| /* |
| * Copyright 2019 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/tessellate/GrTessellationPathRenderer.h" |
| |
| #include "include/pathops/SkPathOps.h" |
| #include "src/core/SkIPoint16.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/gpu/GrClip.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrSurfaceDrawContext.h" |
| #include "src/gpu/geometry/GrStyledShape.h" |
| #include "src/gpu/ops/GrFillRectOp.h" |
| #include "src/gpu/tessellate/GrDrawAtlasPathOp.h" |
| #include "src/gpu/tessellate/GrPathTessellateOp.h" |
| #include "src/gpu/tessellate/GrStrokeIndirectOp.h" |
| #include "src/gpu/tessellate/GrStrokeTessellateOp.h" |
| #include "src/gpu/tessellate/GrWangsFormula.h" |
| |
| constexpr static SkISize kAtlasInitialSize{512, 512}; |
| constexpr static int kMaxAtlasSize = 2048; |
| |
| constexpr static auto kAtlasAlpha8Type = GrColorType::kAlpha_8; |
| |
| // The atlas is only used for small-area paths, which means at least one dimension of every path is |
| // guaranteed to be quite small. So if we transpose tall paths, then every path will have a small |
| // height, which lends very well to efficient pow2 atlas packing. |
| constexpr static auto kAtlasAlgorithm = GrDynamicAtlas::RectanizerAlgorithm::kPow2; |
| |
| // Ensure every path in the atlas falls in or below the 128px high rectanizer band. |
| constexpr static int kMaxAtlasPathHeight = 128; |
| |
| bool GrTessellationPathRenderer::IsSupported(const GrCaps& caps) { |
| return caps.drawInstancedSupport() && |
| caps.shaderCaps()->vertexIDSupport() && |
| !caps.disableTessellationPathRenderer(); |
| } |
| |
| GrTessellationPathRenderer::GrTessellationPathRenderer(GrRecordingContext* rContext) |
| : fAtlas(kAtlasAlpha8Type, GrDynamicAtlas::InternalMultisample::kYes, kAtlasInitialSize, |
| std::min(kMaxAtlasSize, rContext->priv().caps()->maxPreferredRenderTargetSize()), |
| *rContext->priv().caps(), kAtlasAlgorithm) { |
| this->initAtlasFlags(rContext); |
| } |
| |
| void GrTessellationPathRenderer::initAtlasFlags(GrRecordingContext* rContext) { |
| fMaxAtlasPathWidth = 0; |
| |
| if (!rContext->asDirectContext()) { |
| // The atlas is not compatible with DDL. Leave it disabled on non-direct contexts. |
| return; |
| } |
| |
| const GrCaps& caps = *rContext->priv().caps(); |
| auto atlasFormat = caps.getDefaultBackendFormat(kAtlasAlpha8Type, GrRenderable::kYes); |
| if (caps.internalMultisampleCount(atlasFormat) <= 1) { |
| // MSAA is not supported on kAlpha8. Leave the atlas disabled. |
| return; |
| } |
| |
| fStencilAtlasFlags = OpFlags::kStencilOnly | OpFlags::kDisableHWTessellation; |
| fMaxAtlasPathWidth = fAtlas.maxAtlasSize() / 2; |
| |
| // The atlas usually does better with hardware tessellation. If hardware tessellation is |
| // supported, we will next choose a max atlas path width that is guaranteed to never require |
| // more tessellation segments than are supported by the hardware. |
| if (!caps.shaderCaps()->tessellationSupport()) { |
| return; |
| } |
| |
| // Since we limit the area of paths in the atlas to kMaxAtlasPathHeight^2, taller paths can't |
| // get very wide anyway. Find the tallest path whose width is limited by |
