| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkClusterator.h" |
| |
| #include "SkUtils.h" |
| |
| static bool is_reversed(const uint32_t* clusters, uint32_t count) { |
| // "ReversedChars" is how PDF deals with RTL text. |
| // return true if more than one cluster and monotonicly decreasing to zero. |
| if (count < 2 || clusters[0] == 0 || clusters[count - 1] != 0) { |
| return false; |
| } |
| for (uint32_t i = 0; i + 1 < count; ++i) { |
| if (clusters[i + 1] > clusters[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| SkClusterator::SkClusterator(const void* sourceText, |
| size_t sourceByteCount, |
| const SkPaint& paint, |
| const uint32_t* clusters, |
| uint32_t utf8TextByteLength, |
| const char* utf8Text) { |
| if (SkPaint::kGlyphID_TextEncoding == paint.getTextEncoding()) { |
| fGlyphs = reinterpret_cast<const SkGlyphID*>(sourceText); |
| fClusters = clusters; |
| fUtf8Text = utf8Text; |
| fGlyphCount = sourceByteCount / sizeof(SkGlyphID); |
| fTextByteLength = utf8TextByteLength; |
| if (fClusters) { |
| SkASSERT(fUtf8Text && fTextByteLength > 0 && fGlyphCount > 0); |
| fReversedChars = is_reversed(fClusters, fGlyphCount); |
| } else { |
| SkASSERT(!fUtf8Text && fTextByteLength == 0); |
| } |
| return; |
| } |
| |
| // If Skia is given text (not glyphs), then our fallback primitive shaping will |
| // produce a simple 1-1 cluster mapping. |
| fGlyphCount = SkToU32(paint.textToGlyphs(sourceText, sourceByteCount, nullptr)); |
| fGlyphStorage.resize(fGlyphCount); |
| (void)paint.textToGlyphs(sourceText, sourceByteCount, fGlyphStorage.data()); |
| fGlyphs = fGlyphStorage.data(); |
| fClusterStorage.resize(fGlyphCount); |
| fClusters = fClusterStorage.data(); |
| |
| switch (paint.getTextEncoding()) { |
| case SkPaint::kUTF8_TextEncoding: |
| { |
| fUtf8Text = reinterpret_cast<const char*>(sourceText); |
| fTextByteLength = SkToU32(sourceByteCount); |
| const char* txtPtr = fUtf8Text; |
| for (uint32_t i = 0; i < fGlyphCount; ++i) { |
| fClusterStorage[i] = SkToU32(txtPtr - fUtf8Text); |
| txtPtr += SkUTF8_LeadByteToCount(*(const unsigned char*)txtPtr); |
| SkASSERT(txtPtr <= fUtf8Text + sourceByteCount); |
| } |
| SkASSERT(txtPtr == fUtf8Text + sourceByteCount); |
| return; |
| } |
| case SkPaint::kUTF16_TextEncoding: |
| { |
| const uint16_t* utf16ptr = reinterpret_cast<const uint16_t*>(sourceText); |
| int utf16count = SkToInt(sourceByteCount / sizeof(uint16_t)); |
| fTextByteLength = SkToU32(SkUTF16_ToUTF8(utf16ptr, utf16count)); |
| fUtf8textStorage.resize(fTextByteLength); |
| fUtf8Text = fUtf8textStorage.data(); |
| char* txtPtr = fUtf8textStorage.data(); |
| uint32_t clusterIndex = 0; |
| while (utf16ptr < (const uint16_t*)sourceText + utf16count) { |
| fClusterStorage[clusterIndex++] = SkToU32(txtPtr - fUtf8Text); |
| SkUnichar uni = SkUTF16_NextUnichar(&utf16ptr); |
| txtPtr += SkUTF8_FromUnichar(uni, txtPtr); |
| } |
| SkASSERT(clusterIndex == fGlyphCount); |
| SkASSERT(txtPtr == fUtf8textStorage.data() + fTextByteLength); |
| SkASSERT(utf16ptr == (const uint16_t*)sourceText + utf16count); |
| return; |
| } |
| case SkPaint::kUTF32_TextEncoding: |
| { |
| const SkUnichar* utf32 = reinterpret_cast<const SkUnichar*>(sourceText); |
| uint32_t utf32count = SkToU32(sourceByteCount / sizeof(SkUnichar)); |
| SkASSERT(fGlyphCount == utf32count); |
| fTextByteLength = 0; |
| for (uint32_t i = 0; i < utf32count; ++i) { |
| fTextByteLength += SkToU32(SkUTF8_FromUnichar(utf32[i])); |
| } |
| fUtf8textStorage.resize(SkToSizeT(fTextByteLength)); |
| fUtf8Text = fUtf8textStorage.data(); |
| char* txtPtr = fUtf8textStorage.data(); |
| for (uint32_t i = 0; i < utf32count; ++i) { |
| fClusterStorage[i] = SkToU32(txtPtr - fUtf8Text); |
| txtPtr += SkUTF8_FromUnichar(utf32[i], txtPtr); |
| } |
| return; |
| } |
| default: |
| SkDEBUGFAIL(""); |
| break; |
| } |
| } |
| |
| SkClusterator::Cluster SkClusterator::next() { |
| if (fCurrentGlyphIndex >= fGlyphCount) { |
| return Cluster{nullptr, 0, 0, 0}; |
| } |
| if (!fClusters || !fUtf8Text) { |
| return Cluster{nullptr, 0, fCurrentGlyphIndex++, 1}; |
| } |
| uint32_t clusterGlyphIndex = fCurrentGlyphIndex; |
| uint32_t cluster = fClusters[clusterGlyphIndex]; |
| do { |
| ++fCurrentGlyphIndex; |
| } while (fCurrentGlyphIndex < fGlyphCount && cluster == fClusters[fCurrentGlyphIndex]); |
| uint32_t clusterGlyphCount = fCurrentGlyphIndex - clusterGlyphIndex; |
| uint32_t clusterEnd = fTextByteLength; |
| for (unsigned i = 0; i < fGlyphCount; ++i) { |
| uint32_t c = fClusters[i]; |
| if (c > cluster && c < clusterEnd) { |
| clusterEnd = c; |
| } |
| } |
| uint32_t clusterLen = clusterEnd - cluster; |
| return Cluster{fUtf8Text + cluster, clusterLen, clusterGlyphIndex, clusterGlyphCount}; |
| } |
| |