| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/GrTriangulator.h" |
| |
| #include "src/gpu/GrEagerVertexAllocator.h" |
| #include "src/gpu/GrVertexWriter.h" |
| #include "src/gpu/geometry/GrPathUtils.h" |
| |
| #include "include/core/SkPath.h" |
| #include "src/core/SkArenaAlloc.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPointPriv.h" |
| |
| #include <algorithm> |
| #include <cstdio> |
| #include <queue> |
| #include <unordered_map> |
| #include <utility> |
| |
| /* |
| * There are six stages to the basic algorithm: |
| * |
| * 1) Linearize the path contours into piecewise linear segments (path_to_contours()). |
| * 2) Build a mesh of edges connecting the vertices (build_edges()). |
| * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()). |
| * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()). |
| * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). |
| * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()). |
| * |
| * For screenspace antialiasing, the algorithm is modified as follows: |
| * |
| * Run steps 1-5 above to produce polygons. |
| * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()). |
| * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()). |
| * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find |
| * new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new |
| * antialiased mesh from those vertices (stroke_boundary()). |
| * Run steps 3-6 above on the new mesh, and produce antialiased triangles. |
| * |
| * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list |
| * of vertices (and the necessity of inserting new vertices on intersection). |
| * |
| * Stages (4) and (5) use an active edge list -- a list of all edges for which the |
| * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted |
| * left-to-right based on the point where both edges are active (when both top vertices |
| * have been seen, so the "lower" top vertex of the two). If the top vertices are equal |
| * (shared), it's sorted based on the last point where both edges are active, so the |
| * "upper" bottom vertex. |
| * |
| * The most complex step is the simplification (4). It's based on the Bentley-Ottman |
| * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are |
| * not exact and may violate the mesh topology or active edge list ordering. We |
| * accommodate this by adjusting the topology of the mesh and AEL to match the intersection |
| * points. This occurs in two ways: |
| * |
| * A) Intersections may cause a shortened edge to no longer be ordered with respect to its |
| * neighbouring edges at the top or bottom vertex. This is handled by merging the |
| * edges (merge_collinear_edges()). |
| * B) Intersections may cause an edge to violate the left-to-right ordering of the |
| * active edge list. This is handled by detecting potential violations and rewinding |
| * the active edge list to the vertex before they occur (rewind() during merging, |
| * rewind_if_necessary() during splitting). |
| * |
| * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and |
| * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it |
| * currently uses a linked list for the active edge list, rather than a 2-3 tree as the |
| * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also |
| * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) |
| * insertions and removals was greater than the cost of infrequent O(N) lookups with the |
| * linked list implementation. With the latter, all removals are O(1), and most insertions |
| * are O(1), since we know the adjacent edge in the active edge list based on the topology. |
| * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less |
| * frequent. There may be other data structures worth investigating, however. |
| * |
| * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the |
| * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y |
| * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall, |
| * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so |
| * that the "left" and "right" orientation in the code remains correct (edges to the left are |
| * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 |
| * degrees counterclockwise, rather that transposing. |
| */ |
| |
| #define LOGGING_ENABLED 0 |
| |
| #if LOGGING_ENABLED |
| #define TESS_LOG printf |
| #else |
| #define TESS_LOG(...) |
| #endif |
| |
| namespace { |
| |
| using GrTriangulator::Mode; |
| |
| const int kArenaChunkSize = 16 * 1024; |
| const float kCosMiterAngle = 0.97f; // Corresponds to an angle of ~14 degrees. |
| |
| struct Vertex; |
| struct Edge; |
| struct Event; |
| struct Poly; |
| |
| template <class T, T* T::*Prev, T* T::*Next> |
| void list_insert(T* t, T* prev, T* next, T** head, T** tail) { |
| t->*Prev = prev; |
| t->*Next = next; |
| if (prev) { |