| // GrWangsFormula::worst_case_cubic() rather than the max area constraint, and use that for our |
| // max atlas path width. |
| // |
| // Solve the following equation for w: |
| // |
| // GrWangsFormula::worst_case_cubic(kLinearizationIntolerance, w, kMaxAtlasPathHeight^2 / w) |
| // == maxTessellationSegments |
| // |
| float k = GrWangsFormula::length_term<3>(kLinearizationIntolerance); |
| float h = kMaxAtlasPathHeight; |
| float s = caps.shaderCaps()->maxTessellationSegments(); |
| // Quadratic formula from Numerical Recipes in C: |
| // |
| // q = -1/2 [b + sign(b) sqrt(b*b - 4*a*c)] |
| // x1 = q/a |
| // x2 = c/q |
| // |
| // float a = 1; // 'a' is always 1 in our specific equation. |
| float b = -s*s*s*s / (4*k*k); // Always negative. |
| float c = h*h*h*h; // Always positive. |
| float discr = b*b - 4*1*c; |
| if (discr <= 0) { |
| // maxTessellationSegments is too small for any path whose area == kMaxAtlasPathHeight^2. |
| // (This is unexpected because the GL spec mandates a minimum of 64 segments.) |
| rContext->priv().printWarningMessage(SkStringPrintf( |
| "WARNING: maxTessellationSegments seems too low. (%i)\n", |
| caps.shaderCaps()->maxTessellationSegments()).c_str()); |
| return; |
| } |
| float q = -.5f * (b - std::sqrt(discr)); // Always positive. |
| // The two roots represent the width^2 and height^2 of the tallest rectangle that is limited by |
| // GrWangsFormula::worst_case_cubic(). |
| float r0 = q; // Always positive. |
| float r1 = c/q; // Always positive. |
| float worstCaseWidth = std::sqrt(std::max(r0, r1)); |
| #ifdef SK_DEBUG |
| float worstCaseHeight = std::sqrt(std::min(r0, r1)); |
| // Verify the above equation worked as expected. It should have found a width and height whose |
| // area == kMaxAtlasPathHeight^2. |
| SkASSERT(SkScalarNearlyEqual(worstCaseHeight * worstCaseWidth, h*h, 1)); |
| // Verify GrWangsFormula::worst_case_cubic() still works as we expect. The worst case number of |
| // segments for this bounding box should be maxTessellationSegments. |
| SkASSERT(SkScalarNearlyEqual(GrWangsFormula::worst_case_cubic( |
| kLinearizationIntolerance, worstCaseWidth, worstCaseHeight), s, 1)); |
| #endif |
| fStencilAtlasFlags &= ~OpFlags::kDisableHWTessellation; |
| fMaxAtlasPathWidth = std::min(fMaxAtlasPathWidth, (int)worstCaseWidth); |
| } |
| |
| GrPathRenderer::CanDrawPath GrTessellationPathRenderer::onCanDrawPath( |
| const CanDrawPathArgs& args) const { |
| const GrStyledShape& shape = *args.fShape; |
| if (shape.style().hasPathEffect() || |
| args.fViewMatrix->hasPerspective() || |
| shape.style().strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style || |
| shape.inverseFilled() || |
| args.fHasUserStencilSettings) { |
| return CanDrawPath::kNo; |
| } |
| if (GrAAType::kCoverage == args.fAAType) { |
| SkASSERT(1 == args.fProxy->numSamples()); |
| if (!args.fProxy->canUseMixedSamples(*args.fCaps)) { |
| return CanDrawPath::kNo; |
| } |
| } |
| return CanDrawPath::kYes; |
| } |
| |
| static GrOp::Owner make_op(GrRecordingContext* rContext, const GrSurfaceContext* surfaceContext, |
| GrTessellationPathRenderer::OpFlags opFlags, GrAAType aaType, |
| const SkRect& shapeDevBounds, const SkMatrix& viewMatrix, |
