blob: f64843181dc2ace8196671c28cc6b0098758845c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkColorSpace.h"
#include "SkColorTable.h"
#include "SkMath.h"
#include "SkOpts.h"
#include "SkPngCodec.h"
#include "SkSize.h"
#include "SkStream.h"
#include "SkSwizzler.h"
#include "SkTemplates.h"
#include "SkUtils.h"
///////////////////////////////////////////////////////////////////////////////
// Callback functions
///////////////////////////////////////////////////////////////////////////////
// When setjmp is first called, it returns 0, meaning longjmp was not called.
constexpr int kSetJmpOkay = 0;
// An error internal to libpng.
constexpr int kPngError = 1;
// Passed to longjmp when we have decoded as many lines as we need.
constexpr int kStopDecoding = 2;
static void sk_error_fn(png_structp png_ptr, png_const_charp msg) {
SkCodecPrintf("------ png error %s\n", msg);
longjmp(png_jmpbuf(png_ptr), kPngError);
}
void sk_warning_fn(png_structp, png_const_charp msg) {
SkCodecPrintf("----- png warning %s\n", msg);
}
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
static int sk_read_user_chunk(png_structp png_ptr, png_unknown_chunkp chunk) {
SkPngChunkReader* chunkReader = (SkPngChunkReader*)png_get_user_chunk_ptr(png_ptr);
// readChunk() returning true means continue decoding
return chunkReader->readChunk((const char*)chunk->name, chunk->data, chunk->size) ? 1 : -1;
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Helpers
///////////////////////////////////////////////////////////////////////////////
class AutoCleanPng : public SkNoncopyable {
public:
/*
* This class does not take ownership of stream or reader, but if codecPtr
* is non-NULL, and decodeBounds succeeds, it will have created a new
* SkCodec (pointed to by *codecPtr) which will own/ref them, as well as
* the png_ptr and info_ptr.
*/
AutoCleanPng(png_structp png_ptr, SkStream* stream, SkPngChunkReader* reader,
SkCodec** codecPtr)
: fPng_ptr(png_ptr)
, fInfo_ptr(nullptr)
, fDecodedBounds(false)
, fReadHeader(false)
, fStream(stream)
, fChunkReader(reader)
, fOutCodec(codecPtr)
{}
~AutoCleanPng() {
// fInfo_ptr will never be non-nullptr unless fPng_ptr is.
if (fPng_ptr) {
png_infopp info_pp = fInfo_ptr ? &fInfo_ptr : nullptr;
png_destroy_read_struct(&fPng_ptr, info_pp, nullptr);
}
}
void setInfoPtr(png_infop info_ptr) {
SkASSERT(nullptr == fInfo_ptr);
fInfo_ptr = info_ptr;
}
/**
* Reads enough of the input stream to decode the bounds.
* @return false if the stream is not a valid PNG (or too short).
* true if it read enough of the stream to determine the bounds.
* In the latter case, the stream may have been read beyond the
* point to determine the bounds, and the png_ptr will have saved
* any extra data. Further, if the codecPtr supplied to the
* constructor was not NULL, it will now point to a new SkCodec,
* which owns (or refs, in the case of the SkPngChunkReader) the
* inputs. If codecPtr was NULL, the png_ptr and info_ptr are
* unowned, and it is up to the caller to destroy them.
*/
bool decodeBounds();
private:
png_structp fPng_ptr;
png_infop fInfo_ptr;
bool fDecodedBounds;
bool fReadHeader;
SkStream* fStream;
SkPngChunkReader* fChunkReader;
SkCodec** fOutCodec;
/**
* Supplied to libpng to call when it has read enough data to determine
* bounds.
