| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "PictureRenderer.h" |
| #include "picture_utils.h" |
| #include "SamplePipeControllers.h" |
| #include "SkCanvas.h" |
| #include "SkDevice.h" |
| #include "SkGPipe.h" |
| #if SK_SUPPORT_GPU |
| #include "SkGpuDevice.h" |
| #endif |
| #include "SkGraphics.h" |
| #include "SkImageEncoder.h" |
| #include "SkMatrix.h" |
| #include "SkPicture.h" |
| #include "SkScalar.h" |
| #include "SkString.h" |
| #include "SkTemplates.h" |
| #include "SkTDArray.h" |
| #include "SkThreadUtils.h" |
| #include "SkTypes.h" |
| |
| namespace sk_tools { |
| |
| enum { |
| kDefaultTileWidth = 256, |
| kDefaultTileHeight = 256 |
| }; |
| |
| void PictureRenderer::init(SkPicture* pict) { |
| SkASSERT(NULL == fPicture); |
| SkASSERT(NULL == fCanvas.get()); |
| if (fPicture != NULL || NULL != fCanvas.get()) { |
| return; |
| } |
| |
| SkASSERT(pict != NULL); |
| if (NULL == pict) { |
| return; |
| } |
| |
| fPicture = pict; |
| fCanvas.reset(this->setupCanvas()); |
| } |
| |
| SkCanvas* PictureRenderer::setupCanvas() { |
| return this->setupCanvas(fPicture->width(), fPicture->height()); |
| } |
| |
| SkCanvas* PictureRenderer::setupCanvas(int width, int height) { |
| switch(fDeviceType) { |
| case kBitmap_DeviceType: { |
| SkBitmap bitmap; |
| sk_tools::setup_bitmap(&bitmap, width, height); |
| return SkNEW_ARGS(SkCanvas, (bitmap)); |
| break; |
| } |
| #if SK_SUPPORT_GPU |
| case kGPU_DeviceType: { |
| SkAutoTUnref<SkGpuDevice> device(SkNEW_ARGS(SkGpuDevice, |
| (fGrContext, SkBitmap::kARGB_8888_Config, |
| width, height))); |
| return SkNEW_ARGS(SkCanvas, (device.get())); |
| break; |
| } |
| #endif |
| default: |
| SkASSERT(0); |
| } |
| |
| return NULL; |
| } |
| |
| void PictureRenderer::end() { |
| this->resetState(); |
| fPicture = NULL; |
| fCanvas.reset(NULL); |
| } |
| |
| void PictureRenderer::resetState() { |
| #if SK_SUPPORT_GPU |
| if (this->isUsingGpuDevice()) { |
| SkGLContext* glContext = fGrContextFactory.getGLContext( |
| GrContextFactory::kNative_GLContextType); |
| |
| SkASSERT(glContext != NULL); |
| if (NULL == glContext) { |
| return; |
| } |
| |
| fGrContext->flush(); |
| SK_GL(*glContext, Finish()); |
| } |
| #endif |
| } |
| |
| /** |
| * Write the canvas to the specified path. |
| * @param canvas Must be non-null. Canvas to be written to a file. |
| * @param path Path for the file to be written. Should have no extension; write() will append |
| * an appropriate one. Passed in by value so it can be modified. |
| * @return bool True if the Canvas is written to a file. |
| */ |
| static bool write(SkCanvas* canvas, SkString path) { |
| SkASSERT(canvas != NULL); |
| if (NULL == canvas) { |
| return false; |
| } |
| |
| SkBitmap bitmap; |
| SkISize size = canvas->getDeviceSize(); |
| sk_tools::setup_bitmap(&bitmap, size.width(), size.height()); |
| |
| canvas->readPixels(&bitmap, 0, 0); |
| sk_tools::force_all_opaque(bitmap); |
| |
| // Since path is passed in by value, it is okay to modify it. |
| path.append(".png"); |
| return SkImageEncoder::EncodeFile(path.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100); |
| } |
| |
| /** |
| * If path is non NULL, append number to it, and call write(SkCanvas*, SkString) to write the |
| * provided canvas to a file. Returns true if path is NULL or if write() succeeds. |
| */ |
| static bool writeAppendNumber(SkCanvas* canvas, const SkString* path, int number) { |
| if (NULL == path) { |
| return true; |
| } |
| SkString pathWithNumber(*path); |
| pathWithNumber.appendf("%i", number); |
| return write(canvas, pathWithNumber); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| bool RecordPictureRenderer::render(const SkString*) { |
| SkPicture replayer; |
| SkCanvas* recorder = replayer.beginRecording(fPicture->width(), fPicture->height()); |
| fPicture->draw(recorder); |
| replayer.endRecording(); |
| // Since this class does not actually render, return false. |
| return false; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| bool PipePictureRenderer::render(const SkString* path) { |
| SkASSERT(fCanvas.get() != NULL); |
| SkASSERT(fPicture != NULL); |
| if (NULL == fCanvas.get() || NULL == fPicture) { |
