blob: 867f766d17935978d60fd101b13dbef25e887a7c [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <initializer_list>
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkHalf.h"
#include "SkImageInfoPriv.h"
#include "SkMathPriv.h"
#include "SkSurface.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextFactory.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "ProxyUtils.h"
#include "SkGr.h"
#endif
static const int DEV_W = 100, DEV_H = 100;
static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H);
static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1,
DEV_H * SK_Scalar1);
static SkPMColor get_src_color(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0xff;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 4:
a = 0x01;
break;
case 3:
a = 0x00;
break;
}
return SkPremultiplyARGBInline(a, r, g, b);
}
static SkPMColor get_dst_bmp_init_color(int x, int y, int w) {
int n = y * w + x;
U8CPU b = n & 0xff;
U8CPU g = (n >> 8) & 0xff;
U8CPU r = (n >> 16) & 0xff;
return SkPackARGB32(0xff, r, g , b);
}
// TODO: Make this consider both ATs
static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr,
bool* doUnpremul) {
*doUnpremul = (kUnpremul_SkAlphaType == at);
const uint8_t* c = reinterpret_cast<const uint8_t*>(addr);
U8CPU a,r,g,b;
switch (ct) {
case kBGRA_8888_SkColorType:
b = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
r = static_cast<U8CPU>(c[2]);
a = static_cast<U8CPU>(c[3]);
break;
case kRGB_888x_SkColorType: // fallthrough
case kRGBA_8888_SkColorType:
r = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[2]);
// We set this even when for kRGB_888x because our caller will validate that it is 0xff.
a = static_cast<U8CPU>(c[3]);
break;
default:
SkDEBUGFAIL("Unexpected colortype");
return 0;
}
if (*doUnpremul) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return SkPackARGB32(a, r, g, b);
}
static SkBitmap make_src_bitmap() {
static SkBitmap bmp;
if (bmp.isNull()) {
bmp.allocN32Pixels(DEV_W, DEV_H);
intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels());
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel());
*pixel = get_src_color(x, y);
}
}
}
return bmp;
}
static void fill_src_canvas(SkCanvas* canvas) {
canvas->save();
canvas->setMatrix(SkMatrix::I());
canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint);
canvas->restore();
}
static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) {
int w = bitmap->width();
int h = bitmap->height();
intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels());
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
SkPMColor initColor = get_dst_bmp_init_color(x, y, w);
if (kAlpha_8_SkColorType == bitmap->colorType()) {
uint8_t* alpha = reinterpret_cast<uint8_t*>(pixels + y * bitmap->rowBytes() + x);
*alpha = SkGetPackedA32(initColor);
} else {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel());
*pixel = initColor;
}
}
}
}
static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) {
if (!didPremulConversion) {
return a == b;
}
int32_t aA = static_cast<int32_t>(SkGetPackedA32(a));
int32_t aR = static_cast<int32_t>(SkGetPackedR32(a));
int32_t aG = static_cast<int32_t>(SkGetPackedG32(a));
int32_t aB = SkGetPackedB32(a);
int32_t bA = static_cast<int32_t>(SkGetPackedA32(b));
int32_t bR = static_cast<int32_t>(SkGetPackedR32(b));
int32_t bG = static_cast<int32_t>(SkGetPackedG32(b));
int32_t bB = static_cast<int32_t>(SkGetPackedB32(b));
return aA == bA &&
SkAbs32(aR - bR) <= 1 &&
SkAbs32(aG - bG) <= 1 &&
SkAbs32(aB - bB) <= 1;
}
// checks the bitmap contains correct pixels after the readPixels
// if the bitmap was prefilled with pixels it checks that these weren't
// overwritten in the area outside the readPixels.
