| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/vk/GrVkGpu.h" |
| |
| #include "include/gpu/GrBackendSemaphore.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrContextOptions.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkConvertPixels.h" |
| #include "src/core/SkMipMap.h" |
| #include "src/gpu/GrContextPriv.h" |
| #include "src/gpu/GrGeometryProcessor.h" |
| #include "src/gpu/GrGpuResourceCacheAccess.h" |
| #include "src/gpu/GrMesh.h" |
| #include "src/gpu/GrPipeline.h" |
| #include "src/gpu/GrRenderTargetPriv.h" |
| #include "src/gpu/GrTexturePriv.h" |
| #include "src/gpu/vk/GrVkAMDMemoryAllocator.h" |
| #include "src/gpu/vk/GrVkCommandBuffer.h" |
| #include "src/gpu/vk/GrVkCommandPool.h" |
| #include "src/gpu/vk/GrVkGpuCommandBuffer.h" |
| #include "src/gpu/vk/GrVkImage.h" |
| #include "src/gpu/vk/GrVkIndexBuffer.h" |
| #include "src/gpu/vk/GrVkInterface.h" |
| #include "src/gpu/vk/GrVkMemory.h" |
| #include "src/gpu/vk/GrVkPipeline.h" |
| #include "src/gpu/vk/GrVkPipelineState.h" |
| #include "src/gpu/vk/GrVkRenderPass.h" |
| #include "src/gpu/vk/GrVkResourceProvider.h" |
| #include "src/gpu/vk/GrVkSemaphore.h" |
| #include "src/gpu/vk/GrVkTexture.h" |
| #include "src/gpu/vk/GrVkTextureRenderTarget.h" |
| #include "src/gpu/vk/GrVkTransferBuffer.h" |
| #include "src/gpu/vk/GrVkVertexBuffer.h" |
| #include "src/sksl/SkSLCompiler.h" |
| |
| #include "include/gpu/vk/GrVkExtensions.h" |
| #include "include/gpu/vk/GrVkTypes.h" |
| |
| #include <utility> |
| |
| #if !defined(SK_BUILD_FOR_WIN) |
| #include <unistd.h> |
| #endif // !defined(SK_BUILD_FOR_WIN) |
| |
| #if defined(SK_BUILD_FOR_WIN) && defined(SK_DEBUG) |
| #include "include/private/SkLeanWindows.h" |
| #endif |
| |
| #define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X) |
| #define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X) |
| #define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X) |
| |
| sk_sp<GrGpu> GrVkGpu::Make(const GrVkBackendContext& backendContext, |
| const GrContextOptions& options, GrContext* context) { |
| if (backendContext.fInstance == VK_NULL_HANDLE || |
| backendContext.fPhysicalDevice == VK_NULL_HANDLE || |
| backendContext.fDevice == VK_NULL_HANDLE || |
| backendContext.fQueue == VK_NULL_HANDLE) { |
| return nullptr; |
| } |
| if (!backendContext.fGetProc) { |
| return nullptr; |
| } |
| |
| PFN_vkEnumerateInstanceVersion localEnumerateInstanceVersion = |
| reinterpret_cast<PFN_vkEnumerateInstanceVersion>( |
| backendContext.fGetProc("vkEnumerateInstanceVersion", |
| VK_NULL_HANDLE, VK_NULL_HANDLE)); |
| uint32_t instanceVersion = 0; |
| if (!localEnumerateInstanceVersion) { |
| instanceVersion = VK_MAKE_VERSION(1, 0, 0); |
| } else { |
| VkResult err = localEnumerateInstanceVersion(&instanceVersion); |
| if (err) { |
| SkDebugf("Failed to enumerate instance version. Err: %d\n", err); |
| return nullptr; |
| } |
| } |
| |
| PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties = |
| reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>( |
| backendContext.fGetProc("vkGetPhysicalDeviceProperties", |
| backendContext.fInstance, |
| VK_NULL_HANDLE)); |
| |
| if (!localGetPhysicalDeviceProperties) { |
| return nullptr; |
| } |
| VkPhysicalDeviceProperties physDeviceProperties; |
| localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties); |
| uint32_t physDevVersion = physDeviceProperties.apiVersion; |
| |
| uint32_t apiVersion = backendContext.fMaxAPIVersion ? backendContext.fMaxAPIVersion |
| : instanceVersion; |
| |
| instanceVersion = SkTMin(instanceVersion, apiVersion); |
| physDevVersion = SkTMin(physDevVersion, apiVersion); |
| |
| sk_sp<const GrVkInterface> interface; |
| |
| if (backendContext.fVkExtensions) { |
| interface.reset(new GrVkInterface(backendContext.fGetProc, |
| backendContext.fInstance, |
| backendContext.fDevice, |
| instanceVersion, |
| physDevVersion, |
| backendContext.fVkExtensions)); |
| if (!interface->validate(instanceVersion, physDevVersion, backendContext.fVkExtensions)) { |
| return nullptr; |
| } |
| } else { |
| GrVkExtensions extensions; |
| // The only extension flag that may effect the vulkan backend is the swapchain extension. We |
| // need to know if this is enabled to know if we can transition to a present layout when |
| // flushing a surface. |
| if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { |
| const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; |
| extensions.init(backendContext.fGetProc, backendContext.fInstance, |
| backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); |
| } |
| interface.reset(new GrVkInterface(backendContext.fGetProc, |
| backendContext.fInstance, |
| backendContext.fDevice, |
| instanceVersion, |
| physDevVersion, |
| &extensions)); |
| if (!interface->validate(instanceVersion, physDevVersion, &extensions)) { |
| return nullptr; |
| } |
| } |
| |
| return sk_sp<GrGpu>(new GrVkGpu(context, options, backendContext, interface, instanceVersion, |
| physDevVersion)); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options, |
| const GrVkBackendContext& backendContext, sk_sp<const GrVkInterface> interface, |
| uint32_t instanceVersion, uint32_t physicalDeviceVersion) |
| : INHERITED(context) |
| , fInterface(std::move(interface)) |
| , fMemoryAllocator(backendContext.fMemoryAllocator) |
| , fInstance(backendContext.fInstance) |
| , fPhysicalDevice(backendContext.fPhysicalDevice) |
| , fDevice(backendContext.fDevice) |
| , fQueue(backendContext.fQueue) |
| , fQueueIndex(backendContext.fGraphicsQueueIndex) |
| , fResourceProvider(this) |
| , fDisconnected(false) { |
| SkASSERT(!backendContext.fOwnsInstanceAndDevice); |
| |
| if (!fMemoryAllocator) { |
| // We were not given a memory allocator at creation |
| fMemoryAllocator.reset(new GrVkAMDMemoryAllocator(backendContext.fPhysicalDevice, |
| fDevice, fInterface)); |
| } |
| |
| fCompiler = new SkSL::Compiler(); |
| |
| if (backendContext.fDeviceFeatures2) { |
| fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, |
| *backendContext.fDeviceFeatures2, instanceVersion, |
| physicalDeviceVersion, |
| *backendContext.fVkExtensions)); |
| } else if (backendContext.fDeviceFeatures) { |
| VkPhysicalDeviceFeatures2 features2; |
| features2.pNext = nullptr; |
| features2.features = *backendContext.fDeviceFeatures; |
| fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, |
| features2, instanceVersion, physicalDeviceVersion, |
| *backendContext.fVkExtensions)); |
| } else { |
| VkPhysicalDeviceFeatures2 features; |
| memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2)); |
| features.pNext = nullptr; |
| if (backendContext.fFeatures & kGeometryShader_GrVkFeatureFlag) { |
| features.features.geometryShader = true; |
| } |
| if (backendContext.fFeatures & kDualSrcBlend_GrVkFeatureFlag) { |
| features.features.dualSrcBlend = true; |
| } |
| if (backendContext.fFeatures & kSampleRateShading_GrVkFeatureFlag) { |
| features.features.sampleRateShading = true; |
| } |
| GrVkExtensions extensions; |
| // The only extension flag that may effect the vulkan backend is the swapchain extension. We |
| // need to know if this is enabled to know if we can transition to a present layout when |
| // flushing a surface. |
| if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { |
| const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; |
| extensions.init(backendContext.fGetProc, backendContext.fInstance, |
| backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); |
| } |
| fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, |
| features, instanceVersion, physicalDeviceVersion, extensions)); |
| } |
| fCaps.reset(SkRef(fVkCaps.get())); |
| |
| VK_CALL(GetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &fPhysDevProps)); |
| VK_CALL(GetPhysicalDeviceMemoryProperties(backendContext.fPhysicalDevice, &fPhysDevMemProps)); |
| |
| fResourceProvider.init(); |
| |
| fCmdPool = fResourceProvider.findOrCreateCommandPool(); |
| fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer(); |
| SkASSERT(fCurrentCmdBuffer); |
| fCurrentCmdBuffer->begin(this); |
| } |
| |
| void GrVkGpu::destroyResources() { |
| if (fCmdPool) { |
| fCmdPool->getPrimaryCommandBuffer()->end(this); |
| fCmdPool->close(); |
| } |
| |
| // wait for all commands to finish |
| VkResult res = VK_CALL(QueueWaitIdle(fQueue)); |
| |
| // On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences |
| // on the command buffers even though they have completed. This causes an assert to fire when |
| // destroying the command buffers. Currently this ony seems to happen on windows, so we add a |
| // sleep to make sure the fence signals. |
| #ifdef SK_DEBUG |
| if (this->vkCaps().mustSleepOnTearDown()) { |
| #if defined(SK_BUILD_FOR_WIN) |
| Sleep(10); // In milliseconds |
| #else |
| sleep(1); // In seconds |
| #endif |
| } |
| #endif |
| |
| #ifdef SK_DEBUG |
| SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res); |
| #endif |
| |
| if (fCmdPool) { |
| fCmdPool->unref(this); |
| fCmdPool = nullptr; |
| } |
| |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(this); |
| } |
| fSemaphoresToWaitOn.reset(); |
| |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(this); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| |
| fCopyManager.destroyResources(this); |
| |
| // must call this just before we destroy the command pool and VkDevice |
| fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res); |
| |
| fMemoryAllocator.reset(); |
| |
| fQueue = VK_NULL_HANDLE; |
| fDevice = VK_NULL_HANDLE; |
| fInstance = VK_NULL_HANDLE; |
| } |
| |
| GrVkGpu::~GrVkGpu() { |
| if (!fDisconnected) { |
| this->destroyResources(); |
| } |
| delete fCompiler; |
| } |
| |
| |
| void GrVkGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (!fDisconnected) { |
| if (DisconnectType::kCleanup == type) { |
| this->destroyResources(); |
| } else { |
| if (fCmdPool) { |
| fCmdPool->unrefAndAbandon(); |
| fCmdPool = nullptr; |
| } |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unrefAndAbandon(); |
| } |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unrefAndAbandon(); |
| } |
| fCopyManager.abandonResources(); |
| |
| // must call this just before we destroy the command pool and VkDevice |
| fResourceProvider.abandonResources(); |
| |
| fMemoryAllocator.reset(); |
| } |
| fSemaphoresToWaitOn.reset(); |
| fSemaphoresToSignal.reset(); |
