageStageUpdater(const SkImageShader* shader, bool usePersp) |
| : fShader(shader) |
| , fUsePersp(usePersp || as_SB(shader)->getLocalMatrix().hasPerspective()) |
| {} |
| |
| const SkImageShader* fShader; |
| const bool fUsePersp; // else use affine |
| |
| // large enough for perspective, though often we just use 2x3 |
| float fMatrixStorage[9]; |
| |
| #if 0 // TODO: when we support mipmaps |
| SkRasterPipeline_GatherCtx* fGather; |
| SkRasterPipeline_TileCtx* fLimitX; |
| SkRasterPipeline_TileCtx* fLimitY; |
| SkRasterPipeline_DecalTileCtx* fDecal; |
| #endif |
| |
| void append_matrix_stage(SkRasterPipeline* p) { |
| if (fUsePersp) { |
| p->append(SkRasterPipeline::matrix_perspective, fMatrixStorage); |
| } else { |
| p->append(SkRasterPipeline::matrix_2x3, fMatrixStorage); |
| } |
| } |
| |
| bool update(const SkMatrix& ctm, const SkMatrix* localM) override { |
| SkMatrix matrix; |
| if (fShader->computeTotalInverse(ctm, localM, &matrix)) { |
| if (fUsePersp) { |
| matrix.get9(fMatrixStorage); |
| } else { |
| // if we get here, matrix should be affine. If it isn't, then defensively we |
| // won't draw (by returning false), but we should work to never let this |
| // happen (i.e. better preflight by the caller to know ahead of time that we |
| // may encounter perspective, either in the CTM, or in the localM). |
| // |
| // See https://bugs.chromium.org/p/skia/issues/detail?id=10004 |
| // |
| if (!matrix.asAffine(fMatrixStorage)) { |
| SkASSERT(false); |
| return false; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| static void tweak_filter_and_inv_matrix(SkFilterMode* filter, SkMatrix* matrix) { |
| // When the matrix is just an integer translate, bilerp == nearest neighbor. |
| if (*filter == SkFilterMode::kLinear && |
| matrix->getType() <= SkMatrix::kTranslate_Mask && |
| matrix->getTranslateX() == (int)matrix->getTranslateX() && |
| matrix->getTranslateY() == (int)matrix->getTranslateY()) { |
| *filter = SkFilterMode::kNearest; |
| } |
| |
| // See skia:4649 and the GM image_scale_aligned. |
| if (*filter == SkFilterMode::kNearest) { |
| if (matrix->getScaleX() >= 0) { |
| matrix->setTranslateX(nextafterf(matrix->getTranslateX(), |
| floorf(matrix->getTranslateX()))); |
| } |
| if (matrix->getScaleY() >= 0) { |
| matrix->setTranslateY(nextafterf(matrix->getTranslateY(), |
| floorf(matrix->getTranslateY()))); |
| } |
| } |
| } |
| |
| bool SkImageShader::doStages(const SkStageRec& rec, SkImageStageUpdater* updater) const { |
| SkFilterQuality paintQuality = rec.fPaint.getFilterQuality(); |
| if (fUseSamplingOptions) { |
| if (!sampling_to_quality(fSampling, &paintQuality)) { |
| return false; // TODO: support samplingoptions in stages? |
| } |
| } |
| |
| if (updater && paintQuality == kMedium_SkFilterQuality) { |
| // TODO: medium: recall RequestBitmap and update width/height accordingly |
| return false; |
| } |
| |
| SkRasterPipeline* p = rec.fPipeline; |
| SkArenaAlloc* alloc = rec.fAlloc; |
| |
| SkMatrix matrix; |
| if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) { |
| return false; |
| } |
| |
| const auto* state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), |
| matrix, paintQuality, alloc); |
| if (!state) { |
| return false; |
| } |
| |
| const SkPixmap& pm = state->pixmap(); |
| matrix = state->invMatrix(); |
| auto info = pm.info(); |
| |
| // from here down, we don't look at paintQuality, only sampling. |
| SkSamplingOptions sampling(state->quality()); |
| |
| p->append(SkRasterPipeline::seed_shader); |
| |
| if (updater) { |
| updater->append_matrix_stage(p); |