static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y,
bool checkSurfacePixels, bool checkBitmapPixels,
SkAlphaType surfaceAlphaType) {
SkAlphaType bmpAT = bitmap.alphaType();
SkColorType bmpCT = bitmap.colorType();
SkASSERT(!bitmap.isNull());
SkASSERT(checkSurfacePixels || checkBitmapPixels);
int bw = bitmap.width();
int bh = bitmap.height();
SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh);
SkIRect clippedSrcRect = DEV_RECT;
if (!clippedSrcRect.intersect(srcRect)) {
clippedSrcRect.setEmpty();
}
if (kAlpha_8_SkColorType == bmpCT) {
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint8_t* alpha = bitmap.getAddr8(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
uint8_t surfaceAlpha = (surfaceAlphaType == kOpaque_SkAlphaType)
? 0xFF
: SkGetPackedA32(get_src_color(devx, devy));
if (surfaceAlpha != *alpha) {
ERRORF(reporter,
"Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ",
bx, by, surfaceAlpha, *alpha);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw));
if (origDstAlpha != *alpha) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha);
return false;
}
}
}
}
return true;
}
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint32_t* pixel = bitmap.getAddr32(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
SkPMColor surfacePMColor = get_src_color(devx, devy);
if (kOpaque_SkAlphaType == surfaceAlphaType || kOpaque_SkAlphaType == bmpAT) {
surfacePMColor |= 0xFF000000;
}
bool didPremul;
SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul);
if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) {
ERRORF(reporter,
"Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. "
"Readback was unpremul: %d",
bx, by, surfacePMColor, pmPixel, didPremul);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw);
if (origDstPixel != *pixel) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%08x, got 0x%08x", origDstPixel, *pixel);
return false;
}
}
}
}
return true;
}
enum BitmapInit {
kFirstBitmapInit = 0,
kTight_BitmapInit = kFirstBitmapInit,
kRowBytes_BitmapInit,
kRowBytesOdd_BitmapInit,
kLastAligned_BitmapInit = kRowBytes_BitmapInit,
#if 0 // THIS CAUSES ERRORS ON WINDOWS AND SOME ANDROID DEVICES
kLast_BitmapInit = kRowBytesOdd_BitmapInit
#else
kLast_BitmapInit = kLastAligned_BitmapInit
#endif
};
static BitmapInit nextBMI(BitmapInit bmi) {
int x = bmi;
return static_cast<BitmapInit>(++x);
}
static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, BitmapInit init, SkColorType ct,
SkAlphaType at) {
SkImageInfo info = SkImageInfo::Make(rect.width(), rect.height(), ct, at);
size_t rowBytes = 0;
switch (init) {
case kTight_BitmapInit:
break;
case kRowBytes_BitmapInit:
rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel());
break;
case kRowBytesOdd_BitmapInit:
rowBytes = SkAlign4(info.width() * info.bytesPerPixel()) + 3;
break;
default:
SkASSERT(0);
break;
}
bitmap->allocPixels(info, rowBytes);
}
static const struct {
SkColorType fColorType;
SkAlphaType fAlphaType;
} gReadPixelsConfigs[] = {
{kRGBA_8888_SkColorType, kPremul_SkAlphaType},
{kRGBA_8888_SkColorType, kUnpremul_SkAlphaType},
{kRGB_888x_SkColorType, kOpaque_SkAlphaType},
{kBGRA_8888_SkColorType, kPremul_SkAlphaType},
{kBGRA_8888_SkColorType, kUnpremul_SkAlphaType},
{kAlpha_8_SkColorType, kPremul_SkAlphaType},
};
const SkIRect gReadPixelsTestRects[] = {
// entire thing
DEV_RECT,
// larger on all sides
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10),
// fully contained
SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4),
// outside top right corner
SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10),
};
enum class ReadSuccessExpectation {
kNo,
kMaybe,
kYes,
};
bool check_success_expectation(ReadSuccessExpectation expectation, bool actualSuccess) {
switch (expectation) {
case ReadSuccessExpectation::kMaybe:
return true;
case ReadSuccessExpectation::kNo:
return !actualSuccess;
case ReadSuccessExpectation::kYes:
return actualSuccess;
}
return false;
}
ReadSuccessExpectation read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo, bool isGPU) {
if (!SkIRect::Intersects(srcRect, DEV_RECT)) {
return ReadSuccessExpectation::kNo;
}
if (!SkImageInfoValidConversion(dstInfo, srcInfo)) {
return ReadSuccessExpectation::kNo;
}
if (!isGPU) {
return ReadSuccessExpectation::kYes;
}
// This serves more as documentation of what currently works on the GPU rather than desired
// expectations. Once we make GrSurfaceContext color/alpha type aware and clean up some read
// pixels code we will make more scenarios work.
