| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "PathOpsTestCommon.h" |
| #include "SkPathOpsBounds.h" |
| #include "SkPathOpsConic.h" |
| #include "SkPathOpsCubic.h" |
| #include "SkPathOpsLine.h" |
| #include "SkPathOpsQuad.h" |
| #include "SkPathOpsTSect.h" |
| #include "SkReduceOrder.h" |
| #include "SkTSort.h" |
| |
| static double calc_t_div(const SkDCubic& cubic, double precision, double start) { |
| const double adjust = sqrt(3.) / 36; |
| SkDCubic sub; |
| const SkDCubic* cPtr; |
| if (start == 0) { |
| cPtr = &cubic; |
| } else { |
| // OPTIMIZE: special-case half-split ? |
| sub = cubic.subDivide(start, 1); |
| cPtr = ⊂ |
| } |
| const SkDCubic& c = *cPtr; |
| double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; |
| double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; |
| double dist = sqrt(dx * dx + dy * dy); |
| double tDiv3 = precision / (adjust * dist); |
| double t = SkDCubeRoot(tDiv3); |
| if (start > 0) { |
| t = start + (1 - start) * t; |
| } |
| return t; |
| } |
| |
| static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) { |
| double tDiv = calc_t_div(cubic, precision, 0); |
| if (tDiv >= 1) { |
| return true; |
| } |
| if (tDiv >= 0.5) { |
| ts->push_back(0.5); |
| return true; |
| } |
| return false; |
| } |
| |
| static void addTs(const SkDCubic& cubic, double precision, double start, double end, |
| SkTArray<double, true>* ts) { |
| double tDiv = calc_t_div(cubic, precision, 0); |
| double parts = ceil(1.0 / tDiv); |
| for (double index = 0; index < parts; ++index) { |
| double newT = start + (index / parts) * (end - start); |
| if (newT > 0 && newT < 1) { |
| ts->push_back(newT); |
| } |
| } |
| } |
| |
| static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) { |
| SkReduceOrder reducer; |
| int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics); |
| if (order < 3) { |
| return; |
| } |
| double inflectT[5]; |
| int inflections = cubic->findInflections(inflectT); |
| SkASSERT(inflections <= 2); |
| if (!cubic->endsAreExtremaInXOrY()) { |
| inflections += cubic->findMaxCurvature(&inflectT[inflections]); |
| SkASSERT(inflections <= 5); |
| } |
| SkTQSort<double>(inflectT, &inflectT[inflections - 1]); |
| // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
| // own subroutine? |
| while (inflections && approximately_less_than_zero(inflectT[0])) { |
| memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
| } |
| int start = 0; |
| int next = 1; |
| while (next < inflections) { |
| if (!approximately_equal(inflectT[start], inflectT[next])) { |
| ++start; |
| ++next; |
| continue; |
| } |
| memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
| } |
| |
| while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
| --inflections; |
| } |
| SkDCubicPair pair; |
| if (inflections == 1) { |
| pair = cubic->chopAt(inflectT[0]); |
| int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); |
| if (orderP1 < 2) { |
| --inflections; |
| } else { |
| int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); |
| if (orderP2 < 2) { |
| --inflections; |
| } |
| } |
| } |
| if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) { |
| return; |
| } |
| if (inflections == 1) { |
| pair = cubic->chopAt(inflectT[0]); |
| addTs(pair.first(), precision, 0, inflectT[0], ts); |
| addTs(pair.second(), precision, inflectT[0], 1, ts); |
| return; |
| } |
| if (inflections > 1) { |
| SkDCubic part = cubic->subDivide(0, inflectT[0]); |
| addTs(part, precision, 0, inflectT[0], ts); |
| int last = inflections - 1; |
| for (int idx = 0; idx < last; ++idx) { |
| part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]); |
| addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
| } |
| part = cubic->subDivide(inflectT[last], 1); |
| addTs(part, precision, inflectT[last], 1, ts); |
| return; |
| } |
| addTs(*cubic, precision, 0, 1, ts); |
| } |
| |
| void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) { |
| SkTArray<double, true> ts; |
| toQuadraticTs(&cubic, precision, &ts); |
| if (ts.count() <= 0) { |
| SkDQuad quad = cubic.toQuad(); |
| quads.push_back(quad); |
| return; |
| } |
| double tStart = 0; |
| for (int i1 = 0; i1 <= ts.count(); ++i1) { |
| const double tEnd = i1 < ts.count() ? ts[i1] : 1; |
| SkDRect bounds; |
| bounds.setBounds(cubic); |