| prev->*Next = t; |
| } else if (head) { |
| *head = t; |
| } |
| if (next) { |
| next->*Prev = t; |
| } else if (tail) { |
| *tail = t; |
| } |
| } |
| |
| template <class T, T* T::*Prev, T* T::*Next> |
| void list_remove(T* t, T** head, T** tail) { |
| if (t->*Prev) { |
| t->*Prev->*Next = t->*Next; |
| } else if (head) { |
| *head = t->*Next; |
| } |
| if (t->*Next) { |
| t->*Next->*Prev = t->*Prev; |
| } else if (tail) { |
| *tail = t->*Prev; |
| } |
| t->*Prev = t->*Next = nullptr; |
| } |
| |
| /** |
| * Vertices are used in three ways: first, the path contours are converted into a |
| * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices |
| * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing |
| * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid |
| * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of |
| * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since |
| * an individual Vertex from the path mesh may belong to multiple |
| * MonotonePolys, so the original Vertices cannot be re-used. |
| */ |
| |
| struct Vertex { |
| Vertex(const SkPoint& point, uint8_t alpha) |
| : fPoint(point), fPrev(nullptr), fNext(nullptr) |
| , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) |
| , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) |
| , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr) |
| , fPartner(nullptr) |
| , fAlpha(alpha) |
| , fSynthetic(false) |
| #if LOGGING_ENABLED |
| , fID (-1.0f) |
| #endif |
| {} |
| SkPoint fPoint; // Vertex position |
| Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. |
| Vertex* fNext; // " |
| Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. |
| Edge* fLastEdgeAbove; // " |
| Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. |
| Edge* fLastEdgeBelow; // " |
| Edge* fLeftEnclosingEdge; // Nearest edge in the AEL left of this vertex. |
| Edge* fRightEnclosingEdge; // Nearest edge in the AEL right of this vertex. |
| Vertex* fPartner; // Corresponding inner or outer vertex (for AA). |
| uint8_t fAlpha; |
| bool fSynthetic; // Is this a synthetic vertex? |
| #if LOGGING_ENABLED |
| float fID; // Identifier used for logging. |
| #endif |
| }; |
| |
| /***************************************************************************************/ |
| |
| typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); |
| |
| bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { |
| return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY); |
| } |
| |
| bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { |
| return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX); |
| } |
| |
| struct Comparator { |
| enum class Direction { kVertical, kHorizontal }; |
| Comparator(Direction direction) : fDirection(direction) {} |
| bool sweep_lt(const SkPoint& a, const SkPoint& b) const { |
| return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b); |
| } |
| Direction fDirection; |
| }; |
| |
| inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) { |
| GrVertexWriter verts{data}; |
| verts.write(v->fPoint); |
| |
| if (emitCoverage) { |
| verts.write(GrNormalizeByteToFloat(v->fAlpha)); |
| } |
| |
| return verts.fPtr; |
| } |
| |
| void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) { |
| TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha); |
| TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha); |
| TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha); |
| #if TESSELLATOR_WIREFRAME |
| data = emit_vertex(v0, emitCoverage, data); |
| data = emit_vertex(v1, emitCoverage, data); |
| data = emit_vertex(v1, emitCoverage, data); |
| data = emit_vertex(v2, emitCoverage, data); |
| data = emit_vertex(v2, emitCoverage, data); |
| data = emit_vertex(v0, emitCoverage, data); |
| #else |
| data = emit_vertex(v0, emitCoverage, data); |
| data = emit_vertex(v1, emitCoverage, data); |
| data = emit_vertex(v2, emitCoverage, data); |
| #endif |
| return data; |
| } |
| |
| struct VertexList { |
| VertexList() : fHead(nullptr), fTail(nullptr) {} |
| VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {} |
| Vertex* fHead; |
| Vertex* fTail; |
| void insert(Vertex* v, Vertex* prev, Vertex* next) { |
| list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail); |
| } |
| void append(Vertex* v) { |
| insert(v, fTail, nullptr); |
| } |
| void append(const VertexList& list) { |
| if (!list.fHead) { |
| return; |
| } |
| if (fTail) { |
| fTail->fNext = list.fHead; |
| list.fHead->fPrev = fTail; |
| } else { |
| fHead = list.fHead; |
| } |
| fTail = list.fTail; |
| } |
| void prepend(Vertex* v) { |
| insert(v, nullptr, fHead); |
| } |
| void remove(Vertex* v) { |
| list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail); |
| } |
| void close() { |
| if (fHead && fTail) { |
| fTail->fNext = fHead; |
| fHead->fPrev = fTail; |
| } |