| fCurrentCmdBuffer = nullptr; |
| fDisconnected = true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGpuRTCommandBuffer* GrVkGpu::getCommandBuffer( |
| GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds, |
| const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, |
| const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { |
| if (!fCachedRTCommandBuffer) { |
| fCachedRTCommandBuffer.reset(new GrVkGpuRTCommandBuffer(this)); |
| } |
| |
| fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo); |
| return fCachedRTCommandBuffer.get(); |
| } |
| |
| GrGpuTextureCommandBuffer* GrVkGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) { |
| if (!fCachedTexCommandBuffer) { |
| fCachedTexCommandBuffer.reset(new GrVkGpuTextureCommandBuffer(this)); |
| } |
| |
| fCachedTexCommandBuffer->set(texture, origin); |
| return fCachedTexCommandBuffer.get(); |
| } |
| |
| void GrVkGpu::submitCommandBuffer(SyncQueue sync, GrGpuFinishedProc finishedProc, |
| GrGpuFinishedContext finishedContext) { |
| SkASSERT(fCurrentCmdBuffer); |
| |
| if (!fCurrentCmdBuffer->hasWork() && kForce_SyncQueue != sync && |
| !fSemaphoresToSignal.count() && !fSemaphoresToWaitOn.count()) { |
| SkASSERT(fDrawables.empty()); |
| fResourceProvider.checkCommandBuffers(); |
| if (finishedProc) { |
| fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext); |
| } |
| return; |
| } |
| |
| fCurrentCmdBuffer->end(this); |
| fCmdPool->close(); |
| fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn); |
| |
| if (finishedProc) { |
| // Make sure this is called after closing the current command pool |
| fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext); |
| } |
| |
| // We must delete and drawables that have been waitint till submit for us to destroy. |
| fDrawables.reset(); |
| |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(this); |
| } |
| fSemaphoresToWaitOn.reset(); |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(this); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| // Release old command pool and create a new one |
| fCmdPool->unref(this); |
| fResourceProvider.checkCommandBuffers(); |
| fCmdPool = fResourceProvider.findOrCreateCommandPool(); |
| fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer(); |
| fCurrentCmdBuffer->begin(this); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| sk_sp<GrGpuBuffer> GrVkGpu::onCreateBuffer(size_t size, GrGpuBufferType type, |
| GrAccessPattern accessPattern, const void* data) { |
| sk_sp<GrGpuBuffer> buff; |
| switch (type) { |
| case GrGpuBufferType::kVertex: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStatic_GrAccessPattern == accessPattern); |
| buff = GrVkVertexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern); |
| break; |
| case GrGpuBufferType::kIndex: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStatic_GrAccessPattern == accessPattern); |
| buff = GrVkIndexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern); |
| break; |
| case GrGpuBufferType::kXferCpuToGpu: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStream_GrAccessPattern == accessPattern); |
| buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyRead_Type); |
| break; |
| case GrGpuBufferType::kXferGpuToCpu: |
| SkASSERT(kDynamic_GrAccessPattern == accessPattern || |
| kStream_GrAccessPattern == accessPattern); |
| buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyWrite_Type); |
| break; |
| default: |
| SK_ABORT("Unknown buffer type."); |
| return nullptr; |
| } |
| if (data && buff) { |
| buff->updateData(data, size); |
| } |
| return buff; |
| } |
| |
| bool GrVkGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType srcColorType, const GrMipLevel texels[], |
| int mipLevelCount) { |
| GrVkTexture* vkTex = static_cast<GrVkTexture*>(surface->asTexture()); |
| if (!vkTex) { |
| return false; |
| } |
| |
| // Make sure we have at least the base level |
| if (!mipLevelCount || !texels[0].fPixels) { |
| return false; |
| } |
| |
| SkASSERT(!GrPixelConfigIsCompressed(vkTex->config())); |
| bool success = false; |
| bool linearTiling = vkTex->isLinearTiled(); |
| if (linearTiling) { |
| if (mipLevelCount > 1) { |
| SkDebugf("Can't upload mipmap data to linear tiled texture"); |
| return false; |
| } |
| if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) { |
| // Need to change the layout to general in order to perform a host write |
| vkTex->setImageLayout(this, |
| VK_IMAGE_LAYOUT_GENERAL, |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| this->submitCommandBuffer(kForce_SyncQueue); |
| } |
| success = this->uploadTexDataLinear(vkTex, left, top, width, height, srcColorType, |
| texels[0].fPixels, texels[0].fRowBytes); |
| } else { |
| SkASSERT(mipLevelCount <= vkTex->texturePriv().maxMipMapLevel() + 1); |
| success = this->uploadTexDataOptimal(vkTex, left, top, width, height, srcColorType, texels, |
| mipLevelCount); |
| } |
| |
| return success; |
| } |
| |
| bool GrVkGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height, |
| GrColorType bufferColorType, GrGpuBuffer* transferBuffer, |
| size_t bufferOffset, size_t rowBytes) { |
| // Can't transfer compressed data |
| SkASSERT(!GrPixelConfigIsCompressed(texture->config())); |
| |
| // Vulkan only supports 4-byte aligned offsets |
| if (SkToBool(bufferOffset & 0x2)) { |
| return false; |
| } |
| GrVkTexture* vkTex = static_cast<GrVkTexture*>(texture); |
| if (!vkTex) { |
| return false; |
| } |
| GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer); |
| if (!vkBuffer) { |
| return false; |
| } |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| int bpp = GrColorTypeBytesPerPixel(bufferColorType); |
| if (rowBytes == 0) { |
| rowBytes = bpp * width; |
| } |
| |
| // Set up copy region |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = bufferOffset; |
| region.bufferRowLength = (uint32_t)(rowBytes/bpp); |
| region.bufferImageHeight = 0; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = { left, top, 0 }; |
| region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; |
| |
| // Change layout of our target so it can be copied to |
| vkTex->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image |
| fCurrentCmdBuffer->copyBufferToImage(this, |
| vkBuffer, |
| vkTex, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ®ion); |
| |
| vkTex->texturePriv().markMipMapsDirty(); |
| return true; |
| } |
| |
| bool GrVkGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType bufferColorType, GrGpuBuffer* transferBuffer, |
| size_t offset) { |
| SkASSERT(surface); |
| SkASSERT(transferBuffer); |
| |
| GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer); |
| |
| GrVkImage* srcImage; |
| if (GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget())) { |
| // Reading from render targets that wrap a secondary command buffer is not allowed since |
| // it would require us to know the VkImage, which we don't have, as well as need us to |
| // stop and start the VkRenderPass which we don't have access to. |
| if (rt->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| // resolve the render target if necessary |
| switch (rt->getResolveType()) { |
| case GrVkRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrVkRenderTarget::kAutoResolves_ResolveType: |
| break; |
| case GrVkRenderTarget::kCanResolve_ResolveType: |
| this->resolveRenderTargetNoFlush(rt); |
| break; |
| default: |
| SK_ABORT("Unknown resolve type"); |
| } |
| srcImage = rt; |
| } else { |
| srcImage = static_cast<GrVkTexture*>(surface->asTexture()); |
| } |
| |
| // Set up copy region |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = offset; |
| region.bufferRowLength = width; |
| region.bufferImageHeight = 0; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = { left, top, 0 }; |
| region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| fCurrentCmdBuffer->copyImageToBuffer(this, srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| vkBuffer, 1, ®ion); |
| |
| // Make sure the copy to buffer has finished. |
| vkBuffer->addMemoryBarrier(this, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| |
| // The caller is responsible for syncing. |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| |
| return true; |
| } |
| |
| void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(dst); |
| SkASSERT(src && src->numColorSamples() > 1 && src->msaaImage()); |
| |
| VkImageResolve resolveInfo; |
| resolveInfo.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; |
| resolveInfo.srcOffset = {srcRect.fLeft, srcRect.fTop, 0}; |
| resolveInfo.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; |
| resolveInfo.dstOffset = {dstPoint.fX, dstPoint.fY, 0}; |
| resolveInfo.extent = {(uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1}; |
| |
| GrVkImage* dstImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| if (dstRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); |
| dstImage = vkRT; |
| } else { |
| SkASSERT(dst->asTexture()); |
| dstImage = static_cast<GrVkTexture*>(dst->asTexture()); |
| } |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| src->msaaImage()->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo); |
| } |
| |
| void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, bool requiresSubmit) { |
| if (target->needsResolve()) { |
| SkASSERT(target->numColorSamples() > 1); |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target); |
| SkASSERT(rt->msaaImage()); |
| |
| const SkIRect& srcRect = rt->getResolveRect(); |
| |
| this->resolveImage(target, rt, srcRect, SkIPoint::Make(srcRect.fLeft, srcRect.fTop)); |
| |
| rt->flagAsResolved(); |
| |
| if (requiresSubmit) { |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| } |
| } |
| |
| bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, int left, int top, int width, int height, |
| GrColorType dataColorType, const void* data, size_t rowBytes) { |
| SkASSERT(data); |
| SkASSERT(tex->isLinearTiled()); |
| |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType, |
| GrSRGBEncoded::kNo))); |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| int bpp = GrColorTypeBytesPerPixel(dataColorType); |
| size_t trimRowBytes = width * bpp; |
| if (!rowBytes) { |
| rowBytes = trimRowBytes; |
| } |
| |
| SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() || |
| VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout()); |
