| /* | 
 |  * Copyright 2020 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "samplecode/Sample.h" | 
 |  | 
 | #include "include/core/SkCanvas.h" | 
 | #include "include/core/SkFont.h" | 
 | #include "include/core/SkPaint.h" | 
 | #include "include/core/SkPath.h" | 
 | #include <tuple> | 
 |  | 
 | // Math constants are not always defined. | 
 | #ifndef M_PI | 
 | #define M_PI 3.14159265358979323846264338327950288 | 
 | #endif | 
 |  | 
 | #ifndef M_SQRT2 | 
 | #define M_SQRT2 1.41421356237309504880168872420969808 | 
 | #endif | 
 |  | 
 | constexpr static int kCenterX = 300; | 
 | constexpr static int kCenterY = 325; | 
 | constexpr static int kRadius = 250; | 
 |  | 
 | // This sample fits a cubic to the arc between two interactive points on a circle. It also finds the | 
 | // T-coordinate of max error, and outputs it and its value in pixels. (It turns out that max error | 
 | // always occurs at T=0.21132486540519.) | 
 | // | 
 | // Press 'E' to iteratively cut the arc in half and report the improvement in max error after each | 
 | // halving. (It turns out that max error improves by exactly 64x on every halving.) | 
 | class SampleFitCubicToCircle : public Sample { | 
 |     SkString name() override { return SkString("FitCubicToCircle"); } | 
 |     void onOnceBeforeDraw() override { this->fitCubic(); } | 
 |     void fitCubic(); | 
 |     void onDrawContent(SkCanvas*) override; | 
 |     Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override; | 
 |     bool onClick(Sample::Click*) override; | 
 |     bool onChar(SkUnichar) override; | 
 |  | 
 |     // Coordinates of two points on the unit circle. These are the two endpoints of the arc we fit. | 
 |     double fEndptsX[2] = {0, 1}; | 
 |     double fEndptsY[2] = {-1, 0}; | 
 |  | 
 |     // Fitted cubic and info, set by fitCubic(). | 
 |     double fControlLength;  // Length of (p1 - p0) and/or (p3 - p2) in unit circle space. | 
 |     double fMaxErrorT;  // T value where the cubic diverges most from the true arc. | 
 |     std::array<double, 4> fCubicX;  // Screen space cubic control points. | 
 |     std::array<double, 4> fCubicY; | 
 |     double fMaxError;  // Max error (in pixels) between the cubic and the screen-space arc. | 
 |     double fTheta;  // Angle of the arc. This is only used for informational purposes. | 
 |     SkTArray<SkString> fInfoStrings; | 
 |  | 
 |     class Click; | 
 | }; | 
 |  | 
 | // Fits a cubic to an arc on the unit circle with endpoints (x0, y0) and (x1, y1). Using the | 
 | // following 3 constraints, we arrive at the formula used in the method: | 
 | // | 
 | //   1) The endpoints and tangent directions at the endpoints must match the arc. | 
 | //   2) The cubic must be symmetric (i.e., length(p1 - p0) == length(p3 - p2)). | 
 | //   3) The height of the cubic must match the height of the arc. | 
 | // | 
 | // Returns the "control length", or length of (p1 - p0) and/or (p3 - p2). | 
 | static float fit_cubic_to_unit_circle(double x0, double y0, double x1, double y1, | 
 |                                       std::array<double, 4>* X, std::array<double, 4>* Y) { | 
 |     constexpr static double kM = -4.0/3; | 
 |     constexpr static double kA = 4*M_SQRT2/3; | 
 |     double d = x0*x1 + y0*y1; | 
 |     double c = (std::sqrt(1 + d) * kM + kA) / std::sqrt(1 - d); | 
 |     *X = {x0, x0 - y0*c, x1 + y1*c, x1}; | 
 |     *Y = {y0, y0 + x0*c, y1 - x1*c, y1}; | 
 |     return c; | 
 | } | 
 |  | 
 | static double lerp(double x, double y, double T) { | 
 |     return x + T*(y - x); | 
 | } | 
 |  | 
 | // Evaluates the cubic and 1st and 2nd derivatives at T. | 
 | static std::tuple<double, double, double> eval_cubic(double x[], double T) { | 