*/
static void InfoCallback(png_structp png_ptr, png_infop info_ptr) {
// png_get_progressive_ptr returns the pointer we set on the png_ptr with
// png_set_progressive_read_fn
static_cast<AutoCleanPng*>(png_get_progressive_ptr(png_ptr))->infoCallback();
}
void infoCallback();
void releasePngPtrs() {
fPng_ptr = nullptr;
fInfo_ptr = nullptr;
}
};
#define AutoCleanPng(...) SK_REQUIRE_LOCAL_VAR(AutoCleanPng)
bool AutoCleanPng::decodeBounds() {
if (setjmp(png_jmpbuf(fPng_ptr))) {
return false;
}
png_set_progressive_read_fn(fPng_ptr, this, InfoCallback, nullptr, nullptr);
// Arbitrary buffer size, though note that it matches (below)
// SkPngCodec::processData(). FIXME: Can we better suit this to the size of
// the PNG header?
constexpr size_t kBufferSize = 4096;
char buffer[kBufferSize];
while (true) {
const size_t bytesRead = fStream->read(buffer, kBufferSize);
if (!bytesRead) {
// We have read to the end of the input without decoding bounds.
break;
}
png_process_data(fPng_ptr, fInfo_ptr, (png_bytep) buffer, bytesRead);
if (fReadHeader) {
break;
}
}
// For safety, clear the pointer to this object.
png_set_progressive_read_fn(fPng_ptr, nullptr, nullptr, nullptr, nullptr);
return fDecodedBounds;
}
void SkPngCodec::processData() {
switch (setjmp(png_jmpbuf(fPng_ptr))) {
case kPngError:
// There was an error. Stop processing data.
// FIXME: Do we need to discard png_ptr?
return;
case kStopDecoding:
// We decoded all the lines we want.
return;
case kSetJmpOkay:
// Everything is okay.
break;
default:
// No other values should be passed to longjmp.
SkASSERT(false);
}
// Arbitrary buffer size
constexpr size_t kBufferSize = 4096;
char buffer[kBufferSize];
while (true) {
const size_t bytesRead = this->stream()->read(buffer, kBufferSize);
png_process_data(fPng_ptr, fInfo_ptr, (png_bytep) buffer, bytesRead);
if (!bytesRead) {
// We have read to the end of the input. Note that we quit *after*
// calling png_process_data, because decodeBounds may have told
// libpng to save the remainder of the buffer, in which case
// png_process_data will process the saved buffer, though the
// stream has no more to read.
break;
}
}
}
// Note: SkColorTable claims to store SkPMColors, which is not necessarily
// the case here.
bool SkPngCodec::createColorTable(SkColorType dstColorType, bool premultiply, int* ctableCount) {
int numColors;
png_color* palette;
if (!png_get_PLTE(fPng_ptr, fInfo_ptr, &palette, &numColors)) {
return false;
}
// Note: These are not necessarily SkPMColors.
SkPMColor colorPtr[256];
png_bytep alphas;
int numColorsWithAlpha = 0;
if (png_get_tRNS(fPng_ptr, fInfo_ptr, &alphas, &numColorsWithAlpha, nullptr)) {
// Choose which function to use to create the color table. If the final destination's
// colortype is unpremultiplied, the color table will store unpremultiplied colors.
PackColorProc proc = choose_pack_color_proc(premultiply, dstColorType);
for (int i = 0; i < numColorsWithAlpha; i++) {
// We don't have a function in SkOpts that combines a set of alphas with a set
// of RGBs. We could write one, but it's hardly worth it, given that this
// is such a small fraction of the total decode time.
colorPtr[i] = proc(alphas[i], palette->red, palette->green, palette->blue);
palette++;
}
}
if (numColorsWithAlpha < numColors) {
// The optimized code depends on a 3-byte png_color struct with the colors
// in RGB order. These checks make sure it is safe to use.
static_assert(3 == sizeof(png_color), "png_color struct has changed. Opts are broken.");
#ifdef SK_DEBUG
SkASSERT(&palette->red < &palette->green);
SkASSERT(&palette->green < &palette->blue);
#endif
if (is_rgba(dstColorType)) {
SkOpts::RGB_to_RGB1(colorPtr + numColorsWithAlpha, palette,
numColors - numColorsWithAlpha);
} else {
SkOpts::RGB_to_BGR1(colorPtr + numColorsWithAlpha, palette,
numColors - numColorsWithAlpha);
}
}
// Pad the color table with the last color in the table (or black) in the case that
// invalid pixel indices exceed the number of colors in the table.
