| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkDQuadImplicit.h" |
| |
| /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
| * |
| * This paper proves that Syvester's method can compute the implicit form of |
| * the quadratic from the parameterized form. |
| * |
| * Given x = a*t*t + b*t + c (the parameterized form) |
| * y = d*t*t + e*t + f |
| * |
| * we want to find an equation of the implicit form: |
| * |
| * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 |
| * |
| * The implicit form can be expressed as a 4x4 determinant, as shown. |
| * |
| * The resultant obtained by Syvester's method is |
| * |
| * | a b (c - x) 0 | |
| * | 0 a b (c - x) | |
| * | d e (f - y) 0 | |
| * | 0 d e (f - y) | |
| * |
| * which expands to |
| * |
| * d*d*x*x + -2*a*d*x*y + a*a*y*y |
| * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x |
| * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y |
| * + |
| * | a b c 0 | |
| * | 0 a b c | == 0. |
| * | d e f 0 | |
| * | 0 d e f | |
| * |
| * Expanding the constant determinant results in |
| * |
| * | a b c | | b c 0 | |
| * a*| e f 0 | + d*| a b c | == |
| * | d e f | | d e f | |
| * |
| * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) |
| * |
| */ |
| |
| // use the tricky arithmetic path, but leave the original to compare just in case |
| static bool straight_forward = false; |
| |
| SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { |
| double a, b, c; |
| SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
| double d, e, f; |
| SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
| // compute the implicit coefficients |
| if (straight_forward) { // 42 muls, 13 adds |
| fP[kXx_Coeff] = d * d; |
| fP[kXy_Coeff] = -2 * a * d; |
| fP[kYy_Coeff] = a * a; |
| fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; |
| fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; |
| fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) |
| + d*(b*b*f + c*c*d - c*a*f - c*e*b); |
| } else { // 26 muls, 11 adds |
| double aa = a * a; |
| double ad = a * d; |
| double dd = d * d; |
| fP[kXx_Coeff] = dd; |
| fP[kXy_Coeff] = -2 * ad; |
| fP[kYy_Coeff] = aa; |
| double be = b * e; |
| double bde = be * d; |
| double cdd = c * dd; |
| double ee = e * e; |
| fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; |
| double aaf = aa * f; |
| double abe = a * be; |
| double ac = a * c; |
| double bb_2ac = b*b - 2*ac; |
| fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; |
| fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; |
| } |
| } |
| |
| /* Given a pair of quadratics, determine their parametric coefficients. |
| * If the scaled coefficients are nearly equal, then the part of the quadratics |
| * may be coincident. |
| * OPTIMIZATION -- since comparison short-circuits on no match, |
| * lazily compute the coefficients, comparing the easiest to compute first. |
| * xx and yy first; then xy; and so on. |
| */ |
| bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { |
| int first = 0; |
| for (int index = 0; index <= kC_Coeff; ++index) { |
| if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { |
| first += first == index; |
| continue; |
| } |
| if (first == index) { |
| continue; |
| } |
| if (!AlmostEqualUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { |
| SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f |
| SkDQuadImplicit i2(quad2); |
| return i1.match(i2); |
| } |