 |     // Use De Casteljau's algorithm for better accuracy and stability. | 
 |     double ab = lerp(x[0], x[1], T); | 
 |     double bc = lerp(x[1], x[2], T); | 
 |     double cd = lerp(x[2], x[3], T); | 
 |     double abc = lerp(ab, bc, T); | 
 |     double bcd = lerp(bc, cd, T); | 
 |     double abcd = lerp(abc, bcd, T); | 
 |     return {abcd, 3 * (bcd - abc) /*1st derivative.*/, 6 * (cd - 2*bc + ab) /*2nd derivative.*/}; | 
 | } | 
 |  | 
 | // Uses newton-raphson convergence to find the point where the provided cubic diverges most from the | 
 | // unit circle. i.e., the point where the derivative of error == 0. For error we use: | 
 | // | 
 | //     error = x^2 + y^2 - 1 | 
 | //     error' = 2xx' + 2yy' | 
 | //     error'' = 2xx'' + 2yy'' + 2x'^2 + 2y'^2 | 
 | // | 
 | double find_max_error_T(double cubicX[4], double cubicY[4]) { | 
 |     constexpr static double kInitialT = .25; | 
 |     double T = kInitialT; | 
 |     for (int i = 0; i < 64; ++i) { | 
 |         auto [x, dx, ddx] = eval_cubic(cubicX, T); | 
 |         auto [y, dy, ddy] = eval_cubic(cubicY, T); | 
 |         double dError = 2*(x*dx + y*dy); | 
 |         double ddError = 2*(x*ddx + y*ddy + dx*dx + dy*dy); | 
 |         T -= dError / ddError; | 
 |     } | 
 |     return T; | 
 | } | 
 |  | 
 | void SampleFitCubicToCircle::fitCubic() { | 
 |     fInfoStrings.reset(); | 
 |  | 
 |     std::array<double, 4> X, Y; | 
 |     // "Control length" is the length of (p1 - p0) and/or (p3 - p2) in unit circle space. | 
 |     fControlLength = fit_cubic_to_unit_circle(fEndptsX[0], fEndptsY[0], fEndptsX[1], fEndptsY[1], | 
 |                                               &X, &Y); | 
 |     fInfoStrings.push_back().printf("control length=%0.14f", fControlLength); | 
 |  | 
 |     fMaxErrorT = find_max_error_T(X.data(), Y.data()); | 
 |     fInfoStrings.push_back().printf("max error T=%0.14f", fMaxErrorT); | 
 |  | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         fCubicX[i] = X[i] * kRadius + kCenterX; | 
 |         fCubicY[i] = Y[i] * kRadius + kCenterY; | 
 |     } | 
 |     double errX = std::get<0>(eval_cubic(fCubicX.data(), fMaxErrorT)) - kCenterX; | 
 |     double errY = std::get<0>(eval_cubic(fCubicY.data(), fMaxErrorT)) - kCenterY; | 
 |     fMaxError = std::sqrt(errX*errX + errY*errY) - kRadius; | 
 |     fInfoStrings.push_back().printf("max error=%.5gpx", fMaxError); | 
 |  | 
 |     fTheta = std::atan2(fEndptsY[1], fEndptsX[1]) - std::atan2(fEndptsY[0], fEndptsX[0]); | 
 |     fTheta = std::abs(fTheta * 180/M_PI); | 
 |     if (fTheta > 180) { | 
 |         fTheta = 360 - fTheta; | 
 |     } | 
 |     fInfoStrings.push_back().printf("(theta=%.2f)", fTheta); | 
 |  | 
 |     SkDebugf("\n"); | 
 |     for (const SkString& infoString : fInfoStrings) { | 
 |         SkDebugf("%s\n", infoString.c_str()); | 
 |     } | 
 | } | 
 |  | 
 | void SampleFitCubicToCircle::onDrawContent(SkCanvas* canvas) { | 
 |     canvas->clear(SK_ColorBLACK); | 
 |  | 
 |     SkPaint circlePaint; | 
 |     circlePaint.setColor(0x80ffffff); | 
 |     circlePaint.setStyle(SkPaint::kStroke_Style); | 
 |     circlePaint.setStrokeWidth(0); | 
 |     circlePaint.setAntiAlias(true); | 
 |     canvas->drawArc(SkRect::MakeXYWH(kCenterX - kRadius, kCenterY - kRadius, kRadius * 2, | 
 |                                      kRadius * 2), 0, 360, false, circlePaint); | 
 |  | 
 |     SkPaint cubicPaint; | 
 |     cubicPaint.setColor(SK_ColorGREEN); | 
 |     cubicPaint.setStyle(SkPaint::kStroke_Style); | 
 |     cubicPaint.setStrokeWidth(10); | 
 |     cubicPaint.setAntiAlias(true); | 
 |     SkPath cubicPath; | 
 |     cubicPath.moveTo(fCubicX[0], fCubicY[0]); | 
 |     cubicPath.cubicTo(fCubicX[1], fCubicY[1], fCubicX[2], fCubicY[2], fCubicX[3], fCubicY[3]); | 