| const VkImageSubresource subres = { |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| 0, // mipLevel |
| 0, // arraySlice |
| }; |
| VkSubresourceLayout layout; |
| |
| const GrVkInterface* interface = this->vkInterface(); |
| |
| GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice, |
| tex->image(), |
| &subres, |
| &layout)); |
| |
| const GrVkAlloc& alloc = tex->alloc(); |
| VkDeviceSize offset = top * layout.rowPitch + left * bpp; |
| VkDeviceSize size = height*layout.rowPitch; |
| SkASSERT(size + offset <= alloc.fSize); |
| void* mapPtr = GrVkMemory::MapAlloc(this, alloc); |
| if (!mapPtr) { |
| return false; |
| } |
| mapPtr = reinterpret_cast<char*>(mapPtr) + offset; |
| |
| SkRectMemcpy(mapPtr, static_cast<size_t>(layout.rowPitch), data, rowBytes, trimRowBytes, |
| height); |
| |
| GrVkMemory::FlushMappedAlloc(this, alloc, offset, size); |
| GrVkMemory::UnmapAlloc(this, alloc); |
| |
| return true; |
| } |
| |
| bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, int left, int top, int width, int height, |
| GrColorType dataColorType, const GrMipLevel texels[], |
| int mipLevelCount) { |
| SkASSERT(!tex->isLinearTiled()); |
| // The assumption is either that we have no mipmaps, or that our rect is the entire texture |
| SkASSERT(1 == mipLevelCount || |
| (0 == left && 0 == top && width == tex->width() && height == tex->height())); |
| |
| // We assume that if the texture has mip levels, we either upload to all the levels or just the |
| // first. |
| SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1)); |
| |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType, |
| GrSRGBEncoded::kNo))); |
| |
| if (width == 0 || height == 0) { |
| return false; |
| } |
| |
| if (GrPixelConfigToColorType(tex->config()) != dataColorType) { |
| return false; |
| } |
| |
| // For RGB_888x src data we are uploading it first to an RGBA texture and then copying it to the |
| // dst RGB texture. Thus we do not upload mip levels for that. |
| if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { |
| SkASSERT(tex->config() == kRGB_888_GrPixelConfig); |
| // First check that we'll be able to do the copy to the to the R8G8B8 image in the end via a |
| // blit or draw. |
| if (!this->vkCaps().configCanBeDstofBlit(kRGB_888_GrPixelConfig, tex->isLinearTiled()) && |
| !this->vkCaps().maxRenderTargetSampleCount(kRGB_888_GrPixelConfig)) { |
| return false; |
| } |
| mipLevelCount = 1; |
| } |
| |
| SkASSERT(this->caps()->isConfigTexturable(tex->config())); |
| int bpp = GrColorTypeBytesPerPixel(dataColorType); |
| |
| // texels is const. |
| // But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes. |
| // Because of this we need to make a non-const shallow copy of texels. |
| SkAutoTMalloc<GrMipLevel> texelsShallowCopy; |
| |
| texelsShallowCopy.reset(mipLevelCount); |
| memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); |
| |
| SkTArray<size_t> individualMipOffsets(mipLevelCount); |
| individualMipOffsets.push_back(0); |
| size_t combinedBufferSize = width * bpp * height; |
| int currentWidth = width; |
| int currentHeight = height; |
| if (!texelsShallowCopy[0].fPixels) { |
| combinedBufferSize = 0; |
| } |
| |
| // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image |
| // config. This works with the assumption that the bytes in pixel config is always a power of 2. |
| SkASSERT((bpp & (bpp - 1)) == 0); |
| const size_t alignmentMask = 0x3 | (bpp - 1); |
| for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| currentWidth = SkTMax(1, currentWidth/2); |
| currentHeight = SkTMax(1, currentHeight/2); |
| |
| if (texelsShallowCopy[currentMipLevel].fPixels) { |
| const size_t trimmedSize = currentWidth * bpp * currentHeight; |
| const size_t alignmentDiff = combinedBufferSize & alignmentMask; |
| if (alignmentDiff != 0) { |
| combinedBufferSize += alignmentMask - alignmentDiff + 1; |
| } |
| individualMipOffsets.push_back(combinedBufferSize); |
| combinedBufferSize += trimmedSize; |
| } else { |
| individualMipOffsets.push_back(0); |
| } |
| } |
| if (0 == combinedBufferSize) { |
| // We don't actually have any data to upload so just return success |
| return true; |
| } |
| |
| // allocate buffer to hold our mip data |
| sk_sp<GrVkTransferBuffer> transferBuffer = |
| GrVkTransferBuffer::Make(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type); |
| if (!transferBuffer) { |
| return false; |
| } |
| |
| int uploadLeft = left; |
| int uploadTop = top; |
| GrVkTexture* uploadTexture = tex; |
| // For uploading RGB_888x data to an R8G8B8_UNORM texture we must first upload the data to an |
| // R8G8B8A8_UNORM image and then copy it. |
| sk_sp<GrVkTexture> copyTexture; |
| if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = width; |
| surfDesc.fHeight = height; |
| surfDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| surfDesc.fSampleCnt = 1; |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| |
| GrVkImage::ImageDesc imageDesc; |
| imageDesc.fImageType = VK_IMAGE_TYPE_2D; |
| imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM; |
| imageDesc.fWidth = width; |
| imageDesc.fHeight = height; |
| imageDesc.fLevels = 1; |
| imageDesc.fSamples = 1; |
| imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| imageDesc.fUsageFlags = usageFlags; |
| imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| |
| copyTexture = GrVkTexture::MakeNewTexture(this, SkBudgeted::kYes, surfDesc, imageDesc, |
| GrMipMapsStatus::kNotAllocated); |
| if (!copyTexture) { |
| return false; |
| } |
| uploadTexture = copyTexture.get(); |
| uploadLeft = 0; |
| uploadTop = 0; |
| } |
| |
| char* buffer = (char*) transferBuffer->map(); |
| SkTArray<VkBufferImageCopy> regions(mipLevelCount); |
| |
| currentWidth = width; |
| currentHeight = height; |
| int layerHeight = uploadTexture->height(); |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (texelsShallowCopy[currentMipLevel].fPixels) { |
| SkASSERT(1 == mipLevelCount || currentHeight == layerHeight); |
| const size_t trimRowBytes = currentWidth * bpp; |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes |
| ? texelsShallowCopy[currentMipLevel].fRowBytes |
| : trimRowBytes; |
| |
| // copy data into the buffer, skipping the trailing bytes |
| char* dst = buffer + individualMipOffsets[currentMipLevel]; |
| const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; |
| SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); |
| |
| VkBufferImageCopy& region = regions.push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel]; |
| region.bufferRowLength = currentWidth; |
| region.bufferImageHeight = currentHeight; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 }; |
| region.imageOffset = {uploadLeft, uploadTop, 0}; |
| region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; |
| } |
| currentWidth = SkTMax(1, currentWidth/2); |
| currentHeight = SkTMax(1, currentHeight/2); |
| layerHeight = currentHeight; |
| } |
| |
| // no need to flush non-coherent memory, unmap will do that for us |
| transferBuffer->unmap(); |
| |
| // Change layout of our target so it can be copied to |
| uploadTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image |
| fCurrentCmdBuffer->copyBufferToImage(this, |
| transferBuffer.get(), |
| uploadTexture, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| regions.count(), |
| regions.begin()); |
| |
| // If we copied the data into a temporary image first, copy that image into our main texture |
| // now. |
| if (copyTexture.get()) { |
| SkASSERT(dataColorType == GrColorType::kRGB_888x); |
| static const GrSurfaceOrigin kOrigin = kTopLeft_GrSurfaceOrigin; |
| SkAssertResult(this->copySurface(tex, kOrigin, copyTexture.get(), kOrigin, |
| SkIRect::MakeWH(width, height), SkIPoint::Make(left, top), |
| false)); |
| } |
| if (1 == mipLevelCount) { |
| tex->texturePriv().markMipMapsDirty(); |
| } |
| |
| return true; |
| } |
| |
| // It's probably possible to roll this into uploadTexDataOptimal, |
| // but for now it's easier to maintain as a separate entity. |
| bool GrVkGpu::uploadTexDataCompressed(GrVkTexture* tex, int left, int top, int width, int height, |
| GrColorType dataColorType, const GrMipLevel texels[], |
| int mipLevelCount) { |
| SkASSERT(!tex->isLinearTiled()); |
| // For now the assumption is that our rect is the entire texture. |
| // Compressed textures are read-only so this should be a reasonable assumption. |
| SkASSERT(0 == left && 0 == top && width == tex->width() && height == tex->height()); |
| |
| // We assume that if the texture has mip levels, we either upload to all the levels or just the |
| // first. |
| SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1)); |
| |
| SkASSERT(GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType, |
| GrSRGBEncoded::kNo))); |
| |
| if (width == 0 || height == 0) { |
| return false; |
| } |
| |
| if (GrPixelConfigToColorType(tex->config()) != dataColorType) { |
| return false; |
| } |
| |
| SkASSERT(this->caps()->isConfigTexturable(tex->config())); |
| |
| SkTArray<size_t> individualMipOffsets(mipLevelCount); |
| individualMipOffsets.push_back(0); |
| size_t combinedBufferSize = GrCompressedFormatDataSize(tex->config(), width, height); |
| int currentWidth = width; |
| int currentHeight = height; |
| if (!texels[0].fPixels) { |
| return false; |
| } |
| |
| // We assume that the alignment for any compressed format is at least 4 bytes and so we don't |
| // need to worry about alignment issues. For example, each block in ETC1 is 8 bytes. |
| for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| currentWidth = SkTMax(1, currentWidth / 2); |
| currentHeight = SkTMax(1, currentHeight / 2); |
| |
| if (texels[currentMipLevel].fPixels) { |
| const size_t dataSize = GrCompressedFormatDataSize(tex->config(), currentWidth, |
| currentHeight); |
| individualMipOffsets.push_back(combinedBufferSize); |
| combinedBufferSize += dataSize; |
| } else { |
| return false; |
| } |
| } |
| if (0 == combinedBufferSize) { |
| // We don't have any data to upload so fail (compressed textures are read-only). |
| return false; |
| } |
| |
| // allocate buffer to hold our mip data |
| sk_sp<GrVkTransferBuffer> transferBuffer = |
| GrVkTransferBuffer::Make(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type); |
| if (!transferBuffer) { |
| return false; |
| } |
| |
| int uploadLeft = left; |
| int uploadTop = top; |
| GrVkTexture* uploadTexture = tex; |
| |