| return false; |
| } |
| |
| PipeController pipeController(fCanvas.get()); |
| SkGPipeWriter writer; |
| SkCanvas* pipeCanvas = writer.startRecording(&pipeController); |
| pipeCanvas->drawPicture(*fPicture); |
| writer.endRecording(); |
| fCanvas->flush(); |
| if (NULL != path) { |
| return write(fCanvas, *path); |
| } |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| bool SimplePictureRenderer::render(const SkString* path) { |
| SkASSERT(fCanvas.get() != NULL); |
| SkASSERT(fPicture != NULL); |
| if (NULL == fCanvas.get() || NULL == fPicture) { |
| return false; |
| } |
| |
| fCanvas->drawPicture(*fPicture); |
| fCanvas->flush(); |
| if (NULL != path) { |
| return write(fCanvas, *path); |
| } |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| TiledPictureRenderer::TiledPictureRenderer() |
| : fUsePipe(false) |
| , fTileWidth(kDefaultTileWidth) |
| , fTileHeight(kDefaultTileHeight) |
| , fTileWidthPercentage(0.0) |
| , fTileHeightPercentage(0.0) |
| , fTileMinPowerOf2Width(0) |
| , fTileCounter(0) |
| , fNumThreads(1) |
| , fPictureClones(NULL) |
| , fPipeController(NULL) { } |
| |
| void TiledPictureRenderer::init(SkPicture* pict) { |
| SkASSERT(pict != NULL); |
| SkASSERT(0 == fTileRects.count()); |
| if (NULL == pict || fTileRects.count() != 0) { |
| return; |
| } |
| |
| // Do not call INHERITED::init(), which would create a (potentially large) canvas which is not |
| // used by bench_pictures. |
| fPicture = pict; |
| |
| if (fTileWidthPercentage > 0) { |
| fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100)); |
| } |
| if (fTileHeightPercentage > 0) { |
| fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100)); |
| } |
| |
| if (fTileMinPowerOf2Width > 0) { |
| this->setupPowerOf2Tiles(); |
| } else { |
| this->setupTiles(); |
| } |
| |
| if (this->multiThreaded()) { |
| for (int i = 0; i < fNumThreads; ++i) { |
| *fCanvasPool.append() = this->setupCanvas(fTileWidth, fTileHeight); |
| } |
| if (!fUsePipe) { |
| SkASSERT(NULL == fPictureClones); |
| // Only need to create fNumThreads - 1 clones, since one thread will use the base |
| // picture. |
| int numberOfClones = fNumThreads - 1; |
| // This will be deleted in end(). |
| fPictureClones = SkNEW_ARRAY(SkPicture, numberOfClones); |
| fPicture->clone(fPictureClones, numberOfClones); |
| } |
| } |
| } |
| |
| void TiledPictureRenderer::end() { |
| fTileRects.reset(); |
| SkDELETE_ARRAY(fPictureClones); |
| fPictureClones = NULL; |
| fCanvasPool.unrefAll(); |
| if (fPipeController != NULL) { |
| SkASSERT(fUsePipe); |
| SkDELETE(fPipeController); |
| fPipeController = NULL; |
| } |
| this->INHERITED::end(); |
| } |
| |
| TiledPictureRenderer::~TiledPictureRenderer() { |
| // end() must be called to delete fPictureClones and fPipeController |
| SkASSERT(NULL == fPictureClones); |
| SkASSERT(NULL == fPipeController); |
| } |
| |
| void TiledPictureRenderer::setupTiles() { |
| for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { |
| for (int tile_x_start = 0; tile_x_start < fPicture->width(); tile_x_start += fTileWidth) { |
| *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), |
| SkIntToScalar(tile_y_start), |
| SkIntToScalar(fTileWidth), |
| SkIntToScalar(fTileHeight)); |
| } |
| } |
| } |
| |
| // The goal of the powers of two tiles is to minimize the amount of wasted tile |
| // space in the width-wise direction and then minimize the number of tiles. The |
| // constraints are that every tile must have a pixel width that is a power of |
| // two and also be of some minimal width (that is also a power of two). |
| // |
| // This is solved by first taking our picture size and rounding it up to the |
| // multiple of the minimal width. The binary representation of this rounded |
| // value gives us the tiles we need: a bit of value one means we need a tile of |
| // that size. |
| void TiledPictureRenderer::setupPowerOf2Tiles() { |
| int rounded_value = fPicture->width(); |
| if (fPicture->width() % fTileMinPowerOf2Width != 0) { |
| rounded_value = fPicture->width() - (fPicture->width() % fTileMinPowerOf2Width) |
| + fTileMinPowerOf2Width; |
| } |
| |
| int num_bits = SkScalarCeilToInt(SkScalarLog2(SkIntToScalar(fPicture->width()))); |