| SkDCubic part = cubic.subDivide(tStart, tEnd); |
| SkDQuad quad = part.toQuad(); |
| if (quad[1].fX < bounds.fLeft) { |
| quad[1].fX = bounds.fLeft; |
| } else if (quad[1].fX > bounds.fRight) { |
| quad[1].fX = bounds.fRight; |
| } |
| if (quad[1].fY < bounds.fTop) { |
| quad[1].fY = bounds.fTop; |
| } else if (quad[1].fY > bounds.fBottom) { |
| quad[1].fY = bounds.fBottom; |
| } |
| quads.push_back(quad); |
| tStart = tEnd; |
| } |
| } |
| |
| void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) { |
| quadPath->reset(); |
| SkDCubic cubic; |
| SkTArray<SkDQuad, true> quads; |
| SkPath::RawIter iter(cubicPath); |
| uint8_t verb; |
| SkPoint pts[4]; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| quadPath->moveTo(pts[0].fX, pts[0].fY); |
| continue; |
| case SkPath::kLine_Verb: |
| quadPath->lineTo(pts[1].fX, pts[1].fY); |
| break; |
| case SkPath::kQuad_Verb: |
| quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); |
| break; |
| case SkPath::kCubic_Verb: |
| quads.reset(); |
| cubic.set(pts); |
| CubicToQuads(cubic, cubic.calcPrecision(), quads); |
| for (int index = 0; index < quads.count(); ++index) { |
| SkPoint qPts[2] = { |
| quads[index][1].asSkPoint(), |
| quads[index][2].asSkPoint() |
| }; |
| quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY); |
| } |
| break; |
| case SkPath::kClose_Verb: |
| quadPath->close(); |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| } |
| } |
| |
| void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) { |
| simplePath->reset(); |
| SkDCubic cubic; |
| SkPath::RawIter iter(cubicPath); |
| uint8_t verb; |
| SkPoint pts[4]; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| simplePath->moveTo(pts[0].fX, pts[0].fY); |
| continue; |
| case SkPath::kLine_Verb: |
| simplePath->lineTo(pts[1].fX, pts[1].fY); |
| break; |
| case SkPath::kQuad_Verb: |
| simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); |
| break; |
| case SkPath::kCubic_Verb: { |
| cubic.set(pts); |
| double tInflects[2]; |
| int inflections = cubic.findInflections(tInflects); |
| if (inflections > 1 && tInflects[0] > tInflects[1]) { |
| SkTSwap(tInflects[0], tInflects[1]); |
| } |
| double lo = 0; |
| for (int index = 0; index <= inflections; ++index) { |
| double hi = index < inflections ? tInflects[index] : 1; |
| SkDCubic part = cubic.subDivide(lo, hi); |
| SkPoint cPts[3]; |
| cPts[0] = part[1].asSkPoint(); |
| cPts[1] = part[2].asSkPoint(); |
| cPts[2] = part[3].asSkPoint(); |
| simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY, |
| cPts[2].fX, cPts[2].fY); |
| lo = hi; |
| } |
| break; |
| } |
| case SkPath::kClose_Verb: |
| simplePath->close(); |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| } |
| } |
| |
| bool ValidBounds(const SkPathOpsBounds& bounds) { |
| if (SkScalarIsNaN(bounds.fLeft)) { |
| return false; |
| } |
| if (SkScalarIsNaN(bounds.fTop)) { |
| return false; |
| } |
| if (SkScalarIsNaN(bounds.fRight)) { |
| return false; |
| } |
| return !SkScalarIsNaN(bounds.fBottom); |
| } |
| |
| bool ValidConic(const SkDConic& conic) { |
| for (int index = 0; index < SkDConic::kPointCount; ++index) { |
| if (!ValidPoint(conic[index])) { |
| return false; |
| } |
| } |
| if (SkDoubleIsNaN(conic.fWeight)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool ValidCubic(const SkDCubic& cubic) { |
| for (int index = 0; index < 4; ++index) { |
| if (!ValidPoint(cubic[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ValidLine(const SkDLine& line) { |
| for (int index = 0; index < 2; ++index) { |
| if (!ValidPoint(line[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ValidPoint(const SkDPoint& pt) { |
| if (SkDoubleIsNaN(pt.fX)) { |
| return false; |
| } |
| return !SkDoubleIsNaN(pt.fY); |
| } |
| |
| bool ValidPoints(const SkPoint* pts, int count) { |
| for (int index = 0; index < count; ++index) { |
| if (SkScalarIsNaN(pts[index].fX)) { |
| return false; |
| } |
| if (SkScalarIsNaN(pts[index].fY)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ValidQuad(const SkDQuad& quad) { |
| for (int index = 0; index < 3; ++index) { |
| if (!ValidPoint(quad[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ValidVector(const SkDVector& v) { |
| if (SkDoubleIsNaN(v.fX)) { |
| return false; |
| } |
| return !SkDoubleIsNaN(v.fY); |
| } |