| } else { |
| if (!sampling.fUseCubic) { |
| tweak_filter_and_inv_matrix(&sampling.fFilter, &matrix); |
| } |
| p->append_matrix(alloc, matrix); |
| } |
| |
| auto gather = alloc->make<SkRasterPipeline_GatherCtx>(); |
| gather->pixels = pm.addr(); |
| gather->stride = pm.rowBytesAsPixels(); |
| gather->width = pm.width(); |
| gather->height = pm.height(); |
| |
| auto limit_x = alloc->make<SkRasterPipeline_TileCtx>(), |
| limit_y = alloc->make<SkRasterPipeline_TileCtx>(); |
| limit_x->scale = pm.width(); |
| limit_x->invScale = 1.0f / pm.width(); |
| limit_y->scale = pm.height(); |
| limit_y->invScale = 1.0f / pm.height(); |
| |
| SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr; |
| bool decal_x_and_y = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal; |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>(); |
| decal_ctx->limit_x = limit_x->scale; |
| decal_ctx->limit_y = limit_y->scale; |
| } |
| |
| #if 0 // TODO: when we support kMedium |
| if (updator && (quality == kMedium_SkFilterQuality)) { |
| // if we change levels in mipmap, we need to update the scales (and invScales) |
| updator->fGather = gather; |
| updator->fLimitX = limit_x; |
| updator->fLimitY = limit_y; |
| updator->fDecal = decal_ctx; |
| } |
| #endif |
| |
| auto append_tiling_and_gather = [&] { |
| if (decal_x_and_y) { |
| p->append(SkRasterPipeline::decal_x_and_y, decal_ctx); |
| } else { |
| switch (fTileModeX) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; |
| case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x, limit_x); break; |
| case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x, limit_x); break; |
| case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_x, decal_ctx); break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; |
| case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_y, limit_y); break; |
| case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_y, limit_y); break; |
| case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_y, decal_ctx); break; |
| } |
| } |
| |
| void* ctx = gather; |
| switch (info.colorType()) { |
| case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break; |
| case kA16_unorm_SkColorType: p->append(SkRasterPipeline::gather_a16, ctx); break; |
| case kA16_float_SkColorType: p->append(SkRasterPipeline::gather_af16, ctx); break; |
| case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break; |
| case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break; |
| case kR8G8_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg88, ctx); break; |
| case kR16G16_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg1616, ctx); break; |
| case kR16G16_float_SkColorType: p->append(SkRasterPipeline::gather_rgf16, ctx); break; |
| case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break; |
| case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break; |
| case kR16G16B16A16_unorm_SkColorType: |
| p->append(SkRasterPipeline::gather_16161616,ctx); break; |
| case kRGBA_F16Norm_SkColorType: |
| case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break; |
| case kRGBA_F32_SkColorType: p->append(SkRasterPipeline::gather_f32, ctx); break; |
| |
| case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); |
| p->append(SkRasterPipeline::alpha_to_gray ); break; |
| |
| case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); |
| p->append(SkRasterPipeline::force_opaque ); break; |
| |
| case kBGRA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::force_opaque ); break; |
| |