| char* buffer = (char*)transferBuffer->map(); |
| SkTArray<VkBufferImageCopy> regions(mipLevelCount); |
| |
| currentWidth = width; |
| currentHeight = height; |
| int layerHeight = uploadTexture->height(); |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (texels[currentMipLevel].fPixels) { |
| // Again, we're assuming that our rect is the entire texture |
| SkASSERT(currentHeight == layerHeight); |
| SkASSERT(0 == uploadLeft && 0 == uploadTop); |
| |
| const size_t dataSize = GrCompressedFormatDataSize(tex->config(), currentWidth, |
| currentHeight); |
| |
| // copy data into the buffer, skipping the trailing bytes |
| char* dst = buffer + individualMipOffsets[currentMipLevel]; |
| const char* src = (const char*)texels[currentMipLevel].fPixels; |
| memcpy(dst, src, dataSize); |
| |
| VkBufferImageCopy& region = regions.push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel]; |
| region.bufferRowLength = currentWidth; |
| region.bufferImageHeight = currentHeight; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 }; |
| region.imageOffset = { uploadLeft, uploadTop, 0 }; |
| region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; |
| } |
| currentWidth = SkTMax(1, currentWidth / 2); |
| currentHeight = SkTMax(1, currentHeight / 2); |
| layerHeight = currentHeight; |
| } |
| |
| // no need to flush non-coherent memory, unmap will do that for us |
| transferBuffer->unmap(); |
| |
| // Change layout of our target so it can be copied to |
| uploadTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image |
| fCurrentCmdBuffer->copyBufferToImage(this, |
| transferBuffer.get(), |
| uploadTexture, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| regions.count(), |
| regions.begin()); |
| |
| if (1 == mipLevelCount) { |
| tex->texturePriv().markMipMapsDirty(); |
| } |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| sk_sp<GrTexture> GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted, |
| const GrMipLevel texels[], int mipLevelCount) { |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); |
| |
| VkFormat pixelFormat; |
| SkAssertResult(GrPixelConfigToVkFormat(desc.fConfig, &pixelFormat)); |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; |
| if (renderTarget) { |
| usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| } |
| |
| // For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and |
| // VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we |
| // will be using this texture in some copy or not. Also this assumes, as is the current case, |
| // that all render targets in vulkan are also textures. If we change this practice of setting |
| // both bits, we must make sure to set the destination bit if we are uploading srcData to the |
| // texture. |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| |
| // This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is |
| // requested, this ImageDesc describes the resolved texture. Therefore we always have samples set |
| // to 1. |
| int mipLevels = !mipLevelCount ? 1 : mipLevelCount; |
| GrVkImage::ImageDesc imageDesc; |
| imageDesc.fImageType = VK_IMAGE_TYPE_2D; |
| imageDesc.fFormat = pixelFormat; |
| imageDesc.fWidth = desc.fWidth; |
| imageDesc.fHeight = desc.fHeight; |
| imageDesc.fLevels = mipLevels; |
| imageDesc.fSamples = 1; |
| imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| imageDesc.fUsageFlags = usageFlags; |
| imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| |
| GrMipMapsStatus mipMapsStatus = GrMipMapsStatus::kNotAllocated; |
| if (mipLevels > 1) { |
| mipMapsStatus = GrMipMapsStatus::kValid; |
| for (int i = 0; i < mipLevels; ++i) { |
| if (!texels[i].fPixels) { |
| mipMapsStatus = GrMipMapsStatus::kDirty; |
| break; |
| } |
| } |
| } |
| |
| sk_sp<GrVkTexture> tex; |
| if (renderTarget) { |
| tex = GrVkTextureRenderTarget::MakeNewTextureRenderTarget(this, budgeted, desc, |
| imageDesc, |
| mipMapsStatus); |
| } else { |
| tex = GrVkTexture::MakeNewTexture(this, budgeted, desc, imageDesc, mipMapsStatus); |
| } |
| |
| if (!tex) { |
| return nullptr; |
| } |
| |
| bool isCompressed = GrPixelConfigIsCompressed(desc.fConfig); |
| auto colorType = GrPixelConfigToColorType(desc.fConfig); |
| if (mipLevelCount) { |
| bool success; |
| if (isCompressed) { |
| success = this->uploadTexDataCompressed(tex.get(), 0, 0, desc.fWidth, desc.fHeight, |
| colorType, texels, mipLevelCount); |
| } else { |
| success = this->uploadTexDataOptimal(tex.get(), 0, 0, desc.fWidth, desc.fHeight, |
| colorType, texels, mipLevelCount); |
| } |
| if (!success) { |
| tex->unref(); |
| return nullptr; |
| } |
| } |
| |
| if (SkToBool(desc.fFlags & kPerformInitialClear_GrSurfaceFlag) && !isCompressed) { |
| VkClearColorValue zeroClearColor; |
| memset(&zeroClearColor, 0, sizeof(zeroClearColor)); |
| VkImageSubresourceRange range; |
| range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| range.baseArrayLayer = 0; |
| range.baseMipLevel = 0; |
| range.layerCount = 1; |
| range.levelCount = 1; |
| tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| this->currentCommandBuffer()->clearColorImage(this, tex.get(), &zeroClearColor, 1, &range); |
| } |
| return std::move(tex); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrVkGpu::copyBuffer(GrVkBuffer* srcBuffer, GrVkBuffer* dstBuffer, VkDeviceSize srcOffset, |
| VkDeviceSize dstOffset, VkDeviceSize size) { |
| VkBufferCopy copyRegion; |
| copyRegion.srcOffset = srcOffset; |
| copyRegion.dstOffset = dstOffset; |
| copyRegion.size = size; |
| fCurrentCmdBuffer->copyBuffer(this, srcBuffer, dstBuffer, 1, ©Region); |
| } |
| |
| bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src, |
| VkDeviceSize offset, VkDeviceSize size) { |
| // Update the buffer |
| fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src); |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static bool check_image_info(const GrVkCaps& caps, |
| const GrVkImageInfo& info, |
| GrPixelConfig config, |
| bool isWrappedRT) { |
| if (VK_NULL_HANDLE == info.fImage) { |
| return false; |
| } |
| |
| if (VK_NULL_HANDLE == info.fAlloc.fMemory && !isWrappedRT) { |
| return false; |
| } |
| |
| if (info.fYcbcrConversionInfo.isValid()) { |
| if (!caps.supportsYcbcrConversion() || info.fFormat != VK_NULL_HANDLE) { |
| return false; |
| } |
| } |
| |
| if (info.fImageLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && !caps.supportsSwapchain()) { |
| return false; |
| } |
| |
| SkASSERT(GrVkFormatPixelConfigPairIsValid(info.fFormat, config)); |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, GrWrapCacheable cacheable, |
| GrIOType ioType) { |
| GrVkImageInfo imageInfo; |
| if (!backendTex.getVkImageInfo(&imageInfo)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), imageInfo, backendTex.config(), false)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kNone_GrSurfaceFlags; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = 1; |
| |
| sk_sp<GrVkImageLayout> layout = backendTex.getGrVkImageLayout(); |
| SkASSERT(layout); |
| return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, cacheable, ioType, imageInfo, |
| std::move(layout)); |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| int sampleCnt, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| GrVkImageInfo imageInfo; |
| if (!backendTex.getVkImageInfo(&imageInfo)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), imageInfo, backendTex.config(), false)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = backendTex.width(); |
| surfDesc.fHeight = backendTex.height(); |
| surfDesc.fConfig = backendTex.config(); |
| surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, backendTex.config()); |
| |
| sk_sp<GrVkImageLayout> layout = backendTex.getGrVkImageLayout(); |
| SkASSERT(layout); |
| |
| return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget( |
| this, surfDesc, ownership, cacheable, imageInfo, std::move(layout)); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT){ |
| // Currently the Vulkan backend does not support wrapping of msaa render targets directly. In |
| // general this is not an issue since swapchain images in vulkan are never multisampled. Thus if |
| // you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle |
| // creating and owning the MSAA images. |
| if (backendRT.sampleCnt() > 1) { |
| return nullptr; |
| } |
| |
| GrVkImageInfo info; |
| if (!backendRT.getVkImageInfo(&info)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), info, backendRT.config(), true)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = backendRT.width(); |
| desc.fHeight = backendRT.height(); |
| desc.fConfig = backendRT.config(); |
| desc.fSampleCnt = 1; |
| |
| sk_sp<GrVkImageLayout> layout = backendRT.getGrVkImageLayout(); |
| |
| sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info, |
| std::move(layout)); |
| |
| // We don't allow the client to supply a premade stencil buffer. We always create one if needed. |
| SkASSERT(!backendRT.stencilBits()); |
| if (tgt) { |
| SkASSERT(tgt->canAttemptStencilAttachment()); |
| } |
| |
| return std::move(tgt); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, |
| int sampleCnt) { |
| |
| GrVkImageInfo imageInfo; |
| if (!tex.getVkImageInfo(&imageInfo)) { |
| return nullptr; |
| } |
| if (!check_image_info(this->vkCaps(), imageInfo, tex.config(), false)) { |
| return nullptr; |
| } |
| |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = tex.width(); |
| desc.fHeight = tex.height(); |
| desc.fConfig = tex.config(); |
| desc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.config()); |
| if (!desc.fSampleCnt) { |
| return nullptr; |
| } |
| |
| sk_sp<GrVkImageLayout> layout = tex.getGrVkImageLayout(); |
| SkASSERT(layout); |
| |
| return GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, imageInfo, std::move(layout)); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapVulkanSecondaryCBAsRenderTarget( |
| const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { |
| int maxSize = this->caps()->maxTextureSize(); |
| if (imageInfo.width() > maxSize || imageInfo.height() > maxSize) { |
| return nullptr; |
| } |
| |
| GrBackendFormat backendFormat = GrBackendFormat::MakeVk(vkInfo.fFormat); |
| if (!backendFormat.isValid()) { |
| return nullptr; |
| } |
| GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendFormat, |
| imageInfo.colorType()); |