| const GrStyledShape& shape, GrPaint&& paint) { |
| constexpr static auto kLinearizationIntolerance = |
| GrTessellationPathRenderer::kLinearizationIntolerance; |
| constexpr static auto kMaxResolveLevel = GrTessellationPathRenderer::kMaxResolveLevel; |
| using OpFlags = GrTessellationPathRenderer::OpFlags; |
| |
| const GrShaderCaps& shaderCaps = *rContext->priv().caps()->shaderCaps(); |
| |
| SkPath path; |
| shape.asPath(&path); |
| |
| // Find the worst-case log2 number of line segments that a curve in this path might need to be |
| // divided into. |
| int worstCaseResolveLevel = GrWangsFormula::worst_case_cubic_log2(kLinearizationIntolerance, |
| shapeDevBounds.width(), |
| shapeDevBounds.height()); |
| if (worstCaseResolveLevel > kMaxResolveLevel) { |
| // The path is too large for our internal indirect draw shaders. Crop it to the viewport. |
| auto viewport = SkRect::MakeIWH(surfaceContext->width(), surfaceContext->height()); |
| float inflationRadius = 1; |
| const SkStrokeRec& stroke = shape.style().strokeRec(); |
| if (stroke.getStyle() == SkStrokeRec::kHairline_Style) { |
| inflationRadius += SkStrokeRec::GetInflationRadius(stroke.getJoin(), stroke.getMiter(), |
| stroke.getCap(), 1); |
| } else if (stroke.getStyle() != SkStrokeRec::kFill_Style) { |
| inflationRadius += stroke.getInflationRadius() * viewMatrix.getMaxScale(); |
| } |
| viewport.outset(inflationRadius, inflationRadius); |
| |
| SkPath viewportPath; |
| viewportPath.addRect(viewport); |
| // Perform the crop in device space so it's a simple rect-path intersection. |
| path.transform(viewMatrix); |
| if (!Op(viewportPath, path, kIntersect_SkPathOp, &path)) { |
| // The crop can fail if the PathOps encounter NaN or infinities. Return true |
| // because drawing nothing is acceptable behavior for FP overflow. |
| return nullptr; |
| } |
| |
| // Transform the path back to its own local space. |
| SkMatrix inverse; |
| if (!viewMatrix.invert(&inverse)) { |
| return nullptr; // Singular view matrix. Nothing would have drawn anyway. Return null. |
| } |
| path.transform(inverse); |
| path.setIsVolatile(true); |
| |
| SkRect newDevBounds; |
| viewMatrix.mapRect(&newDevBounds, path.getBounds()); |
| worstCaseResolveLevel = GrWangsFormula::worst_case_cubic_log2(kLinearizationIntolerance, |
| newDevBounds.width(), |
| newDevBounds.height()); |
| // kMaxResolveLevel should be large enough to tessellate paths the size of any screen we |
| // might encounter. |
| SkASSERT(worstCaseResolveLevel <= kMaxResolveLevel); |
| } |
| |
| if (!shape.style().isSimpleFill()) { |
| const SkStrokeRec& stroke = shape.style().strokeRec(); |
| SkASSERT(stroke.getStyle() != SkStrokeRec::kStrokeAndFill_Style); |
| // Only use hardware tessellation if the path has a somewhat large number of verbs. |
| // Otherwise we seem to be better off using indirect draws. Our back door for HW |
| // tessellation shaders isn't currently capable of passing varyings to the fragment shader |
| // either, so if the paint uses varyings we need to use indirect draws. |
| if (shaderCaps.tessellationSupport() && |
| path.countVerbs() > 50 && |
| !paint.usesVaryingCoords() && |
| !SkPathPriv::ConicWeightCnt(path)) { |