const int maxColors = 1 << fBitDepth;
if (numColors < maxColors) {
SkPMColor lastColor = numColors > 0 ? colorPtr[numColors - 1] : SK_ColorBLACK;
sk_memset32(colorPtr + numColors, lastColor, maxColors - numColors);
}
// Set the new color count.
if (ctableCount != nullptr) {
*ctableCount = maxColors;
}
fColorTable.reset(new SkColorTable(colorPtr, maxColors));
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Creation
///////////////////////////////////////////////////////////////////////////////
bool SkPngCodec::IsPng(const char* buf, size_t bytesRead) {
return !png_sig_cmp((png_bytep) buf, (png_size_t)0, bytesRead);
}
static float png_fixed_point_to_float(png_fixed_point x) {
// We multiply by the same factor that libpng used to convert
// fixed point -> double. Since we want floats, we choose to
// do the conversion ourselves rather than convert
// fixed point -> double -> float.
return ((float) x) * 0.00001f;
}
static float png_inverted_fixed_point_to_float(png_fixed_point x) {
// This is necessary because the gAMA chunk actually stores 1/gamma.
return 1.0f / png_fixed_point_to_float(x);
}
// Returns a colorSpace object that represents any color space information in
// the encoded data. If the encoded data contains no color space, this will
// return NULL.
sk_sp<SkColorSpace> read_color_space(png_structp png_ptr, png_infop info_ptr) {
#if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6)
// First check for an ICC profile
png_bytep profile;
png_uint_32 length;
// The below variables are unused, however, we need to pass them in anyway or
// png_get_iCCP() will return nothing.
// Could knowing the |name| of the profile ever be interesting? Maybe for debugging?
png_charp name;
// The |compression| is uninteresting since:
// (1) libpng has already decompressed the profile for us.
// (2) "deflate" is the only mode of decompression that libpng supports.
int compression;
if (PNG_INFO_iCCP == png_get_iCCP(png_ptr, info_ptr, &name, &compression, &profile,
&length)) {
return SkColorSpace::NewICC(profile, length);
}
// Second, check for sRGB.
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sRGB)) {
// sRGB chunks also store a rendering intent: Absolute, Relative,
// Perceptual, and Saturation.
// FIXME (msarett): Extract this information from the sRGB chunk once
// we are able to handle this information in
// SkColorSpace.
return SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named);
}
// Next, check for chromaticities.
png_fixed_point XYZ[9];
float toXYZD50[9];
png_fixed_point gamma;
float gammas[3];
if (png_get_cHRM_XYZ_fixed(png_ptr, info_ptr, &XYZ[0], &XYZ[1], &XYZ[2], &XYZ[3], &XYZ[4],
&XYZ[5], &XYZ[6], &XYZ[7], &XYZ[8])) {
// FIXME (msarett): Here we are treating XYZ values as D50 even though the color
// temperature is unspecified. I suspect that this assumption
// is most often ok, but we could also calculate the color
// temperature (D value) and then convert the XYZ to D50. Maybe
// we should add a new constructor to SkColorSpace that accepts
// XYZ with D-Unkown?
for (int i = 0; i < 9; i++) {
toXYZD50[i] = png_fixed_point_to_float(XYZ[i]);
}
if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) {
float value = png_inverted_fixed_point_to_float(gamma);
gammas[0] = value;
gammas[1] = value;
gammas[2] = value;
} else {
// Default to sRGB (gamma = 2.2f) if the image has color space information,
// but does not specify gamma.
gammas[0] = 2.2f;
gammas[1] = 2.2f;
gammas[2] = 2.2f;
}
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
mat.set3x3ColMajorf(toXYZD50);
return SkColorSpace::NewRGB(gammas, mat);
}
// Last, check for gamma.
if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) {
// Guess a default value for cHRM? Or should we just give up?
// Here we use the identity matrix as a default.
// Set the gammas.
float value = png_inverted_fixed_point_to_float(gamma);
gammas[0] = value;
gammas[1] = value;
gammas[2] = value;
return SkColorSpace::NewRGB(gammas, SkMatrix44::I());
}
#endif // LIBPNG >= 1.6
// Finally, what should we do if there is no color space information in the PNG?