| case kBGR_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::force_opaque ); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kUnknown_SkColorType: SkASSERT(false); |
| } |
| if (decal_ctx) { |
| p->append(SkRasterPipeline::check_decal_mask, decal_ctx); |
| } |
| }; |
| |
| auto append_misc = [&] { |
| SkColorSpace* cs = info.colorSpace(); |
| SkAlphaType at = info.alphaType(); |
| |
| // Color for A8 images comes from the paint. TODO: all alpha images? none? |
| if (info.colorType() == kAlpha_8_SkColorType) { |
| SkColor4f rgb = rec.fPaint.getColor4f(); |
| p->append_set_rgb(alloc, rgb); |
| |
| cs = sk_srgb_singleton(); |
| at = kUnpremul_SkAlphaType; |
| } |
| |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| if (sampling.fUseCubic) { |
| p->append(SkRasterPipeline::clamp_0); |
| p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul |
| ? SkRasterPipeline::clamp_1 |
| : SkRasterPipeline::clamp_a); |
| } |
| |
| // Transform color space and alpha type to match shader convention (dst CS, premul alpha). |
| alloc->make<SkColorSpaceXformSteps>(cs, at, |
| rec.fDstCS, kPremul_SkAlphaType) |
| ->apply(p); |
| |
| return true; |
| }; |
| |
| // Check for fast-path stages. |
| auto ct = info.colorType(); |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && !sampling.fUseCubic && sampling.fFilter == SkFilterMode::kLinear |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipeline::bilerp_clamp_8888, gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipeline::swap_rb); |
| } |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats |
| && !sampling.fUseCubic && sampling.fFilter == SkFilterMode::kLinear |
| && fTileModeX != SkTileMode::kDecal // TODO decal too? |
| && fTileModeY != SkTileMode::kDecal) { |
| |
| auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>(); |
| *(SkRasterPipeline_GatherCtx*)(ctx) = *gather; |
| ctx->ct = ct; |
| ctx->tileX = fTileModeX; |
| ctx->tileY = fTileModeY; |
| ctx->invWidth = 1.0f / ctx->width; |
| ctx->invHeight = 1.0f / ctx->height; |
| p->append(SkRasterPipeline::bilinear, ctx); |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && sampling.fUseCubic |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipeline::bicubic_clamp_8888, gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipeline::swap_rb); |
| } |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats |
| && sampling.fUseCubic |
| && fTileModeX != SkTileMode::kDecal // TODO decal too? |
| && fTileModeY != SkTileMode::kDecal) { |
| |
| auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>(); |
| *(SkRasterPipeline_GatherCtx*)(ctx) = *gather; |
| ctx->ct = ct; |
| ctx->tileX = fTileModeX; |
| ctx->tileY = fTileModeY; |
| ctx->invWidth = 1.0f / ctx->width; |
| ctx->invHeight = 1.0f / ctx->height; |
| p->append(SkRasterPipeline::bicubic, ctx); |
| return append_misc(); |
| } |
| |
| SkRasterPipeline_SamplerCtx* sampler = alloc->make<SkRasterPipeline_SamplerCtx>(); |
| |
| auto sample = [&](SkRasterPipeline::StockStage setup_x, |
| SkRasterPipeline::StockStage setup_y) { |
| p->append(setup_x, sampler); |
| p->append(setup_y, sampler); |
| append_tiling_and_gather(); |
| p->append(SkRasterPipeline::accumulate, sampler); |
| }; |
| |
| if (sampling.fUseCubic) { |
| p->append(SkRasterPipeline::save_xy, sampler); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y); |
| |
| p->append(SkRasterPipeline::move_dst_src); |
| } else if (sampling.fFilter == SkFilterMode::kLinear) { |
| p->append(SkRasterPipeline::save_xy, sampler); |
| |
| sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny); |
| sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny); |
| sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py); |
| sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py); |
| |
| p->append(SkRasterPipeline::move_dst_src); |
| } else { |
| append_tiling_and_gather(); |
| } |
| |
| return append_misc(); |
| } |
| |
| bool SkImageShader::onAppendStages(const SkStageRec& rec) const { |
| return this->doStages(rec, nullptr); |
| } |
| |
| SkStageUpdater* SkImageShader::onAppendUpdatableStages(const SkStageRec& rec) const { |
| bool usePersp = rec.fMatrixProvider.localToDevice().hasPerspective(); |
| auto updater = rec.fAlloc->make<SkImageStageUpdater>(this, usePersp); |
| return this->doStages(rec, updater) ? updater : nullptr; |
| } |
| |
| skvm::Color SkImageShader::onProgram(skvm::Builder* p, |
| skvm::Coord device, skvm::Coord origLocal, skvm::Color paint, |
| const SkMatrixProvider& matrices, const SkMatrix* localM, |
| SkFilterQuality paintQuality, const SkColorInfo& dst, |
| skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const { |
| SkMatrix baseInv; |
| if (!this->computeTotalInverse(matrices.localToDevice(), localM, &baseInv)) { |
| return {}; |
| } |
| baseInv.normalizePerspective(); |
| |
| const SkPixmap *upper = nullptr, |
| *lower = nullptr; |
| SkMatrix upperInv; |
| float lowerWeight = 0; |
| |
| auto post_scale = [&](SkISize level, const SkMatrix& base) { |
| return SkMatrix::Scale(SkIntToScalar(level.width()) / fImage->width(), |
| SkIntToScalar(level.height()) / fImage->height()) |
| * base; |
| }; |
| |
| auto sampling = fUseSamplingOptions ? fSampling : SkSamplingOptions(paintQuality); |
| if (sampling.fUseCubic) { |
| auto* access = alloc->make<SkMipmapAccessor>(as_IB(fImage.get()), baseInv, |
| SkMipmapMode::kNone); |
| upper = &access->level(); |
| upperInv = post_scale(upper->dimensions(), baseInv); |
| } else { |
| auto* access = alloc->make<SkMipmapAccessor>(as_IB(fImage.get()), baseInv, |
| sampling.fMipmap); |
| upper = &access->level(); |
| upperInv = post_scale(upper->dimensions(), baseInv); |
| lowerWeight = access->lowerWeight(); |
| if (lowerWeight > 0) { |
| lower = &access->lowerLevel(); |
| } |
| tweak_filter_and_inv_matrix(&sampling.fFilter, &upperInv); |
| } |
| |
| skvm::Coord upperLocal = SkShaderBase::ApplyMatrix(p, upperInv, origLocal, uniforms); |
| |
| // All existing SkColorTypes pass these checks. We'd only fail here adding new ones. |
| skvm::PixelFormat unused; |
| if (true && !SkColorType_to_PixelFormat(upper->colorType(), &unused)) { |
| return {}; |
| } |
| if (lower && !SkColorType_to_PixelFormat(lower->colorType(), &unused)) { |
| return {}; |
| } |
| |
| // We can exploit image opacity to skip work unpacking alpha channels. |
| const bool input_is_opaque = SkAlphaTypeIsOpaque(upper->alphaType()) |
| || SkColorTypeIsAlwaysOpaque(upper->colorType()); |
| |
| // Each call to sample() will try to rewrite the same uniforms over and over, |
| // so remember where we start and reset back there each time. That way each |
| // sample() call uses the same uniform offsets. |
| |
| auto compute_clamp_limit = [&](float limit) { |
| // Subtract an ulp so the upper clamp limit excludes limit itself. |
| int bits; |
| memcpy(&bits, &limit, 4); |
| return p->uniformF(uniforms->push(bits-1)); |
| }; |
| |
| // Except in the simplest case (no mips, no filtering), we reference uniforms |
| // more than once. To avoid adding/registering them multiple times, we pre-load them |
| // into a struct (just to logically group them together), based on the "current" |