| } |
| }; |
| |
| // Round to nearest quarter-pixel. This is used for screenspace tessellation. |
| |
| inline void round(SkPoint* p) { |
| p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f); |
| p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f); |
| } |
| |
| inline SkScalar double_to_clamped_scalar(double d) { |
| return SkDoubleToScalar(std::min((double) SK_ScalarMax, std::max(d, (double) -SK_ScalarMax))); |
| } |
| |
| // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line. |
| struct Line { |
| Line(double a, double b, double c) : fA(a), fB(b), fC(c) {} |
| Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {} |
| Line(const SkPoint& p, const SkPoint& q) |
| : fA(static_cast<double>(q.fY) - p.fY) // a = dY |
| , fB(static_cast<double>(p.fX) - q.fX) // b = -dX |
| , fC(static_cast<double>(p.fY) * q.fX - // c = cross(q, p) |
| static_cast<double>(p.fX) * q.fY) {} |
| double dist(const SkPoint& p) const { |
| return fA * p.fX + fB * p.fY + fC; |
| } |
| Line operator*(double v) const { |
| return Line(fA * v, fB * v, fC * v); |
| } |
| double magSq() const { |
| return fA * fA + fB * fB; |
| } |
| void normalize() { |
| double len = sqrt(this->magSq()); |
| if (len == 0.0) { |
| return; |
| } |
| double scale = 1.0f / len; |
| fA *= scale; |
| fB *= scale; |
| fC *= scale; |
| } |
| bool nearParallel(const Line& o) const { |
| return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001; |
| } |
| |
| // Compute the intersection of two (infinite) Lines. |
| bool intersect(const Line& other, SkPoint* point) const { |
| double denom = fA * other.fB - fB * other.fA; |
| if (denom == 0.0) { |
| return false; |
| } |
| double scale = 1.0 / denom; |
| point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale); |
| point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale); |
| round(point); |
| return point->isFinite(); |
| } |
| double fA, fB, fC; |
| }; |
| |
| /** |
| * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and |
| * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). |
| * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating |
| * point). For speed, that case is only tested by the callers that require it (e.g., |
| * rewind_if_necessary()). Edges also handle checking for intersection with other edges. |
| * Currently, this converts the edges to the parametric form, in order to avoid doing a division |
| * until an intersection has been confirmed. This is slightly slower in the "found" case, but |
| * a lot faster in the "not found" case. |
| * |
| * The coefficients of the line equation stored in double precision to avoid catastrphic |
| * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is |
| * correct in float, since it's a polynomial of degree 2. The intersect() function, being |
| * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its |
| * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of |
| * this file). |
| */ |
| |
| struct Edge { |
| enum class Type { kInner, kOuter, kConnector }; |
| Edge(Vertex* top, Vertex* bottom, int winding, Type type) |
| : fWinding(winding) |
| , fTop(top) |
| , fBottom(bottom) |
| , fType(type) |
| , fLeft(nullptr) |
| , fRight(nullptr) |
| , fPrevEdgeAbove(nullptr) |
| , fNextEdgeAbove(nullptr) |
| , fPrevEdgeBelow(nullptr) |
| , fNextEdgeBelow(nullptr) |
| , fLeftPoly(nullptr) |
| , fRightPoly(nullptr) |
| , fLeftPolyPrev(nullptr) |
| , fLeftPolyNext(nullptr) |
| , fRightPolyPrev(nullptr) |
| , fRightPolyNext(nullptr) |
| , fUsedInLeftPoly(false) |
| , fUsedInRightPoly(false) |
| , fLine(top, bottom) { |
| } |
| int fWinding; // 1 == edge goes downward; -1 = edge goes upward. |
| Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). |
| Vertex* fBottom; // The bottom vertex in vertex-sort-order. |
| Type fType; |
| Edge* fLeft; // The linked list of edges in the active edge list. |
| Edge* fRight; // " |
| Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". |
| Edge* fNextEdgeAbove; // " |
| Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". |
| Edge* fNextEdgeBelow; // " |
| Poly* fLeftPoly; // The Poly to the left of this edge, if any. |
| Poly* fRightPoly; // The Poly to the right of this edge, if any. |
| Edge* fLeftPolyPrev; |
| Edge* fLeftPolyNext; |
| Edge* fRightPolyPrev; |
| Edge* fRightPolyNext; |
| bool fUsedInLeftPoly; |
| bool fUsedInRightPoly; |
| Line fLine; |
| double dist(const SkPoint& p) const { |
| return fLine.dist(p); |
| } |
| bool isRightOf(Vertex* v) const { |
| return fLine.dist(v->fPoint) < 0.0; |
| } |
| bool isLeftOf(Vertex* v) const { |
| return fLine.dist(v->fPoint) > 0.0; |
| } |
| void recompute() { |
| fLine = Line(fTop, fBottom); |
| } |
| bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const { |
| TESS_LOG("intersecting %g -> %g with %g -> %g\n", |
| fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID); |
| if (fTop == other.fTop || fBottom == other.fBottom) { |
| return false; |
| } |
| double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA; |
| if (denom == 0.0) { |
| return false; |
| } |
| double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX; |
| double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY; |
| double sNumer = dy * other.fLine.fB + dx * other.fLine.fA; |
| double tNumer = dy * fLine.fB + dx * fLine.fA; |
| // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. |
| // This saves us doing the divide below unless absolutely necessary. |
| if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
| : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { |
| return false; |
| } |
| double s = sNumer / denom; |
| SkASSERT(s >= 0.0 && s <= 1.0); |
| p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB); |
| p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA); |
| if (alpha) { |
| if (fType == Type::kConnector) { |
| *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha; |
| } else if (other.fType == Type::kConnector) { |
| double t = tNumer / denom; |
| *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha; |
| } else if (fType == Type::kOuter && other.fType == Type::kOuter) { |
| *alpha = 0; |
| } else { |
| *alpha = 255; |
| } |
| } |
| return true; |
| } |
| }; |
| |
| struct SSEdge; |
| |
| struct SSVertex { |
| SSVertex(Vertex* v) : fVertex(v), fPrev(nullptr), fNext(nullptr) {} |
| Vertex* fVertex; |
| SSEdge* fPrev; |
| SSEdge* fNext; |
| }; |
| |
| struct SSEdge { |
| SSEdge(Edge* edge, SSVertex* prev, SSVertex* next) |
| : fEdge(edge), fEvent(nullptr), fPrev(prev), fNext(next) { |
| } |
| Edge* fEdge; |
| Event* fEvent; |
| SSVertex* fPrev; |
| SSVertex* fNext; |
| }; |
| |
| typedef std::unordered_map<Vertex*, SSVertex*> SSVertexMap; |
| typedef std::vector<SSEdge*> SSEdgeList; |
| |
| struct EdgeList { |
| EdgeList() : fHead(nullptr), fTail(nullptr) {} |
| Edge* fHead; |
| Edge* fTail; |
| void insert(Edge* edge, Edge* prev, Edge* next) { |
| list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail); |
| } |
| void append(Edge* e) { |
| insert(e, fTail, nullptr); |
| } |
| void remove(Edge* edge) { |
| list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail); |
| } |
| void removeAll() { |
| while (fHead) { |
| this->remove(fHead); |
| } |
| } |
| void close() { |
| if (fHead && fTail) { |
| fTail->fRight = fHead; |
| fHead->fLeft = fTail; |
| } |
| } |
| bool contains(Edge* edge) const { |
| return edge->fLeft || edge->fRight || fHead == edge; |
| } |
| }; |
| |
| struct EventList; |
| |
| struct Event { |
| Event(SSEdge* edge, const SkPoint& point, uint8_t alpha) |
| : fEdge(edge), fPoint(point), fAlpha(alpha) { |
| } |
| SSEdge* fEdge; |
| SkPoint fPoint; |
| uint8_t fAlpha; |
| void apply(VertexList* mesh, Comparator& c, EventList* events, SkArenaAlloc& alloc); |
| }; |
| |
| struct EventComparator { |
| enum class Op { kLessThan, kGreaterThan }; |
| EventComparator(Op op) : fOp(op) {} |
| bool operator() (Event* const &e1, Event* const &e2) { |
| return fOp == Op::kLessThan ? e1->fAlpha < e2->fAlpha |
| : e1->fAlpha > e2->fAlpha; |
| } |
| Op fOp; |
| }; |
| |
| typedef std::priority_queue<Event*, std::vector<Event*>, EventComparator> EventPQ; |
| |
| struct EventList : EventPQ { |
| EventList(EventComparator comparison) : EventPQ(comparison) { |
| } |
| }; |
| |
| void create_event(SSEdge* e, EventList* events, SkArenaAlloc& alloc) { |
| Vertex* prev = e->fPrev->fVertex; |
| Vertex* next = e->fNext->fVertex; |
| if (prev == next || !prev->fPartner || !next->fPartner) { |
| return; |
| } |
| Edge bisector1(prev, prev->fPartner, 1, Edge::Type::kConnector); |
| Edge bisector2(next, next->fPartner, 1, Edge::Type::kConnector); |
| SkPoint p; |
| uint8_t alpha; |
| if (bisector1.intersect(bisector2, &p, &alpha)) { |
| TESS_LOG("found edge event for %g, %g (original %g -> %g), " |
| "will collapse to %g,%g alpha %d\n", |
| prev->fID, next->fID, e->fEdge->fTop->fID, e->fEdge->fBottom->fID, p.fX, p.fY, |
| alpha); |
| e->fEvent = alloc.make<Event>(e, p, alpha); |
| events->push(e->fEvent); |
| } |
| } |
| |
| void create_event(SSEdge* edge, Vertex* v, SSEdge* other, Vertex* dest, EventList* events, |
| Comparator& c, SkArenaAlloc& alloc) { |
| if (!v->fPartner) { |
| return; |
| } |
| Vertex* top = edge->fEdge->fTop; |
| Vertex* bottom = edge->fEdge->fBottom; |
| if (!top || !bottom ) { |
| return; |
| } |
| Line line = edge->fEdge->fLine; |
| line.fC = -(dest->fPoint.fX * line.fA + dest->fPoint.fY * line.fB); |
| Edge bisector(v, v->fPartner, 1, Edge::Type::kConnector); |
| SkPoint p; |
| uint8_t alpha = dest->fAlpha; |
| if (line.intersect(bisector.fLine, &p) && !c.sweep_lt(p, top->fPoint) && |
| c.sweep_lt(p, bottom->fPoint)) { |