// The specification says that this indicates "gamma is unknown" and that the
// "color is device dependent". I'm assuming we can represent this with NULL.
// But should we guess sRGB? Most images are sRGB, even if they don't specify.
return nullptr;
}
class SkPngNormalDecoder : public SkPngCodec {
public:
SkPngNormalDecoder(int width, int height, const SkEncodedInfo& info, SkStream* stream,
SkPngChunkReader* reader, png_structp png_ptr, png_infop info_ptr, int bitDepth,
sk_sp<SkColorSpace> colorSpace)
: INHERITED(width, height, info, stream, reader, png_ptr, info_ptr, bitDepth,
std::move(colorSpace))
, fLinesDecoded(0)
, fDst(nullptr)
, fRowBytes(0)
, fFirstRow(0)
, fLastRow(0)
{}
static void AllRowsCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) {
GetDecoder(png_ptr)->allRowsCallback(row, rowNum);
}
static void RowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) {
GetDecoder(png_ptr)->rowCallback(row, rowNum);
}
private:
int fLinesDecoded; // FIXME: Move to baseclass?
void* fDst;
size_t fRowBytes;
// Variables for partial decode
int fFirstRow; // FIXME: Move to baseclass?
int fLastRow;
typedef SkPngCodec INHERITED;
static SkPngNormalDecoder* GetDecoder(png_structp png_ptr) {
return static_cast<SkPngNormalDecoder*>(png_get_progressive_ptr(png_ptr));
}
Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override {
const int height = this->getInfo().height();
png_set_progressive_read_fn(this->png_ptr(), this, nullptr, AllRowsCallback, nullptr);
fDst = dst;
fRowBytes = rowBytes;
fLinesDecoded = 0;
this->processData();
if (fLinesDecoded == height) {
return SkCodec::kSuccess;
}
if (rowsDecoded) {
*rowsDecoded = fLinesDecoded;
}
return SkCodec::kIncompleteInput;
}
void allRowsCallback(png_bytep row, int rowNum) {
SkASSERT(rowNum - fFirstRow == fLinesDecoded);
fLinesDecoded++;
this->swizzler()->swizzle(fDst, row);
fDst = SkTAddOffset<void>(fDst, fRowBytes);
}
void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override {
png_set_progressive_read_fn(this->png_ptr(), this, nullptr, RowCallback, nullptr);
fFirstRow = firstRow;
fLastRow = lastRow;
fDst = dst;
fRowBytes = rowBytes;
fLinesDecoded = 0;
}
SkCodec::Result decode(int* rowsDecoded) override {
this->processData();
if (fLinesDecoded == fLastRow - fFirstRow + 1) {
return SkCodec::kSuccess;
}
if (rowsDecoded) {
*rowsDecoded = fLinesDecoded;
}
return SkCodec::kIncompleteInput;
}
void rowCallback(png_bytep row, int rowNum) {
if (rowNum < fFirstRow) {
// Ignore this row.
return;
}
SkASSERT(rowNum <= fLastRow);
if (this->swizzler()->rowNeeded(fLinesDecoded)) {
this->swizzler()->swizzle(fDst, row);
fDst = SkTAddOffset<void>(fDst, fRowBytes);
}
fLinesDecoded++;
if (rowNum == fLastRow) {
// Fake error to stop decoding scanlines.