| // pixmap (level of a mipmap). |
| // |
| struct Uniforms { |
| skvm::F32 w, iw, i2w, |
| h, ih, i2h; |
| |
| skvm::F32 clamp_w, |
| clamp_h; |
| |
| skvm::Uniform addr; |
| skvm::I32 rowBytesAsPixels; |
| |
| skvm::PixelFormat pixelFormat; // not a uniform, but needed for each texel sample, |
| // so we store it here, since it is also dependent on |
| // the current pixmap (level). |
| }; |
| |
| auto setup_uniforms = [&](const SkPixmap& pm) -> Uniforms { |
| skvm::PixelFormat pixelFormat; |
| SkAssertResult(SkColorType_to_PixelFormat(pm.colorType(), &pixelFormat)); |
| return { |
| p->uniformF(uniforms->pushF( pm.width())), |
| p->uniformF(uniforms->pushF(1.0f/pm.width())), // iff tileX == kRepeat |
| p->uniformF(uniforms->pushF(0.5f/pm.width())), // iff tileX == kMirror |
| |
| p->uniformF(uniforms->pushF( pm.height())), |
| p->uniformF(uniforms->pushF(1.0f/pm.height())), // iff tileY == kRepeat |
| p->uniformF(uniforms->pushF(0.5f/pm.height())), // iff tileY == kMirror |
| |
| compute_clamp_limit(pm. width()), |
| compute_clamp_limit(pm.height()), |
| |
| uniforms->pushPtr(pm.addr()), |
| p->uniform32(uniforms->push(pm.rowBytesAsPixels())), |
| |
| pixelFormat, |
| }; |
| }; |
| |
| auto sample_texel = [&](const Uniforms& u, skvm::F32 sx, skvm::F32 sy) -> skvm::Color { |
| // repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp. |
| auto repeat = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I) { |
| return v - floor(v * I) * S; |
| }; |
| auto mirror = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I2) { |
| // abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale ) |
| // {---A---} {------------------B------------------} |
| skvm::F32 A = v - S, |
| B = (S + S) * floor(A * I2); |
| return abs(A - B - S); |
| }; |
| switch (fTileModeX) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sx = repeat(sx, u.w, u.iw); break; |
| case SkTileMode::kMirror: sx = mirror(sx, u.w, u.i2w); break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sy = repeat(sy, u.h, u.ih); break; |
| case SkTileMode::kMirror: sy = mirror(sy, u.h, u.i2h); break; |
| } |
| |
| // Always clamp sample coordinates to [0,width), [0,height), both for memory |
| // safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror. |
| skvm::F32 clamped_x = clamp(sx, 0, u.clamp_w), |
| clamped_y = clamp(sy, 0, u.clamp_h); |
| |
| // Load pixels from pm.addr()[(int)sx + (int)sy*stride]. |
| skvm::I32 index = trunc(clamped_x) + |
| trunc(clamped_y) * u.rowBytesAsPixels; |
| skvm::Color c = gather(u.pixelFormat, u.addr, index); |
| |
| // If we know the image is opaque, jump right to alpha = 1.0f, skipping work to unpack it. |
| if (input_is_opaque) { |
| c.a = p->splat(1.0f); |
| } |
| |
| // Mask away any pixels that we tried to sample outside the bounds in kDecal. |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| skvm::I32 mask = p->splat(~0); |
| if (fTileModeX == SkTileMode::kDecal) { mask &= (sx == clamped_x); } |
| if (fTileModeY == SkTileMode::kDecal) { mask &= (sy == clamped_y); } |
| c.r = bit_cast(p->bit_and(mask, bit_cast(c.r))); |
| c.g = bit_cast(p->bit_and(mask, bit_cast(c.g))); |
| c.b = bit_cast(p->bit_and(mask, bit_cast(c.b))); |
| c.a = bit_cast(p->bit_and(mask, bit_cast(c.a))); |
| // Notice that even if input_is_opaque, c.a might now be 0. |
| } |
| |
| return c; |
| }; |
| |
| auto sample_level = [&](const SkPixmap& pm, const SkMatrix& inv, skvm::Coord local) { |
| const Uniforms u = setup_uniforms(pm); |
| |
| if (sampling.fUseCubic) { |
| // All bicubic samples have the same fractional offset (fx,fy) from the center. |