| TESS_LOG("found p edge event for %g, %g (original %g -> %g), " |
| "will collapse to %g,%g alpha %d\n", |
| dest->fID, v->fID, top->fID, bottom->fID, p.fX, p.fY, alpha); |
| edge->fEvent = alloc.make<Event>(edge, p, alpha); |
| events->push(edge->fEvent); |
| } |
| } |
| |
| /***************************************************************************************/ |
| |
| struct Poly { |
| Poly(Vertex* v, int winding) |
| : fFirstVertex(v) |
| , fWinding(winding) |
| , fHead(nullptr) |
| , fTail(nullptr) |
| , fNext(nullptr) |
| , fPartner(nullptr) |
| , fCount(0) |
| { |
| #if LOGGING_ENABLED |
| static int gID = 0; |
| fID = gID++; |
| TESS_LOG("*** created Poly %d\n", fID); |
| #endif |
| } |
| typedef enum { kLeft_Side, kRight_Side } Side; |
| struct MonotonePoly { |
| MonotonePoly(Edge* edge, Side side, int winding) |
| : fSide(side) |
| , fFirstEdge(nullptr) |
| , fLastEdge(nullptr) |
| , fPrev(nullptr) |
| , fNext(nullptr) |
| , fWinding(winding) { |
| this->addEdge(edge); |
| } |
| Side fSide; |
| Edge* fFirstEdge; |
| Edge* fLastEdge; |
| MonotonePoly* fPrev; |
| MonotonePoly* fNext; |
| int fWinding; |
| void addEdge(Edge* edge) { |
| if (fSide == kRight_Side) { |
| SkASSERT(!edge->fUsedInRightPoly); |
| list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>( |
| edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); |
| edge->fUsedInRightPoly = true; |
| } else { |
| SkASSERT(!edge->fUsedInLeftPoly); |
| list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>( |
| edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); |
| edge->fUsedInLeftPoly = true; |
| } |
| } |
| |
| void* emit(bool emitCoverage, void* data) { |
| Edge* e = fFirstEdge; |
| VertexList vertices; |
| vertices.append(e->fTop); |
| int count = 1; |
| while (e != nullptr) { |
| if (kRight_Side == fSide) { |
| vertices.append(e->fBottom); |
| e = e->fRightPolyNext; |
| } else { |
| vertices.prepend(e->fBottom); |
| e = e->fLeftPolyNext; |
| } |
| count++; |
| } |
| Vertex* first = vertices.fHead; |
| Vertex* v = first->fNext; |
| while (v != vertices.fTail) { |
| SkASSERT(v && v->fPrev && v->fNext); |
| Vertex* prev = v->fPrev; |
| Vertex* curr = v; |
| Vertex* next = v->fNext; |
| if (count == 3) { |
| return this->emitTriangle(prev, curr, next, emitCoverage, data); |
| } |
| double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX; |
| double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY; |
| double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX; |
| double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY; |
| if (ax * by - ay * bx >= 0.0) { |
| data = this->emitTriangle(prev, curr, next, emitCoverage, data); |
| v->fPrev->fNext = v->fNext; |
| v->fNext->fPrev = v->fPrev; |
| count--; |
| if (v->fPrev == first) { |
| v = v->fNext; |
| } else { |
| v = v->fPrev; |
| } |
| } else { |
| v = v->fNext; |
| } |
| } |
| return data; |
| } |
| void* emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, bool emitCoverage, |
| void* data) const { |
| if (fWinding < 0) { |
| // Ensure our triangles always wind in the same direction as if the path had been |
| // triangulated as a simple fan (a la red book). |
| std::swap(prev, next); |
| } |
| return emit_triangle(next, curr, prev, emitCoverage, data); |
| } |
| }; |
| Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) { |
| TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n", |
| e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right"); |
| Poly* partner = fPartner; |
| Poly* poly = this; |
| if (side == kRight_Side) { |
| if (e->fUsedInRightPoly) { |
| return this; |
| } |
| } else { |
| if (e->fUsedInLeftPoly) { |
| return this; |
| } |
| } |
| if (partner) { |
| fPartner = partner->fPartner = nullptr; |
| } |
| if (!fTail) { |
| fHead = fTail = alloc.make<MonotonePoly>(e, side, fWinding); |
| fCount += 2; |
| } else if (e->fBottom == fTail->fLastEdge->fBottom) { |
| return poly; |
| } else if (side == fTail->fSide) { |
| fTail->addEdge(e); |
| fCount++; |
| } else { |
| e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner); |
| fTail->addEdge(e); |
| fCount++; |
| if (partner) { |
| partner->addEdge(e, side, alloc); |
| poly = partner; |
| } else { |
| MonotonePoly* m = alloc.make<MonotonePoly>(e, side, fWinding); |
| m->fPrev = fTail; |
| fTail->fNext = m; |
| fTail = m; |
| } |
| } |
| return poly; |
| } |
| void* emit(bool emitCoverage, void *data) { |
| if (fCount < 3) { |
| return data; |
| } |
| TESS_LOG("emit() %d, size %d\n", fID, fCount); |
| for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) { |
| data = m->emit(emitCoverage, data); |
| } |
| return data; |
| } |
| Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; } |
| Vertex* fFirstVertex; |
| int fWinding; |
| MonotonePoly* fHead; |
| MonotonePoly* fTail; |
| Poly* fNext; |