longjmp(png_jmpbuf(this->png_ptr()), kStopDecoding);
}
}
};
class SkPngInterlacedDecoder : public SkPngCodec {
public:
SkPngInterlacedDecoder(int width, int height, const SkEncodedInfo& info, SkStream* stream,
SkPngChunkReader* reader, png_structp png_ptr, png_infop info_ptr, int bitDepth,
sk_sp<SkColorSpace> colorSpace, int numberPasses)
: INHERITED(width, height, info, stream, reader, png_ptr, info_ptr, bitDepth,
std::move(colorSpace))
, fNumberPasses(numberPasses)
, fFirstRow(0)
, fLastRow(0)
, fLinesDecoded(0)
, fInterlacedComplete(false)
, fPng_rowbytes(0)
{}
static void InterlacedRowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int pass) {
auto decoder = static_cast<SkPngInterlacedDecoder*>(png_get_progressive_ptr(png_ptr));
decoder->interlacedRowCallback(row, rowNum, pass);
}
private:
const int fNumberPasses;
int fFirstRow;
int fLastRow;
void* fDst;
size_t fRowBytes;
int fLinesDecoded;
bool fInterlacedComplete;
size_t fPng_rowbytes;
SkAutoTMalloc<png_byte> fInterlaceBuffer;
typedef SkPngCodec INHERITED;
// FIXME: Currently sharing interlaced callback for all rows and subset. It's not
// as expensive as the subset version of non-interlaced, but it still does extra
// work.
void interlacedRowCallback(png_bytep row, int rowNum, int pass) {
if (rowNum < fFirstRow || rowNum > fLastRow) {
// Ignore this row
return;
}
png_bytep oldRow = fInterlaceBuffer.get() + (rowNum - fFirstRow) * fPng_rowbytes;
png_progressive_combine_row(this->png_ptr(), oldRow, row);
if (0 == pass) {
// The first pass initializes all rows.
SkASSERT(row);
SkASSERT(fLinesDecoded == rowNum - fFirstRow);
fLinesDecoded++;
} else {
SkASSERT(fLinesDecoded == fLastRow - fFirstRow + 1);
if (fNumberPasses - 1 == pass && rowNum == fLastRow) {
// Last pass, and we have read all of the rows we care about. Note that
// we do not care about reading anything beyond the end of the image (or
// beyond the last scanline requested).
fInterlacedComplete = true;
// Fake error to stop decoding scanlines.
longjmp(png_jmpbuf(this->png_ptr()), kStopDecoding);
}
}
}
SkCodec::Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override {
const int height = this->getInfo().height();
this->setUpInterlaceBuffer(height);
png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, nullptr);
fFirstRow = 0;
fLastRow = height - 1;
fLinesDecoded = 0;
this->processData();
png_bytep srcRow = fInterlaceBuffer.get();
// FIXME: When resuming, this may rewrite rows that did not change.
for (int rowNum = 0; rowNum < fLinesDecoded; rowNum++) {
this->swizzler()->swizzle(dst, srcRow);
dst = SkTAddOffset<void>(dst, rowBytes);
srcRow = SkTAddOffset<png_byte>(srcRow, fPng_rowbytes);
}
if (fInterlacedComplete) {
return SkCodec::kSuccess;
}
if (rowsDecoded) {
*rowsDecoded = fLinesDecoded;
}
return SkCodec::kIncompleteInput;
}
void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override {
// FIXME: We could skip rows in the interlace buffer that we won't put in the output.
this->setUpInterlaceBuffer(lastRow - firstRow + 1);
png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, nullptr);
fFirstRow = firstRow;
fLastRow = lastRow;
fDst = dst;
fRowBytes = rowBytes;
fLinesDecoded = 0;
}
SkCodec::Result decode(int* rowsDecoded) override {
this->processData();
// Now call the callback on all the rows that were decoded.
if (!fLinesDecoded) {
return SkCodec::kIncompleteInput;
}
const int lastRow = fLinesDecoded + fFirstRow - 1;
SkASSERT(lastRow <= fLastRow);
// FIXME: For resuming interlace, we may swizzle a row that hasn't changed. But it
// may be too tricky/expensive to handle that correctly.
png_bytep srcRow = fInterlaceBuffer.get();
const int sampleY = this->swizzler()->sampleY();
void* dst = fDst;
for (int rowNum = fFirstRow; rowNum <= lastRow; rowNum += sampleY) {
this->swizzler()->swizzle(dst, srcRow);
dst = SkTAddOffset<void>(dst, fRowBytes);
srcRow = SkTAddOffset<png_byte>(srcRow, fPng_rowbytes * sampleY);
}
if (fInterlacedComplete) {
return SkCodec::kSuccess;
}
if (rowsDecoded) {
*rowsDecoded = fLinesDecoded;
}
return SkCodec::kIncompleteInput;
}
void setUpInterlaceBuffer(int height) {
fPng_rowbytes = png_get_rowbytes(this->png_ptr(), this->info_ptr());
fInterlaceBuffer.reset(fPng_rowbytes * height);
fInterlacedComplete = false;
}
};
// Reads the header and initializes the output fields, if not NULL.