// The GPU code current only does the premul->unpremul conversion, not the reverse.
if (srcInfo.alphaType() == kUnpremul_SkAlphaType &&
dstInfo.alphaType() == kPremul_SkAlphaType) {
return ReadSuccessExpectation::kNo;
}
// We don't currently require reading alpha-only surfaces to succeed because of some pessimistic
// caps decisions and alpha/red complexity in GL.
if (SkColorTypeIsAlphaOnly(srcInfo.colorType())) {
return ReadSuccessExpectation::kMaybe;
}
if (!SkColorTypeIsAlwaysOpaque(srcInfo.colorType()) &&
SkColorTypeIsAlwaysOpaque(dstInfo.colorType())) {
return ReadSuccessExpectation::kNo;
}
return ReadSuccessExpectation::kYes;
}
static void test_readpixels(skiatest::Reporter* reporter, const sk_sp<SkSurface>& surface,
const SkImageInfo& surfaceInfo, BitmapInit lastBitmapInit) {
SkCanvas* canvas = surface->getCanvas();
fill_src_canvas(canvas);
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= lastBitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
}
uint32_t idBefore = surface->generationID();
bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop);
uint32_t idAfter = surface->generationID();
// we expect to succeed when the read isn't fully clipped out and the infos are
// compatible.
bool isGPU = SkToBool(surface->getCanvas()->getGrContext());
auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo, isGPU);
// determine whether we expected the read to succeed.
REPORTER_ASSERT(reporter, check_success_expectation(expectSuccess, success),
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
// read pixels should never change the gen id
REPORTER_ASSERT(reporter, idBefore == idAfter);
if (success || startsWithPixels) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success,
startsWithPixels, surfaceInfo.alphaType());
} else {
// if we had no pixels beforehand and the readPixels
// failed then our bitmap should still not have pixels
REPORTER_ASSERT(reporter, bmp.isNull());
}
}
}
}
}
DEF_TEST(ReadPixels, reporter) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H);
auto surface(SkSurface::MakeRaster(info));
// SW readback fails a premul check when reading back to an unaligned rowbytes.
test_readpixels(reporter, surface, info, kLastAligned_BitmapInit);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) {
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_GL_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// skbug.com/6742 ReadPixels_Texture & _Gpu don't work with ANGLE ES2 configs
return;
}
static const SkImageInfo kImageInfos[] = {
SkImageInfo::Make(DEV_W, DEV_H, kRGBA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kBGRA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kRGB_888x_SkColorType, kOpaque_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kAlpha_8_SkColorType, kPremul_SkAlphaType),
};
for (const auto& ii : kImageInfos) {
for (auto& origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
sk_sp<SkSurface> surface(SkSurface::MakeRenderTarget(
ctxInfo.grContext(), SkBudgeted::kNo, ii, 0, origin, nullptr));
if (!surface) {
continue;
}
test_readpixels(reporter, surface, ii, kLast_BitmapInit);
}
}
}
#endif
#if SK_SUPPORT_GPU
static void test_readpixels_texture(skiatest::Reporter* reporter,
sk_sp<GrSurfaceContext> sContext,
const SkImageInfo& surfaceInfo) {
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= kLast_BitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
// Try doing the read directly from a non-renderable texture
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
uint32_t flags = 0;
// TODO: These two hacks can go away when the surface context knows the alpha
// type.
// Tell the read to perform an unpremul step since it doesn't know alpha type.
if (gReadPixelsConfigs[c].fAlphaType == kUnpremul_SkAlphaType) {
flags = GrContextPriv::kUnpremul_PixelOpsFlag;
}
// The surface context doesn't know that the src is opaque. We don't support
// converting non-opaque data to opaque during a read.
if (bmp.alphaType() == kOpaque_SkAlphaType &&
surfaceInfo.alphaType() != kOpaque_SkAlphaType) {
continue;
}
bool success = sContext->readPixels(bmp.info(), bmp.getPixels(),
bmp.rowBytes(),
srcRect.fLeft, srcRect.fTop, flags);
auto expectSuccess =
read_should_succeed(srcRect, bmp.info(), surfaceInfo, true);
REPORTER_ASSERT(
reporter, check_success_expectation(expectSuccess, success),
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
if (success) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true,
surfaceInfo.alphaType());
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) {
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_GL_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// skbug.com/6742 ReadPixels_Texture & _Gpu don't work with ANGLE ES2 configs
return;
}
GrContext* context = ctxInfo.grContext();
SkBitmap bmp = make_src_bitmap();
// On the GPU we will also try reading back from a non-renderable texture.