| return GrOp::Make<GrStrokeTessellateOp>(rContext, aaType, viewMatrix, stroke, path, |
| std::move(paint)); |
| } else { |
| return GrOp::Make<GrStrokeIndirectOp>(rContext, aaType, viewMatrix, path, stroke, |
| std::move(paint)); |
| } |
| } else { |
| if ((1 << worstCaseResolveLevel) > shaderCaps.maxTessellationSegments()) { |
| // The path is too large for hardware tessellation; a curve in this bounding box could |
| // potentially require more segments than are supported by the hardware. Fall back on |
| // indirect draws. |
| opFlags |= OpFlags::kDisableHWTessellation; |
| } |
| return GrOp::Make<GrPathTessellateOp>(rContext, viewMatrix, path, std::move(paint), aaType, |
| opFlags); |
| } |
| } |
| |
| bool GrTessellationPathRenderer::onDrawPath(const DrawPathArgs& args) { |
| GrSurfaceDrawContext* surfaceDrawContext = args.fRenderTargetContext; |
| |
| SkRect devBounds; |
| args.fViewMatrix->mapRect(&devBounds, args.fShape->bounds()); |
| |
| // See if the path is small and simple enough to atlas instead of drawing directly. |
| // |
| // NOTE: The atlas uses alpha8 coverage even for msaa render targets. We could theoretically |
| // render the sample mask to an integer texture, but such a scheme would probably require |
| // GL_EXT_post_depth_coverage, which appears to have low adoption. |
| SkIRect devIBounds; |
| SkIPoint16 locationInAtlas; |
| bool transposedInAtlas; |
| if (this->tryAddPathToAtlas(*args.fContext->priv().caps(), *args.fViewMatrix, *args.fShape, |
| devBounds, args.fAAType, &devIBounds, &locationInAtlas, |
| &transposedInAtlas)) { |
| // The atlas is not compatible with DDL. We should only be using it on direct contexts. |
| SkASSERT(args.fContext->asDirectContext()); |
| #ifdef SK_DEBUG |
| // If using hardware tessellation in the atlas, make sure the max number of segments is |
| // sufficient for this path. fMaxAtlasPathWidth should have been tuned for this to always be |
| // the case. |
| if (!(fStencilAtlasFlags & OpFlags::kDisableHWTessellation)) { |
| int worstCaseNumSegments = GrWangsFormula::worst_case_cubic(kLinearizationIntolerance, |
| devIBounds.width(), |
| devIBounds.height()); |
| const GrShaderCaps& shaderCaps = *args.fContext->priv().caps()->shaderCaps(); |
| SkASSERT(worstCaseNumSegments <= shaderCaps.maxTessellationSegments()); |
| } |
| #endif |
| auto op = GrOp::Make<GrDrawAtlasPathOp>(args.fContext, |
| surfaceDrawContext->numSamples(), sk_ref_sp(fAtlas.textureProxy()), |
| devIBounds, locationInAtlas, transposedInAtlas, *args.fViewMatrix, |
| std::move(args.fPaint)); |
| surfaceDrawContext->addDrawOp(args.fClip, std::move(op)); |
| return true; |
| } |
| |
| if (auto op = make_op(args.fContext, surfaceDrawContext, OpFlags::kNone, args.fAAType, |
| devBounds, *args.fViewMatrix, *args.fShape, std::move(args.fPaint))) { |
| surfaceDrawContext->addDrawOp(args.fClip, std::move(op)); |
| } |
| return true; |
| } |
| |
| bool GrTessellationPathRenderer::tryAddPathToAtlas( |
| const GrCaps& caps, const SkMatrix& viewMatrix, const GrStyledShape& shape, |
| const SkRect& devBounds, GrAAType aaType, SkIRect* devIBounds, SkIPoint16* locationInAtlas, |
| bool* transposedInAtlas) { |