| int largest_possible_tile_size = 1 << num_bits; |
| |
| // The tile height is constant for a particular picture. |
| for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { |
| int tile_x_start = 0; |
| int current_width = largest_possible_tile_size; |
| // Set fTileWidth to be the width of the widest tile, so that each canvas is large enough |
| // to draw each tile. |
| fTileWidth = current_width; |
| |
| while (current_width >= fTileMinPowerOf2Width) { |
| // It is very important this is a bitwise AND. |
| if (current_width & rounded_value) { |
| *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), |
| SkIntToScalar(tile_y_start), |
| SkIntToScalar(current_width), |
| SkIntToScalar(fTileHeight)); |
| tile_x_start += current_width; |
| } |
| |
| current_width >>= 1; |
| } |
| } |
| } |
| |
| /** |
| * Draw the specified playback to the canvas translated to rectangle provided, so that this mini |
| * canvas represents the rectangle's portion of the overall picture. |
| * Saves and restores so that the initial clip and matrix return to their state before this function |
| * is called. |
| */ |
| template<class T> |
| static void DrawTileToCanvas(SkCanvas* canvas, const SkRect& tileRect, T* playback) { |
| int saveCount = canvas->save(); |
| // Translate so that we draw the correct portion of the picture |
| canvas->translate(-tileRect.fLeft, -tileRect.fTop); |
| playback->draw(canvas); |
| canvas->restoreToCount(saveCount); |
| canvas->flush(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| // Base class for data used both by pipe and clone picture multi threaded drawing. |
| |
| struct ThreadData { |
| ThreadData(SkCanvas* target, int* tileCounter, SkTDArray<SkRect>* tileRects, |
| const SkString* path, bool* success) |
| : fCanvas(target) |
| , fPath(path) |
| , fSuccess(success) |
| , fTileCounter(tileCounter) |
| , fTileRects(tileRects) { |
| SkASSERT(target != NULL && tileCounter != NULL && tileRects != NULL); |
| // Success must start off true, and it will be set to false upon failure. |
| SkASSERT(success != NULL && *success); |
| } |
| |
| int32_t nextTile(SkRect* rect) { |
| int32_t i = sk_atomic_inc(fTileCounter); |
| if (i < fTileRects->count()) { |
| SkASSERT(rect != NULL); |
| *rect = fTileRects->operator[](i); |
| return i; |
| } |
| return -1; |
| } |
| |
| // All of these are pointers to objects owned elsewhere |
| SkCanvas* fCanvas; |
| const SkString* fPath; |
| bool* fSuccess; |
| private: |
| // Shared by all threads, this states which is the next tile to be drawn. |
| int32_t* fTileCounter; |
| // Points to the array of rectangles. The array is already created before any threads are |
| // started and then it is unmodified, so there is no danger of race conditions. |
| const SkTDArray<SkRect>* fTileRects; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| // Draw using Pipe |
| |
| struct TileData : public ThreadData { |
| TileData(ThreadSafePipeController* controller, SkCanvas* canvas, int* tileCounter, |
| SkTDArray<SkRect>* tileRects, const SkString* path, bool* success) |
| : INHERITED(canvas, tileCounter, tileRects, path, success) |
| , fController(controller) {} |
| |
| ThreadSafePipeController* fController; |
| |
| typedef ThreadData INHERITED; |
| }; |
| |
| static void DrawTile(void* data) { |
| SkGraphics::SetTLSFontCacheLimit(1 * 1024 * 1024); |
| TileData* tileData = static_cast<TileData*>(data); |
| |
| SkRect tileRect; |
| int32_t i; |
| while ((i = tileData->nextTile(&tileRect)) != -1) { |
| DrawTileToCanvas(tileData->fCanvas, tileRect, tileData->fController); |
| if (NULL != tileData->fPath && |
| !writeAppendNumber(tileData->fCanvas, tileData->fPath, i)) { |
| *tileData->fSuccess = false; |
| break; |
| } |
| } |
| SkDELETE(tileData); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| // Draw using Picture |
| |
| struct CloneData : public ThreadData { |
| CloneData(SkPicture* clone, SkCanvas* target, int* tileCounter, SkTDArray<SkRect>* tileRects, |
| const SkString* path, bool* success) |
| : INHERITED(target, tileCounter, tileRects, path, success) |
| , fClone(clone) {} |
| |
| SkPicture* fClone; |
| |
