| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrVkGpuCommandBuffer.h" |
| |
| #include "GrFixedClip.h" |
| #include "GrMesh.h" |
| #include "GrPipeline.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrTextureAccess.h" |
| #include "GrTexturePriv.h" |
| #include "GrVkCommandBuffer.h" |
| #include "GrVkGpu.h" |
| #include "GrVkPipeline.h" |
| #include "GrVkRenderPass.h" |
| #include "GrVkRenderTarget.h" |
| #include "GrVkResourceProvider.h" |
| #include "GrVkTexture.h" |
| |
| void get_vk_load_store_ops(const GrGpuCommandBuffer::LoadAndStoreInfo& info, |
| VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) { |
| switch (info.fLoadOp) { |
| case GrGpuCommandBuffer::LoadOp::kLoad: |
| *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; |
| break; |
| case GrGpuCommandBuffer::LoadOp::kClear: |
| *loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| break; |
| case GrGpuCommandBuffer::LoadOp::kDiscard: |
| *loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| break; |
| default: |
| SK_ABORT("Invalid LoadOp"); |
| *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; |
| } |
| |
| switch (info.fStoreOp) { |
| case GrGpuCommandBuffer::StoreOp::kStore: |
| *storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| break; |
| case GrGpuCommandBuffer::StoreOp::kDiscard: |
| *storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| break; |
| default: |
| SK_ABORT("Invalid StoreOp"); |
| *storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| } |
| } |
| |
| GrVkGpuCommandBuffer::GrVkGpuCommandBuffer(GrVkGpu* gpu, |
| GrVkRenderTarget* target, |
| const LoadAndStoreInfo& colorInfo, |
| const LoadAndStoreInfo& stencilInfo) |
| : fGpu(gpu) |
| , fRenderTarget(target) |
| , fIsEmpty(true) |
| , fStartsWithClear(false) { |
| VkAttachmentLoadOp vkLoadOp; |
| VkAttachmentStoreOp vkStoreOp; |
| |
| get_vk_load_store_ops(colorInfo, &vkLoadOp, &vkStoreOp); |
| GrVkRenderPass::LoadStoreOps vkColorOps(vkLoadOp, vkStoreOp); |
| |
| get_vk_load_store_ops(stencilInfo, &vkLoadOp, &vkStoreOp); |
| GrVkRenderPass::LoadStoreOps vkStencilOps(vkLoadOp, vkStoreOp); |
| |
| GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| |
| const GrVkResourceProvider::CompatibleRPHandle& rpHandle = target->compatibleRenderPassHandle(); |
| if (rpHandle.isValid()) { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } else { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(*target, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } |
| |
| GrColorToRGBAFloat(colorInfo.fClearColor, fColorClearValue.color.float32); |
| |
| fCommandBuffer = gpu->resourceProvider().findOrCreateSecondaryCommandBuffer(); |
| fCommandBuffer->begin(gpu, target->framebuffer(), fRenderPass); |
| } |
| |
| GrVkGpuCommandBuffer::~GrVkGpuCommandBuffer() { |
| fCommandBuffer->unref(fGpu); |
| fRenderPass->unref(fGpu); |
| } |
| |
| GrGpu* GrVkGpuCommandBuffer::gpu() { return fGpu; } |
| |
| void GrVkGpuCommandBuffer::end() { |
| fCommandBuffer->end(fGpu); |
| } |
| |
| void GrVkGpuCommandBuffer::onSubmit(const SkIRect& bounds) { |
| // TODO: We can't add this optimization yet since many things create a scratch texture which |
| // adds the discard immediately, but then don't draw to it right away. This causes the discard |
| // to be ignored and we get yelled at for loading uninitialized data. However, once MDP lands, |
| // the discard will get reordered with the rest of the draw commands and we can re-enable this. |
| #if 0 |
| if (fIsEmpty && !fStartsWithClear) { |
| // We have sumbitted no actual draw commands to the command buffer and we are not using |
| // the render pass to do a clear so there is no need to submit anything. |
| return; |
| } |
| #endif |
| |