| Poly* fPartner; |
| int fCount; |
| #if LOGGING_ENABLED |
| int fID; |
| #endif |
| }; |
| |
| /***************************************************************************************/ |
| |
| bool coincident(const SkPoint& a, const SkPoint& b) { |
| return a == b; |
| } |
| |
| Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) { |
| Poly* poly = alloc.make<Poly>(v, winding); |
| poly->fNext = *head; |
| *head = poly; |
| return poly; |
| } |
| |
| void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) { |
| Vertex* v = alloc.make<Vertex>(p, 255); |
| #if LOGGING_ENABLED |
| static float gID = 0.0f; |
| v->fID = gID++; |
| #endif |
| contour->append(v); |
| } |
| |
| SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) { |
| SkQuadCoeff quad(pts); |
| SkPoint p0 = to_point(quad.eval(t - 0.5f * u)); |
| SkPoint mid = to_point(quad.eval(t)); |
| SkPoint p1 = to_point(quad.eval(t + 0.5f * u)); |
| if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) { |
| return 0; |
| } |
| return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1); |
| } |
| |
| void append_quadratic_to_contour(const SkPoint pts[3], SkScalar toleranceSqd, VertexList* contour, |
| SkArenaAlloc& alloc) { |
| SkQuadCoeff quad(pts); |
| Sk2s aa = quad.fA * quad.fA; |
| SkScalar denom = 2.0f * (aa[0] + aa[1]); |
| Sk2s ab = quad.fA * quad.fB; |
| SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f; |
| int nPoints = 1; |
| SkScalar u = 1.0f; |
| // Test possible subdivision values only at the point of maximum curvature. |
| // If it passes the flatness metric there, it'll pass everywhere. |
| while (nPoints < GrPathUtils::kMaxPointsPerCurve) { |
| u = 1.0f / nPoints; |
| if (quad_error_at(pts, t, u) < toleranceSqd) { |
| break; |
| } |
| nPoints++; |
| } |
| for (int j = 1; j <= nPoints; j++) { |
| append_point_to_contour(to_point(quad.eval(j * u)), contour, alloc); |
| } |
| } |
| |
| void generate_cubic_points(const SkPoint& p0, |
| const SkPoint& p1, |
| const SkPoint& p2, |
| const SkPoint& p3, |
| SkScalar tolSqd, |
| VertexList* contour, |
| int pointsLeft, |
| SkArenaAlloc& alloc) { |
| SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3); |
| SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3); |
| if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || |
| !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { |
| append_point_to_contour(p3, contour, alloc); |
| return; |
| } |
| const SkPoint q[] = { |
| { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
| { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
| { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } |
| }; |
| const SkPoint r[] = { |
| { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, |
| { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } |
| }; |
| const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; |
| pointsLeft >>= 1; |
| generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc); |
| generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc); |
| } |
| |
| // Stage 1: convert the input path to a set of linear contours (linked list of Vertices). |
| |
| void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
| VertexList* contours, SkArenaAlloc& alloc, Mode mode, int* numCountedCurves) { |
| SkScalar toleranceSqd = tolerance * tolerance; |
| bool innerPolygons = (Mode::kSimpleInnerPolygons == mode); |
| |
| SkPoint pts[4]; |
| int localCurveCount = 0; |
| VertexList* contour = contours; |
| SkPath::Iter iter(path, false); |
| if (path.isInverseFillType()) { |
| SkPoint quad[4]; |
| clipBounds.toQuad(quad); |
| for (int i = 3; i >= 0; i--) { |
| append_point_to_contour(quad[i], contours, alloc); |
| } |
| contour++; |
| } |
| SkAutoConicToQuads converter; |
| SkPath::Verb verb; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kConic_Verb: { |
| ++localCurveCount; |
| if (innerPolygons) { |
| append_point_to_contour(pts[2], contour, alloc); |
| break; |
| } |
| SkScalar weight = iter.conicWeight(); |
| const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd); |
| for (int i = 0; i < converter.countQuads(); ++i) { |
| append_quadratic_to_contour(quadPts, toleranceSqd, contour, alloc); |
| quadPts += 2; |
| } |
| break; |
| } |
| case SkPath::kMove_Verb: |
| if (contour->fHead) { |
| contour++; |
| } |
| append_point_to_contour(pts[0], contour, alloc); |
| break; |
| case SkPath::kLine_Verb: { |
| append_point_to_contour(pts[1], contour, alloc); |
| break; |
| } |
| case SkPath::kQuad_Verb: { |
| ++localCurveCount; |
| if (innerPolygons) { |
| append_point_to_contour(pts[2], contour, alloc); |
| break; |
| } |
| append_quadratic_to_contour(pts, toleranceSqd, contour, alloc); |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| ++localCurveCount; |
| if (innerPolygons) { |
| append_point_to_contour(pts[3], contour, alloc); |