| if (config == kUnknown_GrPixelConfig) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = imageInfo.width(); |
| desc.fHeight = imageInfo.height(); |
| desc.fConfig = config; |
| desc.fSampleCnt = this->caps()->getRenderTargetSampleCount(1, config); |
| if (!desc.fSampleCnt) { |
| return nullptr; |
| } |
| |
| return GrVkRenderTarget::MakeSecondaryCBRenderTarget(this, desc, vkInfo); |
| } |
| |
| bool GrVkGpu::onRegenerateMipMapLevels(GrTexture* tex) { |
| auto* vkTex = static_cast<GrVkTexture*>(tex); |
| // don't do anything for linearly tiled textures (can't have mipmaps) |
| if (vkTex->isLinearTiled()) { |
| SkDebugf("Trying to create mipmap for linear tiled texture"); |
| return false; |
| } |
| |
| // determine if we can blit to and from this format |
| const GrVkCaps& caps = this->vkCaps(); |
| if (!caps.configCanBeDstofBlit(tex->config(), false) || |
| !caps.configCanBeSrcofBlit(tex->config(), false) || |
| !caps.mipMapSupport()) { |
| return false; |
| } |
| |
| int width = tex->width(); |
| int height = tex->height(); |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| |
| // SkMipMap doesn't include the base level in the level count so we have to add 1 |
| uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1; |
| SkASSERT(levelCount == vkTex->mipLevels()); |
| |
| // change layout of the layers so we can write to them. |
| vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| |
| // setup memory barrier |
| SkASSERT(GrVkFormatIsSupported(vkTex->imageFormat())); |
| VkImageAspectFlags aspectFlags = VK_IMAGE_ASPECT_COLOR_BIT; |
| VkImageMemoryBarrier imageMemoryBarrier = { |
| VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| nullptr, // pNext |
| VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask |
| VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // oldLayout |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // newLayout |
| VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex |
| VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex |
| vkTex->image(), // image |
| {aspectFlags, 0, 1, 0, 1} // subresourceRange |
| }; |
| |
| // Blit the miplevels |
| uint32_t mipLevel = 1; |
| while (mipLevel < levelCount) { |
| int prevWidth = width; |
| int prevHeight = height; |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| |
| imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; |
| this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); |
| |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 }; |
| blitRegion.srcOffsets[0] = { 0, 0, 0 }; |
| blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 }; |
| blitRegion.dstOffsets[0] = { 0, 0, 0 }; |
| blitRegion.dstOffsets[1] = { width, height, 1 }; |
| fCurrentCmdBuffer->blitImage(this, |
| vkTex->resource(), |
| vkTex->image(), |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| vkTex->resource(), |
| vkTex->image(), |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| &blitRegion, |
| VK_FILTER_LINEAR); |
| ++mipLevel; |
| } |
| if (levelCount > 1) { |
| // This barrier logically is not needed, but it changes the final level to the same layout |
| // as all the others, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL. This makes tracking of the |
| // layouts and future layout changes easier. The alternative here would be to track layout |
| // and memory accesses per layer which doesn't seem work it. |
| imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; |
| this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); |
| vkTex->updateImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); |
| } |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, |
| int width, |
| int height) { |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numStencilSamples(); |
| |
| const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferredStencilFormat(); |
| |
| GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this, |
| width, |
| height, |
| samples, |
| sFmt)); |
| fStats.incStencilAttachmentCreates(); |
| return stencil; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool copy_testing_data(GrVkGpu* gpu, const void* srcData, const GrVkAlloc& alloc, |
| size_t bufferOffset, size_t srcRowBytes, size_t dstRowBytes, |
| size_t trimRowBytes, int h) { |
| VkDeviceSize size = dstRowBytes * h; |
| VkDeviceSize offset = bufferOffset; |
| SkASSERT(size + offset <= alloc.fSize); |
| void* mapPtr = GrVkMemory::MapAlloc(gpu, alloc); |
| if (!mapPtr) { |
| return false; |
| } |
| mapPtr = reinterpret_cast<char*>(mapPtr) + offset; |
| |
| if (srcData) { |
| // If there is no padding on dst we can do a single memcopy. |
| // This assumes the srcData comes in with no padding. |
| SkRectMemcpy(mapPtr, dstRowBytes, srcData, srcRowBytes, trimRowBytes, h); |
| } else { |
| // If there is no srcdata we always copy 0's into the textures so that it is initialized |
| // with some data. |
| memset(mapPtr, 0, dstRowBytes * h); |
| } |
| GrVkMemory::FlushMappedAlloc(gpu, alloc, offset, size); |
| GrVkMemory::UnmapAlloc(gpu, alloc); |
| return true; |
| } |
| |
| #if GR_TEST_UTILS |
| bool GrVkGpu::createTestingOnlyVkImage(GrPixelConfig config, int w, int h, bool texturable, |
| bool renderable, GrMipMapped mipMapped, const void* srcData, |
| size_t srcRowBytes, GrVkImageInfo* info) { |
| SkASSERT(texturable || renderable); |
| if (!texturable) { |
| SkASSERT(GrMipMapped::kNo == mipMapped); |
| SkASSERT(!srcData); |
| } |
| VkFormat pixelFormat; |
| if (!GrPixelConfigToVkFormat(config, &pixelFormat)) { |
| return false; |
| } |
| |
| if (texturable && !fVkCaps->isConfigTexturable(config)) { |
| return false; |
| } |
| |
| if (renderable && !fVkCaps->isConfigRenderable(config)) { |
| return false; |
| } |
| |
| // Currently we don't support uploading pixel data when mipped. |
| if (srcData && GrMipMapped::kYes == mipMapped) { |
| return false; |
| } |
| |
| VkImageUsageFlags usageFlags = 0; |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; |
| usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| if (texturable) { |
| usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT; |
| } |
| if (renderable) { |
| usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| } |
| |
| VkImage image = VK_NULL_HANDLE; |
| GrVkAlloc alloc; |
| VkImageLayout initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| |
| // Create Image |
| VkSampleCountFlagBits vkSamples; |
| if (!GrSampleCountToVkSampleCount(1, &vkSamples)) { |
| return false; |
| } |
| |
| // Figure out the number of mip levels. |
| uint32_t mipLevels = 1; |
| if (GrMipMapped::kYes == mipMapped) { |
| mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1; |
| } |
| |
| const VkImageCreateInfo imageCreateInfo = { |
| VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType |
| nullptr, // pNext |
| 0, // VkImageCreateFlags |
| VK_IMAGE_TYPE_2D, // VkImageType |
| pixelFormat, // VkFormat |
| {(uint32_t)w, (uint32_t)h, 1}, // VkExtent3D |
| mipLevels, // mipLevels |
| 1, // arrayLayers |
| vkSamples, // samples |
| VK_IMAGE_TILING_OPTIMAL, // VkImageTiling |
| usageFlags, // VkImageUsageFlags |
| VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode |
| 0, // queueFamilyCount |
| 0, // pQueueFamilyIndices |
| initialLayout // initialLayout |
| }; |
| |
| GR_VK_CALL_ERRCHECK(this->vkInterface(), |
| CreateImage(this->device(), &imageCreateInfo, nullptr, &image)); |
| |
| if (!GrVkMemory::AllocAndBindImageMemory(this, image, false, &alloc)) { |
| VK_CALL(DestroyImage(this->device(), image, nullptr)); |
| return false; |
| } |
| |
| // We need to declare these early so that we can delete them at the end outside of the if block. |
| GrVkAlloc bufferAlloc; |
| VkBuffer buffer = VK_NULL_HANDLE; |
| |
| VkResult err; |
| const VkCommandBufferAllocateInfo cmdInfo = { |
| VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType |
| nullptr, // pNext |
| fCmdPool->vkCommandPool(), // commandPool |
| VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level |
| 1 // bufferCount |
| }; |
| |
| VkCommandBuffer cmdBuffer; |
| err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer)); |
| if (err) { |
| GrVkMemory::FreeImageMemory(this, false, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| return false; |
| } |
| |
| VkCommandBufferBeginInfo cmdBufferBeginInfo; |
| memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo)); |
| cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| cmdBufferBeginInfo.pNext = nullptr; |
| cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| cmdBufferBeginInfo.pInheritanceInfo = nullptr; |
| |
| err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo)); |
| SkASSERT(!err); |
| |
| size_t bpp = GrBytesPerPixel(config); |
| SkASSERT(w && h); |
| |
| const size_t trimRowBytes = w * bpp; |
| if (!srcRowBytes) { |
| srcRowBytes = trimRowBytes; |
| } |
| |
| SkTArray<size_t> individualMipOffsets(mipLevels); |
| individualMipOffsets.push_back(0); |
| size_t combinedBufferSize = w * bpp * h; |
| if (GrPixelConfigIsCompressed(config)) { |
| combinedBufferSize = GrCompressedFormatDataSize(config, w, h); |
| bpp = 4; // we have at least this alignment, which will pass the code below |
| } |
| int currentWidth = w; |
| int currentHeight = h; |
| // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image |
| // config. This works with the assumption that the bytes in pixel config is always a power |
| // of 2. |
| SkASSERT((bpp & (bpp - 1)) == 0); |
| const size_t alignmentMask = 0x3 | (bpp - 1); |
| for (uint32_t currentMipLevel = 1; currentMipLevel < mipLevels; currentMipLevel++) { |
| currentWidth = SkTMax(1, currentWidth / 2); |
| currentHeight = SkTMax(1, currentHeight / 2); |
| |
| size_t trimmedSize; |
| if (GrPixelConfigIsCompressed(config)) { |
| trimmedSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight); |
| } else { |
| trimmedSize = currentWidth * bpp * currentHeight; |
| } |
| const size_t alignmentDiff = combinedBufferSize & alignmentMask; |
| if (alignmentDiff != 0) { |
| combinedBufferSize += alignmentMask - alignmentDiff + 1; |
| } |
| individualMipOffsets.push_back(combinedBufferSize); |
| combinedBufferSize += trimmedSize; |
| } |
| |
| VkBufferCreateInfo bufInfo; |
| memset(&bufInfo, 0, sizeof(VkBufferCreateInfo)); |
| bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
| bufInfo.flags = 0; |
| bufInfo.size = combinedBufferSize; |
| bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; |
| bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| bufInfo.queueFamilyIndexCount = 0; |
| bufInfo.pQueueFamilyIndices = nullptr; |
| err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer)); |
| |
| if (err) { |
| GrVkMemory::FreeImageMemory(this, false, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| VK_CALL(EndCommandBuffer(cmdBuffer)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); |
| return false; |
| } |
| |
| if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type, true, |
| &bufferAlloc)) { |
| GrVkMemory::FreeImageMemory(this, false, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| VK_CALL(EndCommandBuffer(cmdBuffer)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); |
| return false; |
| } |
| |
| currentWidth = w; |
| currentHeight = h; |
| for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) { |
| SkASSERT(0 == currentMipLevel || !srcData); |
| size_t bufferOffset = individualMipOffsets[currentMipLevel]; |
| bool result; |
| if (GrPixelConfigIsCompressed(config)) { |
| size_t levelSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight); |
| size_t currentRowBytes = levelSize / currentHeight; |
| result = copy_testing_data(this, srcData, bufferAlloc, bufferOffset, currentRowBytes, |
| currentRowBytes, currentRowBytes, currentHeight); |
| } else { |
| size_t currentRowBytes = bpp * currentWidth; |
| result = copy_testing_data(this, srcData, bufferAlloc, bufferOffset, srcRowBytes, |
| currentRowBytes, trimRowBytes, currentHeight); |
| } |
| if (!result) { |
| GrVkMemory::FreeImageMemory(this, false, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| VK_CALL(EndCommandBuffer(cmdBuffer)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); |
| return false; |
| } |
| currentWidth = SkTMax(1, currentWidth / 2); |
| currentHeight = SkTMax(1, currentHeight / 2); |
| } |
| |
| // Set image layout and add barrier |
| VkImageMemoryBarrier barrier; |
| memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); |
| barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| barrier.pNext = nullptr; |
| barrier.srcAccessMask = GrVkImage::LayoutToSrcAccessMask(initialLayout); |
| barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| barrier.oldLayout = initialLayout; |
| barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.image = image; |
| barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0, 1}; |
| |
| VK_CALL(CmdPipelineBarrier(cmdBuffer, GrVkImage::LayoutToPipelineSrcStageFlags(initialLayout), |
| VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, |
| &barrier)); |
| initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| |
| SkTArray<VkBufferImageCopy> regions(mipLevels); |
| |
| currentWidth = w; |
| currentHeight = h; |
| for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) { |
| // Submit copy command |
| VkBufferImageCopy& region = regions.push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = individualMipOffsets[currentMipLevel]; |
| region.bufferRowLength = currentWidth; |
| region.bufferImageHeight = currentHeight; |
| region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; |
| region.imageOffset = {0, 0, 0}; |
| region.imageExtent = {(uint32_t)currentWidth, (uint32_t)currentHeight, 1}; |
| currentWidth = SkTMax(1, currentWidth / 2); |
| currentHeight = SkTMax(1, currentHeight / 2); |
| } |
| |
| VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, image, initialLayout, regions.count(), |
| regions.begin())); |
| |
| if (texturable) { |
| // Change Image layout to shader read since if we use this texture as a borrowed textures |
| // within Ganesh we require that its layout be set to that |
| memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); |
| barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| barrier.pNext = nullptr; |
| barrier.srcAccessMask = GrVkImage::LayoutToSrcAccessMask(initialLayout); |
| barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; |
| barrier.oldLayout = initialLayout; |
| barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.image = image; |
| barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0, 1}; |
| VK_CALL(CmdPipelineBarrier(cmdBuffer, |
| GrVkImage::LayoutToPipelineSrcStageFlags(initialLayout), |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| 0, |
| 0, nullptr, |
| 0, nullptr, |
| 1, &barrier)); |
| initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| } |
| |
| // End CommandBuffer |
| err = VK_CALL(EndCommandBuffer(cmdBuffer)); |
| SkASSERT(!err); |
| |
| // Create Fence for queue |
| VkFence fence; |
| VkFenceCreateInfo fenceInfo; |
| memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); |
| fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| |
| err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence)); |
| SkASSERT(!err); |
| |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.pNext = nullptr; |
| submitInfo.waitSemaphoreCount = 0; |
| submitInfo.pWaitSemaphores = nullptr; |
| submitInfo.pWaitDstStageMask = 0; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &cmdBuffer; |
| submitInfo.signalSemaphoreCount = 0; |
| submitInfo.pSignalSemaphores = nullptr; |
| err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence)); |
| SkASSERT(!err); |
| |
| err = VK_CALL(WaitForFences(fDevice, 1, &fence, true, UINT64_MAX)); |
| if (VK_TIMEOUT == err) { |
| GrVkMemory::FreeImageMemory(this, false, alloc); |
| VK_CALL(DestroyImage(fDevice, image, nullptr)); |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); |
| VK_CALL(DestroyFence(fDevice, fence, nullptr)); |
| SkDebugf("Fence failed to signal: %d\n", err); |
| SK_ABORT("failing"); |
| } |
| SkASSERT(!err); |
| |
| // Clean up transfer resources |
| if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash |
| GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); |
| VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); |
| } |
| VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); |
| VK_CALL(DestroyFence(fDevice, fence, nullptr)); |
| |
| info->fImage = image; |
| info->fAlloc = alloc; |
| info->fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| info->fImageLayout = initialLayout; |
| info->fFormat = pixelFormat; |
| info->fLevelCount = mipLevels; |
| |
| return true; |
| } |
| |
| GrBackendTexture GrVkGpu::createTestingOnlyBackendTexture(const void* srcData, int w, int h, |
| GrColorType colorType, |
| bool isRenderTarget, |
| GrMipMapped mipMapped, size_t rowBytes) { |
| this->handleDirtyContext(); |
| |
| if (w > this->caps()->maxTextureSize() || h > this->caps()->maxTextureSize()) { |
| return GrBackendTexture(); |
| } |
| |
| GrPixelConfig config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo); |
| if (!this->caps()->isConfigTexturable(config)) { |
| return GrBackendTexture(); |
| } |
| |
| GrVkImageInfo info; |
| if (!this->createTestingOnlyVkImage(config, w, h, true, isRenderTarget, mipMapped, srcData, |
| rowBytes, &info)) { |
| return {}; |
| } |
| GrBackendTexture beTex = GrBackendTexture(w, h, info); |
| // Lots of tests don't go through Skia's public interface which will set the config so for |
| // testing we make sure we set a config here. |
| beTex.setPixelConfig(config); |
| return beTex; |
| } |
| |
| bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { |
| SkASSERT(GrBackendApi::kVulkan == tex.fBackend); |
| |
| GrVkImageInfo backend; |
| if (!tex.getVkImageInfo(&backend)) { |
| return false; |
| } |
| |
| if (backend.fImage && backend.fAlloc.fMemory) { |
| VkMemoryRequirements req; |
| memset(&req, 0, sizeof(req)); |
| GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice, |
| backend.fImage, |
| &req)); |
| // TODO: find a better check |
| // This will probably fail with a different driver |
| return (req.size > 0) && (req.size <= 8192 * 8192); |
| } |
| |
| return false; |
| } |
| |
| void GrVkGpu::deleteTestingOnlyBackendTexture(const GrBackendTexture& tex) { |
| SkASSERT(GrBackendApi::kVulkan == tex.fBackend); |
| |
| GrVkImageInfo info; |
| if (tex.getVkImageInfo(&info)) { |
| GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info)); |
| } |
| } |
| |
| GrBackendRenderTarget GrVkGpu::createTestingOnlyBackendRenderTarget(int w, int h, GrColorType ct) { |
| if (w > this->caps()->maxRenderTargetSize() || h > this->caps()->maxRenderTargetSize()) { |
| return GrBackendRenderTarget(); |
| } |
| |
| this->handleDirtyContext(); |
| GrVkImageInfo info; |
| auto config = GrColorTypeToPixelConfig(ct, GrSRGBEncoded::kNo); |
| if (kUnknown_GrPixelConfig == config) { |
| return {}; |
| } |
| if (!this->createTestingOnlyVkImage(config, w, h, false, true, GrMipMapped::kNo, nullptr, 0, |
| &info)) { |
| return {}; |
| } |
| GrBackendRenderTarget beRT = GrBackendRenderTarget(w, h, 1, 0, info); |
| // Lots of tests don't go through Skia's public interface which will set the config so for |
| // testing we make sure we set a config here. |
| beRT.setPixelConfig(config); |
| return beRT; |
| } |
| |
| void GrVkGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) { |
| SkASSERT(GrBackendApi::kVulkan == rt.fBackend); |
| |
| GrVkImageInfo info; |
| if (rt.getVkImageInfo(&info)) { |
| // something in the command buffer may still be using this, so force submit |
| this->submitCommandBuffer(kForce_SyncQueue); |
| GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info)); |
| } |
| } |
| |
| void GrVkGpu::testingOnly_flushGpuAndSync() { |
| this->submitCommandBuffer(kForce_SyncQueue); |
| } |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrVkGpu::addBufferMemoryBarrier(const GrVkResource* resource, |
| VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkBufferMemoryBarrier* barrier) const { |
| SkASSERT(fCurrentCmdBuffer); |
| SkASSERT(resource); |
| fCurrentCmdBuffer->pipelineBarrier(this, |
| resource, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kBufferMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::addImageMemoryBarrier(const GrVkResource* resource, |
| VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkImageMemoryBarrier* barrier) const { |
| SkASSERT(fCurrentCmdBuffer); |
| SkASSERT(resource); |
| fCurrentCmdBuffer->pipelineBarrier(this, |
| resource, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kImageMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::onFinishFlush(GrSurfaceProxy* proxy, SkSurface::BackendSurfaceAccess access, |
| const GrFlushInfo& info) { |