//
// @param stream Input data. Will be read to get enough information to properly
// setup the codec.
// @param chunkReader SkPngChunkReader, for reading unknown chunks. May be NULL.
// If not NULL, png_ptr will hold an *unowned* pointer to it. The caller is
// expected to continue to own it for the lifetime of the png_ptr.
// @param outCodec Optional output variable. If non-NULL, will be set to a new
// SkPngCodec on success.
// @param png_ptrp Optional output variable. If non-NULL, will be set to a new
// png_structp on success.
// @param info_ptrp Optional output variable. If non-NULL, will be set to a new
// png_infop on success;
// @return true on success, in which case the caller is responsible for calling
// png_destroy_read_struct(png_ptrp, info_ptrp).
// If it returns false, the passed in fields (except stream) are unchanged.
static bool read_header(SkStream* stream, SkPngChunkReader* chunkReader, SkCodec** outCodec,
png_structp* png_ptrp, png_infop* info_ptrp) {
// The image is known to be a PNG. Decode enough to know the SkImageInfo.
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr,
sk_error_fn, sk_warning_fn);
if (!png_ptr) {
return false;
}
AutoCleanPng autoClean(png_ptr, stream, chunkReader, outCodec);
png_infop info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == nullptr) {
return false;
}
autoClean.setInfoPtr(info_ptr);
// FIXME: Could we use the return value of setjmp to specify the type of
// error?
if (setjmp(png_jmpbuf(png_ptr))) {
return false;
}
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
// Hookup our chunkReader so we can see any user-chunks the caller may be interested in.
// This needs to be installed before we read the png header. Android may store ninepatch
// chunks in the header.
if (chunkReader) {
png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"", 0);
png_set_read_user_chunk_fn(png_ptr, (png_voidp) chunkReader, sk_read_user_chunk);
}
#endif
const bool decodedBounds = autoClean.decodeBounds();
if (!decodedBounds) {
return false;
}
// On success, decodeBounds releases ownership of png_ptr and info_ptr.
if (png_ptrp) {
*png_ptrp = png_ptr;
}
if (info_ptrp) {
*info_ptrp = info_ptr;
}
// decodeBounds takes care of setting outCodec
if (outCodec) {
SkASSERT(*outCodec);
}
return true;
}
void AutoCleanPng::infoCallback() {
png_uint_32 origWidth, origHeight;
int bitDepth, encodedColorType;
png_get_IHDR(fPng_ptr, fInfo_ptr, &origWidth, &origHeight, &bitDepth,
&encodedColorType, nullptr, nullptr, nullptr);
// Tell libpng to strip 16 bit/color files down to 8 bits/color.
// TODO: Should we handle this in SkSwizzler? Could this also benefit
// RAW decodes?
if (bitDepth == 16) {
SkASSERT(PNG_COLOR_TYPE_PALETTE != encodedColorType);
png_set_strip_16(fPng_ptr);
}
// Now determine the default colorType and alphaType and set the required transforms.
// Often, we depend on SkSwizzler to perform any transforms that we need. However, we
// still depend on libpng for many of the rare and PNG-specific cases.
SkEncodedInfo::Color color;
SkEncodedInfo::Alpha alpha;
switch (encodedColorType) {
case PNG_COLOR_TYPE_PALETTE:
// Extract multiple pixels with bit depths of 1, 2, and 4 from a single
// byte into separate bytes (useful for paletted and grayscale images).
if (bitDepth < 8) {
// TODO: Should we use SkSwizzler here?
png_set_packing(fPng_ptr);
}
color = SkEncodedInfo::kPalette_Color;
// Set the alpha depending on if a transparency chunk exists.
alpha = png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS) ?