| break; |
| } |
| int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); |
| generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour, |
| pointsLeft, alloc); |
| break; |
| } |
| case SkPath::kClose_Verb: |
| case SkPath::kDone_Verb: |
| break; |
| } |
| } |
| *numCountedCurves = localCurveCount; |
| } |
| |
| inline bool apply_fill_type(SkPathFillType fillType, int winding) { |
| switch (fillType) { |
| case SkPathFillType::kWinding: |
| return winding != 0; |
| case SkPathFillType::kEvenOdd: |
| return (winding & 1) != 0; |
| case SkPathFillType::kInverseWinding: |
| return winding == 1; |
| case SkPathFillType::kInverseEvenOdd: |
| return (winding & 1) == 1; |
| default: |
| SkASSERT(false); |
| return false; |
| } |
| } |
| |
| inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) { |
| return poly && apply_fill_type(fillType, poly->fWinding); |
| } |
| |
| Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) { |
| int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
| Vertex* top = winding < 0 ? next : prev; |
| Vertex* bottom = winding < 0 ? prev : next; |
| return alloc.make<Edge>(top, bottom, winding, type); |
| } |
| |
| void remove_edge(Edge* edge, EdgeList* edges) { |
| TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
| SkASSERT(edges->contains(edge)); |
| edges->remove(edge); |
| } |
| |
| void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) { |
| TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
| SkASSERT(!edges->contains(edge)); |
| Edge* next = prev ? prev->fRight : edges->fHead; |
| edges->insert(edge, prev, next); |
| } |
| |
| void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) { |
| if (v->fFirstEdgeAbove && v->fLastEdgeAbove) { |
| *left = v->fFirstEdgeAbove->fLeft; |
| *right = v->fLastEdgeAbove->fRight; |
| return; |
| } |
| Edge* next = nullptr; |
| Edge* prev; |
| for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) { |
| if (prev->isLeftOf(v)) { |
| break; |
| } |
| next = prev; |
| } |
| *left = prev; |
| *right = next; |
| } |
| |
| void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) { |
| if (edge->fTop->fPoint == edge->fBottom->fPoint || |
| c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) { |
| return; |
| } |
| TESS_LOG("insert edge (%g -> %g) above vertex %g\n", |
| edge->fTop->fID, edge->fBottom->fID, v->fID); |
| Edge* prev = nullptr; |
| Edge* next; |
| for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { |
| if (next->isRightOf(edge->fTop)) { |
| break; |
| } |
| prev = next; |
| } |
| list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( |
| edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); |
| } |
| |
| void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) { |
| if (edge->fTop->fPoint == edge->fBottom->fPoint || |
| c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) { |
| return; |
| } |
| TESS_LOG("insert edge (%g -> %g) below vertex %g\n", |
| edge->fTop->fID, edge->fBottom->fID, v->fID); |
| Edge* prev = nullptr; |
| Edge* next; |
| for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { |
| if (next->isRightOf(edge->fBottom)) { |
| break; |
| } |
| prev = next; |
| } |
| list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( |
| edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); |
| } |
| |
| void remove_edge_above(Edge* edge) { |
| SkASSERT(edge->fTop && edge->fBottom); |
| TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, |
| edge->fBottom->fID); |
| list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( |
| edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); |
| } |
| |
| void remove_edge_below(Edge* edge) { |
| SkASSERT(edge->fTop && edge->fBottom); |
| TESS_LOG("removing edge (%g -> %g) below vertex %g\n", |
| edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID); |
| list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( |
| edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); |
| } |
| |
| void disconnect(Edge* edge) |
| { |
| remove_edge_above(edge); |
| remove_edge_below(edge); |
| } |
| |
| void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c); |
| |
| void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, Comparator& c) { |
| if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) { |
| return; |
| } |
| Vertex* v = *current; |
| TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID); |
| while (v != dst) { |
| v = v->fPrev; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| remove_edge(e, activeEdges); |
| } |
| Edge* leftEdge = v->fLeftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
| insert_edge(e, leftEdge, activeEdges); |
| leftEdge = e; |
| Vertex* top = e->fTop; |
| if (c.sweep_lt(top->fPoint, dst->fPoint) && |
| ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) || |
| (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) { |