| if (!shape.style().isSimpleFill()) { |
| return false; |
| } |
| |
| if (!fMaxAtlasPathWidth) { |
| return false; |
| } |
| |
| if (!caps.multisampleDisableSupport() && GrAAType::kNone == aaType) { |
| return false; |
| } |
| |
| // Atlas paths require their points to be transformed on the CPU and copied into an "uber path". |
| // Check if this path has too many points to justify this extra work. |
| SkPath path; |
| shape.asPath(&path); |
| if (path.countPoints() > 200) { |
| return false; |
| } |
| |
| // Transpose tall paths in the atlas. Since we limit ourselves to small-area paths, this |
| // guarantees that every atlas entry has a small height, which lends very well to efficient pow2 |
| // atlas packing. |
| devBounds.roundOut(devIBounds); |
| int maxDimenstion = devIBounds->width(); |
| int minDimension = devIBounds->height(); |
| *transposedInAtlas = minDimension > maxDimenstion; |
| if (*transposedInAtlas) { |
| std::swap(minDimension, maxDimenstion); |
| } |
| |
| // Check if the path is too large for an atlas. Since we use "minDimension" for height in the |
| // atlas, limiting to kMaxAtlasPathHeight^2 pixels guarantees height <= kMaxAtlasPathHeight. |
| if ((uint64_t)maxDimenstion * minDimension > kMaxAtlasPathHeight * kMaxAtlasPathHeight || |
| maxDimenstion > fMaxAtlasPathWidth) { |
| return false; |
| } |
| |
| if (!fAtlas.addRect(maxDimenstion, minDimension, locationInAtlas)) { |
| return false; |
| } |
| |
| SkMatrix atlasMatrix = viewMatrix; |
| if (*transposedInAtlas) { |
| std::swap(atlasMatrix[0], atlasMatrix[3]); |
| std::swap(atlasMatrix[1], atlasMatrix[4]); |
| float tx=atlasMatrix.getTranslateX(), ty=atlasMatrix.getTranslateY(); |
| atlasMatrix.setTranslateX(ty - devIBounds->y() + locationInAtlas->x()); |
| atlasMatrix.setTranslateY(tx - devIBounds->x() + locationInAtlas->y()); |
| } else { |
| atlasMatrix.postTranslate(locationInAtlas->x() - devIBounds->x(), |
| locationInAtlas->y() - devIBounds->y()); |
| } |
| |
| // Concatenate this path onto our uber path that matches its fill and AA types. |
| SkPath* uberPath = this->getAtlasUberPath(path.getFillType(), GrAAType::kNone != aaType); |
| uberPath->moveTo(locationInAtlas->x(), locationInAtlas->y()); // Implicit moveTo(0,0). |
| uberPath->addPath(path, atlasMatrix); |
| return true; |
| } |
| |
| void GrTessellationPathRenderer::onStencilPath(const StencilPathArgs& args) { |
| GrSurfaceDrawContext* surfaceDrawContext = args.fRenderTargetContext; |
| GrAAType aaType = (GrAA::kYes == args.fDoStencilMSAA) ? GrAAType::kMSAA : GrAAType::kNone; |
| SkRect devBounds; |
| args.fViewMatrix->mapRect(&devBounds, args.fShape->bounds()); |
| if (auto op = make_op(args.fContext, surfaceDrawContext, OpFlags::kStencilOnly, aaType, |
| devBounds, *args.fViewMatrix, *args.fShape, GrPaint())) { |
| surfaceDrawContext->addDrawOp(args.fClip, std::move(op)); |
| } |
| } |
| |
| void GrTessellationPathRenderer::preFlush(GrOnFlushResourceProvider* onFlushRP, |
| SkSpan<const uint32_t> /* taskIDs */) { |
| if (!fAtlas.drawBounds().isEmpty()) { |
| this->renderAtlas(onFlushRP); |
| fAtlas.reset(kAtlasInitialSize, *onFlushRP->caps()); |
| } |
| for (SkPath& path : fAtlasUberPaths) { |