| // They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 fx = fract(local.x + 0.5f), |
| fy = fract(local.y + 0.5f); |
| skvm::F32 wx[4], |
| wy[4]; |
| |
| SkM44 weights = CubicResamplerMatrix(sampling.fCubic.B, sampling.fCubic.C); |
| |
| auto dot = [](const skvm::F32 a[], const skvm::F32 b[]) { |
| return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]; |
| }; |
| const skvm::F32 tmpx[] = { p->splat(1.0f), fx, fx*fx, fx*fx*fx }; |
| const skvm::F32 tmpy[] = { p->splat(1.0f), fy, fy*fy, fy*fy*fy }; |
| |
| for (int row = 0; row < 4; ++row) { |
| SkV4 r = weights.row(row); |
| skvm::F32 ru[] = { |
| p->uniformF(uniforms->pushF(r[0])), |
| p->uniformF(uniforms->pushF(r[1])), |
| p->uniformF(uniforms->pushF(r[2])), |
| p->uniformF(uniforms->pushF(r[3])), |
| }; |
| wx[row] = dot(ru, tmpx); |
| wy[row] = dot(ru, tmpy); |
| } |
| |
| skvm::Color c; |
| c.r = c.g = c.b = c.a = p->splat(0.0f); |
| |
| skvm::F32 sy = local.y - 1.5f; |
| for (int j = 0; j < 4; j++, sy += 1.0f) { |
| skvm::F32 sx = local.x - 1.5f; |
| for (int i = 0; i < 4; i++, sx += 1.0f) { |
| skvm::Color s = sample_texel(u, sx,sy); |
| skvm::F32 w = wx[i] * wy[j]; |
| |
| c.r += s.r * w; |
| c.g += s.g * w; |
| c.b += s.b * w; |
| c.a += s.a * w; |
| } |
| } |
| return c; |
| } else if (sampling.fFilter == SkFilterMode::kLinear) { |
| // Our four sample points are the corners of a logical 1x1 pixel |
| // box surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 left = local.x - 0.5f, |
| top = local.y - 0.5f, |
| right = local.x + 0.5f, |
| bottom = local.y + 0.5f; |
| |
| // The fractional parts of right and bottom are our lerp factors in x and y respectively. |
| skvm::F32 fx = fract(right ), |
| fy = fract(bottom); |
| |
| return lerp(lerp(sample_texel(u, left,top ), sample_texel(u, right,top ), fx), |
| lerp(sample_texel(u, left,bottom), sample_texel(u, right,bottom), fx), fy); |
| } else { |
| SkASSERT(sampling.fFilter == SkFilterMode::kNearest); |
| return sample_texel(u, local.x,local.y); |
| } |
| }; |
| |
| skvm::Color c = sample_level(*upper, upperInv, upperLocal); |
| if (lower) { |
| auto lowerInv = post_scale(lower->dimensions(), baseInv); |
| auto lowerLocal = SkShaderBase::ApplyMatrix(p, lowerInv, origLocal, uniforms); |
| // lower * weight + upper * (1 - weight) |
| c = lerp(c, |
| sample_level(*lower, lowerInv, lowerLocal), |
| p->uniformF(uniforms->pushF(lowerWeight))); |
| } |
| |
| // If the input is opaque and we're not in decal mode, that means the output is too. |
| // Forcing *a to 1.0 here will retroactively skip any work we did to interpolate sample alphas. |
| if (input_is_opaque |
| && fTileModeX != SkTileMode::kDecal |
| && fTileModeY != SkTileMode::kDecal) { |
| c.a = p->splat(1.0f); |
| } |
| |
| // Alpha-only images get their color from the paint (already converted to dst color space). |
| SkColorSpace* cs = upper->colorSpace(); |
| SkAlphaType at = upper->alphaType(); |
| if (SkColorTypeIsAlphaOnly(upper->colorType())) { |
| c.r = paint.r; |
| c.g = paint.g; |
| c.b = paint.b; |
| |
| cs = dst.colorSpace(); |
| at = kUnpremul_SkAlphaType; |
| } |
| |
| if (sampling.fUseCubic) { |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| c.a = clamp01(c.a); |
| |
| skvm::F32 limit = (at == kUnpremul_SkAlphaType || fClampAsIfUnpremul) |
| ? p->splat(1.0f) |
| : c.a; |
| c.r = clamp(c.r, 0.0f, limit); |
| c.g = clamp(c.g, 0.0f, limit); |
| c.b = clamp(c.b, 0.0f, limit); |
| } |
| |
| return SkColorSpaceXformSteps{cs,at, dst.colorSpace(),dst.alphaType()}.program(p, uniforms, c); |
| } |