SkEncodedInfo::kUnpremul_Alpha : SkEncodedInfo::kOpaque_Alpha;
break;
case PNG_COLOR_TYPE_RGB:
if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) {
// Convert to RGBA if transparency chunk exists.
png_set_tRNS_to_alpha(fPng_ptr);
color = SkEncodedInfo::kRGBA_Color;
alpha = SkEncodedInfo::kBinary_Alpha;
} else {
color = SkEncodedInfo::kRGB_Color;
alpha = SkEncodedInfo::kOpaque_Alpha;
}
break;
case PNG_COLOR_TYPE_GRAY:
// Expand grayscale images to the full 8 bits from 1, 2, or 4 bits/pixel.
if (bitDepth < 8) {
// TODO: Should we use SkSwizzler here?
png_set_expand_gray_1_2_4_to_8(fPng_ptr);
}
if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) {
png_set_tRNS_to_alpha(fPng_ptr);
color = SkEncodedInfo::kGrayAlpha_Color;
alpha = SkEncodedInfo::kBinary_Alpha;
} else {
color = SkEncodedInfo::kGray_Color;
alpha = SkEncodedInfo::kOpaque_Alpha;
}
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
color = SkEncodedInfo::kGrayAlpha_Color;
alpha = SkEncodedInfo::kUnpremul_Alpha;
break;
case PNG_COLOR_TYPE_RGBA:
color = SkEncodedInfo::kRGBA_Color;
alpha = SkEncodedInfo::kUnpremul_Alpha;
break;
default:
// All the color types have been covered above.
SkASSERT(false);
color = SkEncodedInfo::kRGBA_Color;
alpha = SkEncodedInfo::kUnpremul_Alpha;
}
const int numberPasses = png_set_interlace_handling(fPng_ptr);
fReadHeader = true;
#if PNG_LIBPNG_VER_MAJOR > 1 || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 5)
// 1 tells libpng to save any extra data. We may be able to be more efficient by saving
// it ourselves.
png_process_data_pause(fPng_ptr, 1);
fDecodedBounds = true;
#else
// We may have read more than the header. Empty buffer and move to the end of the
// header so future calls can read the rows.
fDecodedBounds = fStream->move(-fPng_ptr->buffer_size);
fPng_ptr->buffer_size = 0;
if (!fDecodedBounds) {
// Stream could not be moved to the correct place.
return;
}
#endif
if (fOutCodec) {
SkASSERT(nullptr == *fOutCodec);
sk_sp<SkColorSpace> colorSpace = read_color_space(fPng_ptr, fInfo_ptr);
if (!colorSpace) {
// Treat unmarked pngs as sRGB.
colorSpace = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named);
}
SkEncodedInfo info = SkEncodedInfo::Make(color, alpha, 8);
if (1 == numberPasses) {
*fOutCodec = new SkPngNormalDecoder(origWidth, origHeight, info, fStream,
fChunkReader, fPng_ptr, fInfo_ptr, bitDepth, std::move(colorSpace));
} else {
*fOutCodec = new SkPngInterlacedDecoder(origWidth, origHeight, info, fStream,
fChunkReader, fPng_ptr, fInfo_ptr, bitDepth, std::move(colorSpace),
numberPasses);
}
}
// Release the pointers, which are now owned by the codec or the caller is expected to
// take ownership.