 |     canvas->drawPath(cubicPath, cubicPaint); | 
 |  | 
 |     SkPaint endpointsPaint; | 
 |     endpointsPaint.setColor(SK_ColorBLUE); | 
 |     endpointsPaint.setStrokeWidth(8); | 
 |     endpointsPaint.setAntiAlias(true); | 
 |     SkPoint points[2] = {{(float)fCubicX[0], (float)fCubicY[0]}, | 
 |                          {(float)fCubicX[3], (float)fCubicY[3]}}; | 
 |     canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, points, endpointsPaint); | 
 |  | 
 |     SkPaint textPaint; | 
 |     textPaint.setColor(SK_ColorWHITE); | 
 |     constexpr static float kInfoTextSize = 16; | 
 |     SkFont font(nullptr, kInfoTextSize); | 
 |     int infoY = 10 + kInfoTextSize; | 
 |     for (const SkString& infoString : fInfoStrings) { | 
 |         canvas->drawString(infoString.c_str(), 10, infoY, font, textPaint); | 
 |         infoY += kInfoTextSize * 3/2; | 
 |     } | 
 | } | 
 |  | 
 | class SampleFitCubicToCircle::Click : public Sample::Click { | 
 | public: | 
 |     Click(int ptIdx) : fPtIdx(ptIdx) {} | 
 |  | 
 |     void doClick(SampleFitCubicToCircle* that) { | 
 |         double dx = fCurr.fX - kCenterX; | 
 |         double dy = fCurr.fY - kCenterY; | 
 |         double l = std::sqrt(dx*dx + dy*dy); | 
 |         that->fEndptsX[fPtIdx] = dx/l; | 
 |         that->fEndptsY[fPtIdx] = dy/l; | 
 |         if (that->fEndptsX[0] * that->fEndptsY[1] - that->fEndptsY[0] * that->fEndptsX[1] < 0) { | 
 |             std::swap(that->fEndptsX[0], that->fEndptsX[1]); | 
 |             std::swap(that->fEndptsY[0], that->fEndptsY[1]); | 
 |             fPtIdx = 1 - fPtIdx; | 
 |         } | 
 |         that->fitCubic(); | 
 |     } | 
 |  | 
 | private: | 
 |     int fPtIdx; | 
 | }; | 
 |  | 
 | Sample::Click* SampleFitCubicToCircle::onFindClickHandler(SkScalar x, SkScalar y, | 
 |                                                           skui::ModifierKey) { | 
 |     double dx0 = x - fCubicX[0]; | 
 |     double dy0 = y - fCubicY[0]; | 
 |     double dx3 = x - fCubicX[3]; | 
 |     double dy3 = y - fCubicY[3]; | 
 |     if (dx0*dx0 + dy0*dy0 < dx3*dx3 + dy3*dy3) { | 
 |         return new Click(0); | 
 |     } else { | 
 |         return new Click(1); | 
 |     } | 
 | } | 
 |  | 
 | bool SampleFitCubicToCircle::onClick(Sample::Click* click) { | 
 |     Click* myClick = (Click*)click; | 
 |     myClick->doClick(this); | 
 |     return true; | 
 | } | 
 |  | 
 | bool SampleFitCubicToCircle::onChar(SkUnichar unichar) { | 
 |     if (unichar == 'E') { | 
 |         constexpr static double kMaxErrorT = 0.21132486540519;  // Always the same. | 
 |         // Split the arc in half until error =~0, and report the improvement after each halving. | 
 |         double lastError = -1; | 
 |         for (double theta = fTheta; lastError != 0; theta /= 2) { | 
 |             double rads = theta * M_PI/180; | 
 |             std::array<double, 4> X, Y; | 
 |             fit_cubic_to_unit_circle(1, 0, std::cos(rads), std::sin(rads), &X, &Y); | 
 |             auto [x, dx, ddx] = eval_cubic(X.data(), kMaxErrorT); | 
 |             auto [y, dy, ddy] = eval_cubic(Y.data(), kMaxErrorT); | 
 |             double error = std::sqrt(x*x + y*y) * kRadius - kRadius; | 
 |             if ((float)error <= 0) { | 
 |                 error = 0; | 
 |             } | 
 |             SkDebugf("%6.2f degrees:   error= %10.5gpx", theta, error); | 
 |             if (lastError > 0) { | 
 |                 SkDebugf(" (%17.14fx improvement)", lastError / error); | 
 |             } | 
 |             SkDebugf("\n"); | 
 |             lastError = error; | 
 |         } | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | DEF_SAMPLE(return new SampleFitCubicToCircle;) |