| // Change layout of our render target so it can be used as the color attachment. Currently |
| // we don't attach the resolve to the framebuffer so no need to change its layout. |
| GrVkImage* targetImage = fRenderTarget->msaaImage() ? fRenderTarget->msaaImage() |
| : fRenderTarget; |
| targetImage->setImageLayout(fGpu, |
| VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, |
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, |
| VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| false); |
| |
| // If we are using a stencil attachment we also need to update its layout |
| if (GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment()) { |
| GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil; |
| vkStencil->setImageLayout(fGpu, |
| VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, |
| VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| false); |
| } |
| |
| fGpu->submitSecondaryCommandBuffer(fCommandBuffer, fRenderPass, &fColorClearValue, |
| fRenderTarget, bounds); |
| } |
| |
| void GrVkGpuCommandBuffer::discard(GrRenderTarget* target) { |
| if (fIsEmpty) { |
| // We will change the render pass to do a clear load instead |
| GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| |
| const GrVkRenderPass* oldRP = fRenderPass; |
| |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(target); |
| const GrVkResourceProvider::CompatibleRPHandle& rpHandle = |
| vkRT->compatibleRenderPassHandle(); |
| if (rpHandle.isValid()) { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } else { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } |
| |
| SkASSERT(fRenderPass->isCompatible(*oldRP)); |
| oldRP->unref(fGpu); |
| fStartsWithClear = false; |
| } |
| } |
| |
| void GrVkGpuCommandBuffer::onClearStencilClip(GrRenderTarget* target, |
| const GrFixedClip& clip, |
| bool insideStencilMask) { |
| SkASSERT(target); |
| SkASSERT(!clip.hasWindowRectangles()); |
| |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(target); |
| GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(sb); |
| int stencilBitCount = sb->bits(); |
| |
| // The contract with the callers does not guarantee that we preserve all bits in the stencil |
| // during this clear. Thus we will clear the entire stencil to the desired value. |
| |
| VkClearDepthStencilValue vkStencilColor; |
| memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue)); |
| if (insideStencilMask) { |
| vkStencilColor.stencil = (1 << (stencilBitCount - 1)); |
| } else { |
| vkStencilColor.stencil = 0; |
| } |
| |
| VkClearRect clearRect; |
| // Flip rect if necessary |
| SkIRect vkRect; |
| if (!clip.scissorEnabled()) { |
| vkRect.setXYWH(0, 0, vkRT->width(), vkRT->height()); |
| } else if (kBottomLeft_GrSurfaceOrigin != vkRT->origin()) { |
| vkRect = clip.scissorRect(); |
| } else { |
| const SkIRect& scissor = clip.scissorRect(); |
| vkRect.setLTRB(scissor.fLeft, vkRT->height() - scissor.fBottom, |
| scissor.fRight, vkRT->height() - scissor.fTop); |
| } |
| |
| clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; |
| clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; |
| |
| clearRect.baseArrayLayer = 0; |
| clearRect.layerCount = 1; |
| |
| uint32_t stencilIndex; |
| SkAssertResult(fRenderPass->stencilAttachmentIndex(&stencilIndex)); |
| |
| VkClearAttachment attachment; |
| attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| attachment.colorAttachment = 0; // this value shouldn't matter |
| attachment.clearValue.depthStencil = vkStencilColor; |
| |
| fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); |
| fIsEmpty = false; |
| } |
| |
| void GrVkGpuCommandBuffer::onClear(GrRenderTarget* target, const GrFixedClip& clip, GrColor color) { |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| SkASSERT(!clip.hasWindowRectangles()); |