| typedef ThreadData INHERITED; |
| }; |
| |
| static void DrawClonedTiles(void* data) { |
| SkGraphics::SetTLSFontCacheLimit(1 * 1024 * 1024); |
| CloneData* cloneData = static_cast<CloneData*>(data); |
| |
| SkRect tileRect; |
| int32_t i; |
| while ((i = cloneData->nextTile(&tileRect)) != -1) { |
| DrawTileToCanvas(cloneData->fCanvas, tileRect, cloneData->fClone); |
| if (NULL != cloneData->fPath && |
| !writeAppendNumber(cloneData->fCanvas, cloneData->fPath, i)) { |
| *cloneData->fSuccess = false; |
| break; |
| } |
| } |
| SkDELETE(cloneData); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void TiledPictureRenderer::setup() { |
| if (this->multiThreaded()) { |
| // Reset to zero so we start with the first tile. |
| fTileCounter = 0; |
| if (fUsePipe) { |
| // Record the picture into the pipe controller. It is done here because unlike |
| // SkPicture, the pipe is modified (bitmaps can be removed) by drawing. |
| // fPipeController is deleted here after each call to render() except the last one and |
| // in end() for the last one. |
| if (fPipeController != NULL) { |
| SkDELETE(fPipeController); |
| } |
| fPipeController = SkNEW_ARGS(ThreadSafePipeController, (fTileRects.count())); |
| SkGPipeWriter writer; |
| SkCanvas* pipeCanvas = writer.startRecording(fPipeController, |
| SkGPipeWriter::kSimultaneousReaders_Flag); |
| SkASSERT(fPicture != NULL); |
| fPicture->draw(pipeCanvas); |
| writer.endRecording(); |
| } |
| } |
| } |
| |
| bool TiledPictureRenderer::render(const SkString* path) { |
| SkASSERT(fPicture != NULL); |
| if (NULL == fPicture) { |
| return false; |
| } |
| |
| if (this->multiThreaded()) { |
| SkASSERT(fCanvasPool.count() == fNumThreads); |
| SkTDArray<SkThread*> threads; |
| SkThread::entryPointProc proc = fUsePipe ? DrawTile : DrawClonedTiles; |
| bool success = true; |
| for (int i = 0; i < fNumThreads; ++i) { |
| // data will be deleted by the entryPointProc. |
| ThreadData* data; |
| if (fUsePipe) { |
| data = SkNEW_ARGS(TileData, (fPipeController, fCanvasPool[i], &fTileCounter, |
| &fTileRects, path, &success)); |
| } else { |
| SkPicture* pic = (0 == i) ? fPicture : &fPictureClones[i-1]; |
| data = SkNEW_ARGS(CloneData, (pic, fCanvasPool[i], &fTileCounter, &fTileRects, path, |
| &success)); |
| } |
| SkThread* thread = SkNEW_ARGS(SkThread, (proc, data)); |
| if (!thread->start()) { |
| SkDebugf("Could not start %s thread %i.\n", (fUsePipe ? "pipe" : "picture"), i); |
| } |
| *threads.append() = thread; |
| } |
| SkASSERT(threads.count() == fNumThreads); |
| for (int i = 0; i < fNumThreads; ++i) { |
| SkThread* thread = threads[i]; |
| thread->join(); |
| SkDELETE(thread); |
| } |
| threads.reset(); |
| return success; |
| } else { |
| // For single thread, we really only need one canvas total. |
| SkCanvas* canvas = this->setupCanvas(fTileWidth, fTileHeight); |
| SkAutoUnref aur(canvas); |
| |
| bool success = true; |
| for (int i = 0; i < fTileRects.count(); ++i) { |
| DrawTileToCanvas(canvas, fTileRects[i], fPicture); |
| if (NULL != path) { |
| success &= writeAppendNumber(canvas, path, i); |
| } |
| } |
| return success; |
| } |
| } |
| |
| SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) { |
| SkCanvas* canvas = this->INHERITED::setupCanvas(width, height); |
| SkASSERT(fPicture != NULL); |
| // Clip the tile to an area that is completely in what the SkPicture says is the |
| // drawn-to area. This is mostly important for tiles on the right and bottom edges |
| // as they may go over this area and the picture may have some commands that |
| // draw outside of this area and so should not actually be written. |
| SkRect clip = SkRect::MakeWH(SkIntToScalar(fPicture->width()), |
| SkIntToScalar(fPicture->height())); |
| canvas->clipRect(clip); |
| return canvas; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void PlaybackCreationRenderer::setup() { |
| SkCanvas* recorder = fReplayer.beginRecording(fPicture->width(), fPicture->height()); |
| fPicture->draw(recorder); |
| } |
| |
| bool PlaybackCreationRenderer::render(const SkString*) { |
| fReplayer.endRecording(); |
| // Since this class does not actually render, return false. |
| return false; |
| } |
| |
| } |