for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
for (auto isRT : {false, true}) {
sk_sp<GrTextureProxy> proxy = sk_gpu_test::MakeTextureProxyFromData(
context, isRT, DEV_W, DEV_H, bmp.colorType(), origin, bmp.getPixels(),
bmp.rowBytes());
sk_sp<GrSurfaceContext> sContext = context->contextPriv().makeWrappedSurfaceContext(
std::move(proxy));
auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType);
test_readpixels_texture(reporter, std::move(sContext), info);
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
static const uint32_t kNumPixels = 5;
// The five reference pixels are: red, green, blue, white, black.
// Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector
// plus a tail pixel.
static const uint32_t rgba[kNumPixels] = {
0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000
};
static const uint32_t bgra[kNumPixels] = {
0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000
};
static const uint16_t rgb565[kNumPixels] = {
SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0
};
static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F };
static const uint64_t kRed = (uint64_t) SK_Half1 << 0;
static const uint64_t kGreen = (uint64_t) SK_Half1 << 16;
static const uint64_t kBlue = (uint64_t) SK_Half1 << 32;
static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48;
static const uint64_t f16[kNumPixels] = {
kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha
};
static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const void* five_reference_pixels(SkColorType colorType) {
switch (colorType) {
case kUnknown_SkColorType:
return nullptr;
case kAlpha_8_SkColorType:
return alpha8;
case kRGB_565_SkColorType:
return rgb565;
case kARGB_4444_SkColorType:
return rgba4444;
case kRGBA_8888_SkColorType:
return rgba;
case kBGRA_8888_SkColorType:
return bgra;
case kGray_8_SkColorType:
return gray8;
case kRGBA_F16_SkColorType:
return f16;
default:
return nullptr; // remove me when kIndex_8 is removed from the enum
}
SkASSERT(false);
return nullptr;
}
static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo) {
if (!SkImageInfoIsValidRenderingCS(srcInfo)) {
return;
}
const void* srcPixels = five_reference_pixels(srcInfo.colorType());
SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes());
sk_sp<SkImage> src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr);
REPORTER_ASSERT(r, src);
// Enough space for 5 pixels when color type is F16, more than enough space in other cases.
uint64_t dstPixels[kNumPixels];
SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes());
bool success = src->readPixels(dstPixmap, 0, 0);
REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo));
if (success) {
if (kGray_8_SkColorType == srcInfo.colorType() &&
kGray_8_SkColorType != dstInfo.colorType())
{
// This conversion is legal, but we won't get the "reference" pixels since we cannot
// represent colors in kGray8.
return;
}
REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()),
kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType())));
}
}
DEF_TEST(ReadPixels_ValidConversion, reporter) {
const SkColorType kColorTypes[] = {
kUnknown_SkColorType,
kAlpha_8_SkColorType,
kRGB_565_SkColorType,
kARGB_4444_SkColorType,
kRGBA_8888_SkColorType,
kBGRA_8888_SkColorType,
kGray_8_SkColorType,
kRGBA_F16_SkColorType,
};
const SkAlphaType kAlphaTypes[] = {
kUnknown_SkAlphaType,
kOpaque_SkAlphaType,
kPremul_SkAlphaType,
kUnpremul_SkAlphaType,
};
const sk_sp<SkColorSpace> kColorSpaces[] = {
nullptr,
SkColorSpace::MakeSRGB(),
};
for (SkColorType dstCT : kColorTypes) {
for (SkAlphaType dstAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> dstCS : kColorSpaces) {
for (SkColorType srcCT : kColorTypes) {
for (SkAlphaType srcAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> srcCS : kColorSpaces) {
if (kRGBA_F16_SkColorType == dstCT && dstCS) {
dstCS = dstCS->makeLinearGamma();
}
if (kRGBA_F16_SkColorType == srcCT && srcCS) {
srcCS = srcCS->makeLinearGamma();
}
test_conversion(reporter,
SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS),
SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS));
}
}
}
}
}
}
}