| |
| VkClearColorValue vkColor; |
| GrColorToRGBAFloat(color, vkColor.float32); |
| |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(target); |
| |
| if (fIsEmpty && !clip.scissorEnabled()) { |
| // We will change the render pass to do a clear load instead |
| GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD, |
| VK_ATTACHMENT_STORE_OP_STORE); |
| |
| const GrVkRenderPass* oldRP = fRenderPass; |
| |
| const GrVkResourceProvider::CompatibleRPHandle& rpHandle = |
| vkRT->compatibleRenderPassHandle(); |
| if (rpHandle.isValid()) { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } else { |
| fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, |
| vkColorOps, |
| vkResolveOps, |
| vkStencilOps); |
| } |
| |
| SkASSERT(fRenderPass->isCompatible(*oldRP)); |
| oldRP->unref(fGpu); |
| |
| GrColorToRGBAFloat(color, fColorClearValue.color.float32); |
| fStartsWithClear = true; |
| return; |
| } |
| |
| // We always do a sub rect clear with clearAttachments since we are inside a render pass |
| VkClearRect clearRect; |
| // Flip rect if necessary |
| SkIRect vkRect; |
| if (!clip.scissorEnabled()) { |
| vkRect.setXYWH(0, 0, vkRT->width(), vkRT->height()); |
| } else if (kBottomLeft_GrSurfaceOrigin != vkRT->origin()) { |
| vkRect = clip.scissorRect(); |
| } else { |
| const SkIRect& scissor = clip.scissorRect(); |
| vkRect.setLTRB(scissor.fLeft, vkRT->height() - scissor.fBottom, |
| scissor.fRight, vkRT->height() - scissor.fTop); |
| } |
| clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; |
| clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; |
| clearRect.baseArrayLayer = 0; |
| clearRect.layerCount = 1; |
| |
| uint32_t colorIndex; |
| SkAssertResult(fRenderPass->colorAttachmentIndex(&colorIndex)); |
| |
| VkClearAttachment attachment; |
| attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| attachment.colorAttachment = colorIndex; |
| attachment.clearValue.color = vkColor; |
| |
| fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); |
| fIsEmpty = false; |
| return; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrVkGpuCommandBuffer::bindGeometry(const GrPrimitiveProcessor& primProc, |
| const GrNonInstancedMesh& mesh) { |
| // There is no need to put any memory barriers to make sure host writes have finished here. |
| // When a command buffer is submitted to a queue, there is an implicit memory barrier that |
| // occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of |
| // an active RenderPass. |
| SkASSERT(!mesh.vertexBuffer()->isCPUBacked()); |
| GrVkVertexBuffer* vbuf; |
| vbuf = (GrVkVertexBuffer*)mesh.vertexBuffer(); |
| SkASSERT(vbuf); |
| SkASSERT(!vbuf->isMapped()); |
| |
| fCommandBuffer->bindVertexBuffer(fGpu, vbuf); |
| |
| if (mesh.isIndexed()) { |
| SkASSERT(!mesh.indexBuffer()->isCPUBacked()); |
| GrVkIndexBuffer* ibuf = (GrVkIndexBuffer*)mesh.indexBuffer(); |
| SkASSERT(ibuf); |
| SkASSERT(!ibuf->isMapped()); |
| |
| fCommandBuffer->bindIndexBuffer(fGpu, ibuf); |
| } |
| } |
| |
| sk_sp<GrVkPipelineState> GrVkGpuCommandBuffer::prepareDrawState( |
| const GrPipeline& pipeline, |
| const GrPrimitiveProcessor& primProc, |
| GrPrimitiveType primitiveType, |
| const GrVkRenderPass& renderPass) { |
| sk_sp<GrVkPipelineState> pipelineState = |
| fGpu->resourceProvider().findOrCreateCompatiblePipelineState(pipeline, |
| primProc, |
| primitiveType, |
| renderPass); |
| if (!pipelineState) { |
| return pipelineState; |
| } |
| |
| pipelineState->setData(fGpu, primProc, pipeline); |
| |
| pipelineState->bind(fGpu, fCommandBuffer); |
| |
| GrVkPipeline::SetDynamicState(fGpu, fCommandBuffer, pipeline); |