| // Submit the current command buffer to the Queue. Whether we inserted semaphores or not does |
| // not effect what we do here. |
| if (proxy && access == SkSurface::BackendSurfaceAccess::kPresent) { |
| GrVkImage* image; |
| SkASSERT(proxy->isInstantiated()); |
| if (GrTexture* tex = proxy->peekTexture()) { |
| image = static_cast<GrVkTexture*>(tex); |
| } else { |
| GrRenderTarget* rt = proxy->peekRenderTarget(); |
| SkASSERT(rt); |
| image = static_cast<GrVkRenderTarget*>(rt); |
| } |
| image->prepareForPresent(this); |
| } |
| if (info.fFlags & kSyncCpu_GrFlushFlag) { |
| this->submitCommandBuffer(kForce_SyncQueue, info.fFinishedProc, info.fFinishedContext); |
| } else { |
| this->submitCommandBuffer(kSkip_SyncQueue, info.fFinishedProc, info.fFinishedContext); |
| } |
| } |
| |
| static int get_surface_sample_cnt(GrSurface* surf) { |
| if (const GrRenderTarget* rt = surf->asRenderTarget()) { |
| return rt->numColorSamples(); |
| } |
| return 0; |
| } |
| |
| void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| #ifdef SK_DEBUG |
| int dstSampleCnt = get_surface_sample_cnt(dst); |
| int srcSampleCnt = get_surface_sample_cnt(src); |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| SkASSERT(this->vkCaps().canCopyImage(dst->config(), dstSampleCnt, dstOrigin, dstHasYcbcr, |
| src->config(), srcSampleCnt, srcOrigin, srcHasYcbcr)); |
| |
| #endif |
| |
| // These flags are for flushing/invalidating caches and for the dst image it doesn't matter if |
| // the cache is flushed since it is only being written to. |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Flip rect if necessary |
| SkIRect srcVkRect = srcRect; |
| int32_t dstY = dstPoint.fY; |
| |
| if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { |
| SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin); |
| srcVkRect.fTop = src->height() - srcRect.fBottom; |
| srcVkRect.fBottom = src->height() - srcRect.fTop; |
| dstY = dst->height() - dstPoint.fY - srcVkRect.height(); |
| } |
| |
| VkImageCopy copyRegion; |
| memset(©Region, 0, sizeof(VkImageCopy)); |
| copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; |
| copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.dstOffset = { dstPoint.fX, dstY, 0 }; |
| copyRegion.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 }; |
| |
| fCurrentCmdBuffer->copyImage(this, |
| srcImage, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| dstImage, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ©Region); |
| |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| } |
| |
| void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| #ifdef SK_DEBUG |
| int dstSampleCnt = get_surface_sample_cnt(dst); |
| int srcSampleCnt = get_surface_sample_cnt(src); |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| SkASSERT(this->vkCaps().canCopyAsBlit(dst->config(), dstSampleCnt, dstImage->isLinearTiled(), |
| dstHasYcbcr, src->config(), srcSampleCnt, |
| srcImage->isLinearTiled(), srcHasYcbcr)); |
| |
| #endif |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Flip rect if necessary |
| SkIRect srcVkRect; |
| srcVkRect.fLeft = srcRect.fLeft; |
| srcVkRect.fRight = srcRect.fRight; |
| SkIRect dstRect; |
| dstRect.fLeft = dstPoint.fX; |
| dstRect.fRight = dstPoint.fX + srcRect.width(); |
| |
| if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { |
| srcVkRect.fTop = src->height() - srcRect.fBottom; |
| srcVkRect.fBottom = src->height() - srcRect.fTop; |
| } else { |
| srcVkRect.fTop = srcRect.fTop; |
| srcVkRect.fBottom = srcRect.fBottom; |
| } |
| |
| if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { |
| dstRect.fTop = dst->height() - dstPoint.fY - srcVkRect.height(); |
| } else { |
| dstRect.fTop = dstPoint.fY; |
| } |
| dstRect.fBottom = dstRect.fTop + srcVkRect.height(); |
| |
| // If we have different origins, we need to flip the top and bottom of the dst rect so that we |
| // get the correct origintation of the copied data. |
| if (srcOrigin != dstOrigin) { |
| using std::swap; |
| swap(dstRect.fTop, dstRect.fBottom); |
| } |
| |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.srcOffsets[0] = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; |
| blitRegion.srcOffsets[1] = { srcVkRect.fRight, srcVkRect.fBottom, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 }; |
| blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 }; |
| |
| fCurrentCmdBuffer->blitImage(this, |
| *srcImage, |
| *dstImage, |
| 1, |
| &blitRegion, |
| VK_FILTER_NEAREST); // We never scale so any filter works here |
| |
| dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| } |
| |
| void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, |
| GrSurfaceOrigin srcOrigin, const SkIRect& origSrcRect, |
| const SkIPoint& origDstPoint) { |
| GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget()); |
| SkIRect srcRect = origSrcRect; |
| SkIPoint dstPoint = origDstPoint; |
| if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { |
| SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin); |
| srcRect = {origSrcRect.fLeft, src->height() - origSrcRect.fBottom, |
| origSrcRect.fRight, src->height() - origSrcRect.fTop}; |
| dstPoint.fY = dst->height() - dstPoint.fY - srcRect.height(); |
| } |
| this->resolveImage(dst, srcRT, srcRect, dstPoint); |
| SkIRect dstRect = SkIRect::MakeXYWH(origDstPoint.fX, origDstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| } |
| |
| bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, |
| GrSurface* src, GrSurfaceOrigin srcOrigin, |
| const SkIRect& srcRect, const SkIPoint& dstPoint, |
| bool canDiscardOutsideDstRect) { |
| #ifdef SK_DEBUG |
| if (GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget())) { |
| SkASSERT(!srcRT->wrapsSecondaryCommandBuffer()); |
| } |
| if (GrVkRenderTarget* dstRT = static_cast<GrVkRenderTarget*>(dst->asRenderTarget())) { |
| SkASSERT(!dstRT->wrapsSecondaryCommandBuffer()); |
| } |
| #endif |
| |
| GrPixelConfig dstConfig = dst->config(); |
| GrPixelConfig srcConfig = src->config(); |
| |
| int dstSampleCnt = get_surface_sample_cnt(dst); |
| int srcSampleCnt = get_surface_sample_cnt(src); |
| |
| GrVkImage* dstImage; |
| GrVkImage* srcImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| if (dstRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); |
| if (vkRT->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| dstImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; |
| } else { |
| SkASSERT(dst->asTexture()); |
| dstImage = static_cast<GrVkTexture*>(dst->asTexture()); |
| } |
| GrRenderTarget* srcRT = src->asRenderTarget(); |
| if (srcRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT); |
| srcImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; |
| } else { |
| SkASSERT(src->asTexture()); |
| srcImage = static_cast<GrVkTexture*>(src->asTexture()); |
| } |
| |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| |
| if (this->vkCaps().canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr, |
| srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr)) { |
| this->copySurfaceAsResolve(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (this->vkCaps().canCopyAsDraw(dstConfig, SkToBool(dst->asRenderTarget()), dstHasYcbcr, |
| srcConfig, SkToBool(src->asTexture()), srcHasYcbcr)) { |
| SkAssertResult(fCopyManager.copySurfaceAsDraw(this, dst, dstOrigin, src, srcOrigin, srcRect, |
| dstPoint, canDiscardOutsideDstRect)); |
| auto dstRect = srcRect.makeOffset(dstPoint.fX, dstPoint.fY); |
| this->didWriteToSurface(dst, dstOrigin, &dstRect); |
| return true; |
| } |
| |
| if (this->vkCaps().canCopyImage(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr, |
| srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr)) { |
| this->copySurfaceAsCopyImage(dst, dstOrigin, src, srcOrigin, dstImage, srcImage, |
| srcRect, dstPoint); |
| return true; |
| } |
| |
| if (this->vkCaps().canCopyAsBlit(dstConfig, dstSampleCnt, dstImage->isLinearTiled(), |
| dstHasYcbcr, srcConfig, srcSampleCnt, |
| srcImage->isLinearTiled(), srcHasYcbcr)) { |
| this->copySurfaceAsBlit(dst, dstOrigin, src, srcOrigin, dstImage, srcImage, |
| srcRect, dstPoint); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool GrVkGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType dstColorType, void* buffer, size_t rowBytes) { |
| if (GrPixelConfigToColorType(surface->config()) != dstColorType) { |
| return false; |
| } |
| |
| GrVkImage* image = nullptr; |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget()); |
| if (rt) { |
| // Reading from render targets that wrap a secondary command buffer is not allowed since |
| // it would require us to know the VkImage, which we don't have, as well as need us to |
| // stop and start the VkRenderPass which we don't have access to. |
| if (rt->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| // resolve the render target if necessary |
| switch (rt->getResolveType()) { |
| case GrVkRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrVkRenderTarget::kAutoResolves_ResolveType: |
| break; |
| case GrVkRenderTarget::kCanResolve_ResolveType: |
| this->resolveRenderTargetNoFlush(rt); |
| break; |
| default: |
| SK_ABORT("Unknown resolve type"); |
| } |
| image = rt; |
| } else { |
| image = static_cast<GrVkTexture*>(surface->asTexture()); |
| } |
| |
| if (!image) { |
| return false; |
| } |
| |
| // Skia's RGB_888x color type, which we map to the vulkan R8G8B8_UNORM, expects the data to be |
| // 32 bits, but the Vulkan format is only 24. So we first copy the surface into an R8G8B8A8 |
| // image and then do the read pixels from that. |
| sk_sp<GrVkTextureRenderTarget> copySurface; |
| if (dstColorType == GrColorType::kRGB_888x && image->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { |
| SkASSERT(surface->config() == kRGB_888_GrPixelConfig); |
| |
| // Make a new surface that is RGBA to copy the RGB surface into. |
| GrSurfaceDesc surfDesc; |
| surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| surfDesc.fWidth = width; |
| surfDesc.fHeight = height; |
| surfDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| surfDesc.fSampleCnt = 1; |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| |
| GrVkImage::ImageDesc imageDesc; |
| imageDesc.fImageType = VK_IMAGE_TYPE_2D; |
| imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM; |
| imageDesc.fWidth = width; |
| imageDesc.fHeight = height; |
| imageDesc.fLevels = 1; |