| path.reset(); |
| } |
| } |
| |
| constexpr static GrUserStencilSettings kTestStencil( |
| GrUserStencilSettings::StaticInit< |
| 0x0000, |
| GrUserStencilTest::kNotEqual, |
| 0xffff, |
| GrUserStencilOp::kKeep, |
| GrUserStencilOp::kKeep, |
| 0xffff>()); |
| |
| constexpr static GrUserStencilSettings kTestAndResetStencil( |
| GrUserStencilSettings::StaticInit< |
| 0x0000, |
| GrUserStencilTest::kNotEqual, |
| 0xffff, |
| GrUserStencilOp::kZero, |
| GrUserStencilOp::kKeep, |
| 0xffff>()); |
| |
| void GrTessellationPathRenderer::renderAtlas(GrOnFlushResourceProvider* onFlushRP) { |
| auto rtc = fAtlas.instantiate(onFlushRP); |
| if (!rtc) { |
| return; |
| } |
| |
| // Add ops to stencil the atlas paths. |
| for (auto antialias : {false, true}) { |
| for (auto fillType : {SkPathFillType::kWinding, SkPathFillType::kEvenOdd}) { |
| SkPath* uberPath = this->getAtlasUberPath(fillType, antialias); |
| if (uberPath->isEmpty()) { |
| continue; |
| } |
| uberPath->setFillType(fillType); |
| GrAAType aaType = (antialias) ? GrAAType::kMSAA : GrAAType::kNone; |
| auto op = GrOp::Make<GrPathTessellateOp>(onFlushRP->recordingContext(), |
| SkMatrix::I(), *uberPath, GrPaint(), aaType, fStencilAtlasFlags); |
| rtc->addDrawOp(nullptr, std::move(op)); |
| } |
| } |
| |
| // Finally, draw a fullscreen rect to convert our stencilled paths into alpha coverage masks. |
| auto aaType = GrAAType::kMSAA; |
| auto fillRectFlags = GrFillRectOp::InputFlags::kNone; |
| |
| // This will be the final op in the surfaceDrawContext. So if Ganesh is planning to discard the |
| // stencil values anyway, then we might not actually need to reset the stencil values back to 0. |
| bool mustResetStencil = !onFlushRP->caps()->discardStencilValuesAfterRenderPass(); |
| |
| if (rtc->numSamples() == 1) { |
| // We are mixed sampled. We need to either enable conservative raster (preferred) or disable |
| // MSAA in order to avoid double blend artifacts. (Even if we disable MSAA for the cover |
| // geometry, the stencil test is still multisampled and will still produce smooth results.) |
| if (onFlushRP->caps()->conservativeRasterSupport()) { |
| fillRectFlags |= GrFillRectOp::InputFlags::kConservativeRaster; |
| } else { |
| aaType = GrAAType::kNone; |
| } |
| mustResetStencil = true; |
| } |
| |
| SkRect coverRect = SkRect::MakeIWH(fAtlas.drawBounds().width(), fAtlas.drawBounds().height()); |
| const GrUserStencilSettings* stencil; |
| if (mustResetStencil) { |
| // Outset the cover rect in case there are T-junctions in the path bounds. |
| coverRect.outset(1, 1); |
| stencil = &kTestAndResetStencil; |
| } else { |
| stencil = &kTestStencil; |
| } |
| |
| GrQuad coverQuad(coverRect); |
| DrawQuad drawQuad{coverQuad, coverQuad, GrQuadAAFlags::kAll}; |
| |
| GrPaint paint; |
| paint.setColor4f(SK_PMColor4fWHITE); |
| |
| auto coverOp = GrFillRectOp::Make(rtc->recordingContext(), std::move(paint), aaType, &drawQuad, |
| stencil, fillRectFlags); |
| rtc->addDrawOp(nullptr, std::move(coverOp)); |
| |
| if (rtc->asSurfaceProxy()->requiresManualMSAAResolve()) { |
| onFlushRP->addTextureResolveTask(sk_ref_sp(rtc->asTextureProxy()), |
| GrSurfaceProxy::ResolveFlags::kMSAA); |
| } |
| } |