| |
| return pipelineState; |
| } |
| |
| static void prepare_sampled_images(const GrProcessor& processor, GrVkGpu* gpu) { |
| for (int i = 0; i < processor.numTextures(); ++i) { |
| const GrTextureAccess& texAccess = processor.textureAccess(i); |
| GrVkTexture* vkTexture = static_cast<GrVkTexture*>(processor.texture(i)); |
| SkASSERT(vkTexture); |
| |
| // We may need to resolve the texture first if it is also a render target |
| GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(vkTexture->asRenderTarget()); |
| if (texRT) { |
| gpu->onResolveRenderTarget(texRT); |
| } |
| |
| const GrTextureParams& params = texAccess.getParams(); |
| // Check if we need to regenerate any mip maps |
| if (GrTextureParams::kMipMap_FilterMode == params.filterMode()) { |
| if (vkTexture->texturePriv().mipMapsAreDirty()) { |
| gpu->generateMipmap(vkTexture); |
| vkTexture->texturePriv().dirtyMipMaps(false); |
| } |
| } |
| |
| // TODO: If we ever decide to create the secondary command buffers ahead of time before we |
| // are actually going to submit them, we will need to track the sampled images and delay |
| // adding the layout change/barrier until we are ready to submit. |
| vkTexture->setImageLayout(gpu, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, |
| false); |
| } |
| } |
| |
| void GrVkGpuCommandBuffer::onDraw(const GrPipeline& pipeline, |
| const GrPrimitiveProcessor& primProc, |
| const GrMesh* meshes, |
| int meshCount) { |
| if (!meshCount) { |
| return; |
| } |
| GrRenderTarget* rt = pipeline.getRenderTarget(); |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt); |
| const GrVkRenderPass* renderPass = vkRT->simpleRenderPass(); |
| SkASSERT(renderPass); |
| |
| prepare_sampled_images(primProc, fGpu); |
| for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) { |
| prepare_sampled_images(pipeline.getFragmentProcessor(i), fGpu); |
| } |
| prepare_sampled_images(pipeline.getXferProcessor(), fGpu); |
| |
| GrPrimitiveType primitiveType = meshes[0].primitiveType(); |
| sk_sp<GrVkPipelineState> pipelineState = this->prepareDrawState(pipeline, |
| primProc, |
| primitiveType, |
| *renderPass); |
| if (!pipelineState) { |
| return; |
| } |
| |
| for (int i = 0; i < meshCount; ++i) { |
| const GrMesh& mesh = meshes[i]; |
| GrMesh::Iterator iter; |
| const GrNonInstancedMesh* nonIdxMesh = iter.init(mesh); |
| do { |
| if (nonIdxMesh->primitiveType() != primitiveType) { |
| // Technically we don't have to call this here (since there is a safety check in |
| // pipelineState:setData but this will allow for quicker freeing of resources if the |
| // pipelineState sits in a cache for a while. |
| pipelineState->freeTempResources(fGpu); |
| SkDEBUGCODE(pipelineState = nullptr); |
| primitiveType = nonIdxMesh->primitiveType(); |
| pipelineState = this->prepareDrawState(pipeline, |
| primProc, |
| primitiveType, |
| *renderPass); |
| if (!pipelineState) { |
| return; |
| } |
| } |
| SkASSERT(pipelineState); |
| this->bindGeometry(primProc, *nonIdxMesh); |
| |
| if (nonIdxMesh->isIndexed()) { |
| fCommandBuffer->drawIndexed(fGpu, |
| nonIdxMesh->indexCount(), |
| 1, |
| nonIdxMesh->startIndex(), |
| nonIdxMesh->startVertex(), |
| 0); |
| } else { |
| fCommandBuffer->draw(fGpu, |
| nonIdxMesh->vertexCount(), |
| 1, |
| nonIdxMesh->startVertex(), |
| 0); |
| } |
| fIsEmpty = false; |
| |
| fGpu->stats()->incNumDraws(); |
| } while ((nonIdxMesh = iter.next())); |
| } |
| |
| // Technically we don't have to call this here (since there is a safety check in |
| // pipelineState:setData but this will allow for quicker freeing of resources if the |
| // pipelineState sits in a cache for a while. |
| pipelineState->freeTempResources(fGpu); |
| } |
| |