| imageDesc.fSamples = 1; |
| imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| imageDesc.fUsageFlags = usageFlags; |
| imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| |
| copySurface = GrVkTextureRenderTarget::MakeNewTextureRenderTarget( |
| this, SkBudgeted::kYes, surfDesc, imageDesc, GrMipMapsStatus::kNotAllocated); |
| if (!copySurface) { |
| return false; |
| } |
| |
| int srcSampleCount = 0; |
| if (rt) { |
| srcSampleCount = rt->numColorSamples(); |
| } |
| bool srcHasYcbcr = image->ycbcrConversionInfo().isValid(); |
| static const GrSurfaceOrigin kOrigin = kTopLeft_GrSurfaceOrigin; |
| if (!this->vkCaps().canCopyAsBlit(copySurface->config(), 1, kOrigin, false, |
| surface->config(), srcSampleCount, kOrigin, |
| srcHasYcbcr) && |
| !this->vkCaps().canCopyAsDraw(copySurface->config(), false, false, |
| surface->config(), SkToBool(surface->asTexture()), |
| srcHasYcbcr)) { |
| return false; |
| } |
| SkIRect srcRect = SkIRect::MakeXYWH(left, top, width, height); |
| if (!this->copySurface(copySurface.get(), kOrigin, surface, kOrigin, |
| srcRect, SkIPoint::Make(0,0))) { |
| return false; |
| } |
| top = 0; |
| left = 0; |
| dstColorType = GrColorType::kRGBA_8888; |
| image = copySurface.get(); |
| } |
| |
| // Change layout of our target so it can be used as copy |
| image->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| int bpp = GrColorTypeBytesPerPixel(dstColorType); |
| size_t tightRowBytes = bpp * width; |
| |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| |
| bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin(); |
| if (copyFromOrigin) { |
| region.imageOffset = { 0, 0, 0 }; |
| region.imageExtent = { (uint32_t)(left + width), (uint32_t)(top + height), 1 }; |
| } else { |
| VkOffset3D offset = { left, top, 0 }; |
| region.imageOffset = offset; |
| region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; |
| } |
| |
| size_t transBufferRowBytes = bpp * region.imageExtent.width; |
| size_t imageRows = region.imageExtent.height; |
| auto transferBuffer = sk_sp<GrVkTransferBuffer>( |
| static_cast<GrVkTransferBuffer*>(this->createBuffer(transBufferRowBytes * imageRows, |
| GrGpuBufferType::kXferGpuToCpu, |
| kStream_GrAccessPattern) |
| .release())); |
| |
| // Copy the image to a buffer so we can map it to cpu memory |
| region.bufferOffset = transferBuffer->offset(); |
| region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below. |
| region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images. |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| |
| fCurrentCmdBuffer->copyImageToBuffer(this, |
| image, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| transferBuffer.get(), |
| 1, |
| ®ion); |
| |
| // make sure the copy to buffer has finished |
| transferBuffer->addMemoryBarrier(this, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| |
| // We need to submit the current command buffer to the Queue and make sure it finishes before |
| // we can copy the data out of the buffer. |
| this->submitCommandBuffer(kForce_SyncQueue); |
| void* mappedMemory = transferBuffer->map(); |
| const GrVkAlloc& transAlloc = transferBuffer->alloc(); |
| GrVkMemory::InvalidateMappedAlloc(this, transAlloc, 0, transAlloc.fSize); |
| |
| if (copyFromOrigin) { |
| uint32_t skipRows = region.imageExtent.height - height; |
| mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left; |
| } |
| |
| SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height); |
| |
| transferBuffer->unmap(); |
| return true; |
| } |
| |
| // The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple |
| // of the granularity. The width must also be a multiple of the granularity or eaqual to the width |
| // the the entire attachment. Similar requirements for the y and height components. |
| void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds, |
| const VkExtent2D& granularity, int maxWidth, int maxHeight) { |
| // Adjust Width |
| if ((0 != granularity.width && 1 != granularity.width)) { |
| // Start with the right side of rect so we know if we end up going pass the maxWidth. |
| int rightAdj = srcBounds.fRight % granularity.width; |
| if (rightAdj != 0) { |
| rightAdj = granularity.width - rightAdj; |
| } |
| dstBounds->fRight = srcBounds.fRight + rightAdj; |
| if (dstBounds->fRight > maxWidth) { |
| dstBounds->fRight = maxWidth; |
| dstBounds->fLeft = 0; |
| } else { |
| dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width; |
| } |
| } else { |
| dstBounds->fLeft = srcBounds.fLeft; |
| dstBounds->fRight = srcBounds.fRight; |
| } |
| |
| // Adjust height |
| if ((0 != granularity.height && 1 != granularity.height)) { |
| // Start with the bottom side of rect so we know if we end up going pass the maxHeight. |
| int bottomAdj = srcBounds.fBottom % granularity.height; |
| if (bottomAdj != 0) { |
| bottomAdj = granularity.height - bottomAdj; |
| } |
| dstBounds->fBottom = srcBounds.fBottom + bottomAdj; |
| if (dstBounds->fBottom > maxHeight) { |
| dstBounds->fBottom = maxHeight; |
| dstBounds->fTop = 0; |
| } else { |
| dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height; |
| } |
| } else { |
| dstBounds->fTop = srcBounds.fTop; |
| dstBounds->fBottom = srcBounds.fBottom; |
| } |
| } |
| |
| void GrVkGpu::submitSecondaryCommandBuffer(const SkTArray<GrVkSecondaryCommandBuffer*>& buffers, |
| const GrVkRenderPass* renderPass, |
| const VkClearValue* colorClear, |
| GrVkRenderTarget* target, GrSurfaceOrigin origin, |
| const SkIRect& bounds) { |
| SkASSERT (!target->wrapsSecondaryCommandBuffer()); |
| const SkIRect* pBounds = &bounds; |
| SkIRect flippedBounds; |
| if (kBottomLeft_GrSurfaceOrigin == origin) { |
| flippedBounds = bounds; |
| flippedBounds.fTop = target->height() - bounds.fBottom; |
| flippedBounds.fBottom = target->height() - bounds.fTop; |
| pBounds = &flippedBounds; |
| } |
| |
| // The bounds we use for the render pass should be of the granularity supported |
| // by the device. |
| const VkExtent2D& granularity = renderPass->granularity(); |
| SkIRect adjustedBounds; |
| if ((0 != granularity.width && 1 != granularity.width) || |
| (0 != granularity.height && 1 != granularity.height)) { |
| adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity, |
| target->width(), target->height()); |
| pBounds = &adjustedBounds; |
| } |
| |
| #ifdef SK_DEBUG |
| uint32_t index; |
| bool result = renderPass->colorAttachmentIndex(&index); |
| SkASSERT(result && 0 == index); |
| result = renderPass->stencilAttachmentIndex(&index); |
| if (result) { |
| SkASSERT(1 == index); |
| } |
| #endif |
| VkClearValue clears[2]; |
| clears[0].color = colorClear->color; |
| clears[1].depthStencil.depth = 0.0f; |
| clears[1].depthStencil.stencil = 0; |
| |
| fCurrentCmdBuffer->beginRenderPass(this, renderPass, clears, *target, *pBounds, true); |
| for (int i = 0; i < buffers.count(); ++i) { |
| fCurrentCmdBuffer->executeCommands(this, buffers[i]); |
| } |
| fCurrentCmdBuffer->endRenderPass(this); |
| |
| this->didWriteToSurface(target, origin, &bounds); |
| } |
| |
| void GrVkGpu::submit(GrGpuCommandBuffer* buffer) { |
| if (buffer->asRTCommandBuffer()) { |
| SkASSERT(fCachedRTCommandBuffer.get() == buffer); |
| |
| fCachedRTCommandBuffer->submit(); |
| fCachedRTCommandBuffer->reset(); |
| } else { |
| SkASSERT(fCachedTexCommandBuffer.get() == buffer); |
| |
| fCachedTexCommandBuffer->submit(); |
| fCachedTexCommandBuffer->reset(); |
| } |
| } |
| |
| GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() { |
| VkFenceCreateInfo createInfo; |
| memset(&createInfo, 0, sizeof(VkFenceCreateInfo)); |
| createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = 0; |
| VkFence fence = VK_NULL_HANDLE; |
| |
| VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence)); |
| VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence)); |
| |
| GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence)); |
| return (GrFence)fence; |
| } |
| |
| bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) { |
| SkASSERT(VK_NULL_HANDLE != (VkFence)fence); |
| |
| VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout)); |
| return (VK_SUCCESS == result); |
| } |
| |
| void GrVkGpu::deleteFence(GrFence fence) const { |
| VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr)); |
| } |
| |
| sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) { |
| return GrVkSemaphore::Make(this, isOwned); |
| } |
| |
| sk_sp<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, |
| GrResourceProvider::SemaphoreWrapType wrapType, |
| GrWrapOwnership ownership) { |
| return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership); |
| } |
| |
| void GrVkGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore) { |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); |
| |
| GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| if (resource->shouldSignal()) { |
| resource->ref(); |
| fSemaphoresToSignal.push_back(resource); |
| } |
| } |
| |
| void GrVkGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) { |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); |
| |
| GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| if (resource->shouldWait()) { |
| resource->ref(); |
| fSemaphoresToWaitOn.push_back(resource); |
| } |
| } |
| |
| sk_sp<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { |
| SkASSERT(texture); |
| GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture); |
| vkTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| false); |
| this->submitCommandBuffer(kSkip_SyncQueue); |
| |
| // The image layout change serves as a barrier, so no semaphore is needed |
| return nullptr; |
| } |
| |
| void GrVkGpu::addDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) { |
| fDrawables.emplace_back(std::move(drawable)); |
| } |
| |
| uint32_t GrVkGpu::getExtraSamplerKeyForProgram(const GrSamplerState& samplerState, |
| const GrBackendFormat& format) { |
| const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo(); |
| SkASSERT(ycbcrInfo); |
| if (!ycbcrInfo->isValid()) { |
| return 0; |
| } |
| |
| const GrVkSampler* sampler = this->resourceProvider().findOrCreateCompatibleSampler( |
| samplerState, *ycbcrInfo); |
| |
| return sampler->uniqueID(); |
| } |
| |
| void GrVkGpu::storeVkPipelineCacheData() { |
| if (this->getContext()->priv().getPersistentCache()) { |
| this->resourceProvider().storePipelineCacheData(); |
| } |
| } |