this->releasePngPtrs();
}
SkPngCodec::SkPngCodec(int width, int height, const SkEncodedInfo& info, SkStream* stream,
SkPngChunkReader* chunkReader, png_structp png_ptr, png_infop info_ptr,
int bitDepth, sk_sp<SkColorSpace> colorSpace)
: INHERITED(width, height, info, stream, colorSpace)
, fPngChunkReader(SkSafeRef(chunkReader))
, fPng_ptr(png_ptr)
, fInfo_ptr(info_ptr)
, fBitDepth(bitDepth)
{}
SkPngCodec::~SkPngCodec() {
this->destroyReadStruct();
}
void SkPngCodec::destroyReadStruct() {
if (fPng_ptr) {
// We will never have a nullptr fInfo_ptr with a non-nullptr fPng_ptr
SkASSERT(fInfo_ptr);
png_destroy_read_struct(&fPng_ptr, &fInfo_ptr, nullptr);
fPng_ptr = nullptr;
fInfo_ptr = nullptr;
}
}
///////////////////////////////////////////////////////////////////////////////
// Getting the pixels
///////////////////////////////////////////////////////////////////////////////
bool SkPngCodec::initializeSwizzler(const SkImageInfo& requestedInfo,
const Options& options,
SkPMColor ctable[],
int* ctableCount) {
if (setjmp(png_jmpbuf(fPng_ptr))) {
return false;
}
png_read_update_info(fPng_ptr, fInfo_ptr);
if (SkEncodedInfo::kPalette_Color == this->getEncodedInfo().color()) {
if (!this->createColorTable(requestedInfo.colorType(),
kPremul_SkAlphaType == requestedInfo.alphaType(), ctableCount)) {
return false;
}
}
// Copy the color table to the client if they request kIndex8 mode
copy_color_table(requestedInfo, fColorTable, ctable, ctableCount);
// Create the swizzler. SkPngCodec retains ownership of the color table.
const SkPMColor* colors = get_color_ptr(fColorTable.get());
fSwizzler.reset(SkSwizzler::CreateSwizzler(this->getEncodedInfo(), colors, requestedInfo,
options));
SkASSERT(fSwizzler);
return true;
}
bool SkPngCodec::onRewind() {
// This sets fPng_ptr and fInfo_ptr to nullptr. If read_header
// succeeds, they will be repopulated, and if it fails, they will
// remain nullptr. Any future accesses to fPng_ptr and fInfo_ptr will
// come through this function which will rewind and again attempt
// to reinitialize them.
this->destroyReadStruct();
png_structp png_ptr;
png_infop info_ptr;
if (!read_header(this->stream(), fPngChunkReader.get(), nullptr, &png_ptr, &info_ptr)) {
return false;
}
fPng_ptr = png_ptr;
fInfo_ptr = info_ptr;
return true;
}
SkCodec::Result SkPngCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
size_t dstRowBytes, const Options& options,
SkPMColor ctable[], int* ctableCount,
int* rowsDecoded) {
if (!conversion_possible(requestedInfo, this->getInfo())) {
return kInvalidConversion;
}
if (options.fSubset) {
// Subsets are not supported.
return kUnimplemented;
}
// Note that ctable and ctableCount may be modified if there is a color table
if (!this->initializeSwizzler(requestedInfo, options, ctable, ctableCount)) {
return kInvalidInput; // or parameters?
}
return this->decodeAllRows(dst, dstRowBytes, rowsDecoded);
}
SkCodec::Result SkPngCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo,
void* dst, size_t rowBytes, const SkCodec::Options& options,
SkPMColor* ctable, int* ctableCount) {
if (!conversion_possible(dstInfo, this->getInfo())) {
return kInvalidConversion;
}
if (!this->initializeSwizzler(dstInfo, options, ctable, ctableCount)) {
return kInvalidInput;
}
int firstRow, lastRow;
if (options.fSubset) {
firstRow = options.fSubset->top();
lastRow = options.fSubset->bottom() - 1;
} else {
firstRow = 0;
lastRow = dstInfo.height() - 1;
}
this->setRange(firstRow, lastRow, dst, rowBytes);
return kSuccess;
}
SkCodec::Result SkPngCodec::onIncrementalDecode(int* rowsDecoded) {
return this->decode(rowsDecoded);
}
uint32_t SkPngCodec::onGetFillValue(SkColorType colorType) const {
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
if (colorPtr) {
return get_color_table_fill_value(colorType, colorPtr, 0);
}
return INHERITED::onGetFillValue(colorType);
}
SkCodec* SkPngCodec::NewFromStream(SkStream* stream, SkPngChunkReader* chunkReader) {
SkAutoTDelete<SkStream> streamDeleter(stream);
SkCodec* outCodec = nullptr;
if (read_header(stream, chunkReader, &outCodec, nullptr, nullptr)) {
// Codec has taken ownership of the stream.
SkASSERT(outCodec);
streamDeleter.release();
return outCodec;
}
return nullptr;
}