| dst = top; |
| } |
| } |
| } |
| *current = v; |
| } |
| |
| void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) { |
| if (!activeEdges || !current) { |
| return; |
| } |
| Vertex* top = edge->fTop; |
| Vertex* bottom = edge->fBottom; |
| if (edge->fLeft) { |
| Vertex* leftTop = edge->fLeft->fTop; |
| Vertex* leftBottom = edge->fLeft->fBottom; |
| if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) { |
| rewind(activeEdges, current, leftTop, c); |
| } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) { |
| rewind(activeEdges, current, top, c); |
| } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && |
| !edge->fLeft->isLeftOf(bottom)) { |
| rewind(activeEdges, current, leftTop, c); |
| } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { |
| rewind(activeEdges, current, top, c); |
| } |
| } |
| if (edge->fRight) { |
| Vertex* rightTop = edge->fRight->fTop; |
| Vertex* rightBottom = edge->fRight->fBottom; |
| if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) { |
| rewind(activeEdges, current, rightTop, c); |
| } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) { |
| rewind(activeEdges, current, top, c); |
| } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && |
| !edge->fRight->isRightOf(bottom)) { |
| rewind(activeEdges, current, rightTop, c); |
| } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && |
| !edge->isLeftOf(rightBottom)) { |
| rewind(activeEdges, current, top, c); |
| } |
| } |
| } |
| |
| void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) { |
| remove_edge_below(edge); |
| edge->fTop = v; |
| edge->recompute(); |
| insert_edge_below(edge, v, c); |
| rewind_if_necessary(edge, activeEdges, current, c); |
| merge_collinear_edges(edge, activeEdges, current, c); |
| } |
| |
| void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) { |
| remove_edge_above(edge); |
| edge->fBottom = v; |
| edge->recompute(); |
| insert_edge_above(edge, v, c); |
| rewind_if_necessary(edge, activeEdges, current, c); |
| merge_collinear_edges(edge, activeEdges, current, c); |
| } |
| |
| void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, |
| Comparator& c) { |
| if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { |
| TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", |
| edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
| edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
| rewind(activeEdges, current, edge->fTop, c); |
| other->fWinding += edge->fWinding; |
| disconnect(edge); |
| edge->fTop = edge->fBottom = nullptr; |
| } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { |
| rewind(activeEdges, current, edge->fTop, c); |
| other->fWinding += edge->fWinding; |
| set_bottom(edge, other->fTop, activeEdges, current, c); |
| } else { |
| rewind(activeEdges, current, other->fTop, c); |
| edge->fWinding += other->fWinding; |
| set_bottom(other, edge->fTop, activeEdges, current, c); |
| } |
| } |
| |
| void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, |
| Comparator& c) { |
| if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
| TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", |
| edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
| edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
| rewind(activeEdges, current, edge->fTop, c); |
| other->fWinding += edge->fWinding; |
| disconnect(edge); |
| edge->fTop = edge->fBottom = nullptr; |
| } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
| rewind(activeEdges, current, other->fTop, c); |
| edge->fWinding += other->fWinding; |
| set_top(other, edge->fBottom, activeEdges, current, c); |
| } else { |
| rewind(activeEdges, current, edge->fTop, c); |
| other->fWinding += edge->fWinding; |
| set_top(edge, other->fBottom, activeEdges, current, c); |
| } |
| } |
| |
| bool top_collinear(Edge* left, Edge* right) { |
| if (!left || !right) { |
| return false; |
| } |
| return left->fTop->fPoint == right->fTop->fPoint || |
| !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop); |
| } |
| |
| bool bottom_collinear(Edge* left, Edge* right) { |
| if (!left || !right) { |
| return false; |
| } |
| return left->fBottom->fPoint == right->fBottom->fPoint || |
| !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom); |
| } |
| |
| void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) { |
| for (;;) { |
| if (top_collinear(edge->fPrevEdgeAbove, edge)) { |
| merge_edges_above(edge->fPrevEdgeAbove, edge, activeEdges, current, c); |
| } else if (top_collinear(edge, edge->fNextEdgeAbove)) { |
| merge_edges_above(edge->fNextEdgeAbove, edge, activeEdges, current, c); |
| } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) { |
| merge_edges_below(edge->fPrevEdgeBelow, edge, activeEdges, current, c); |
| } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) { |
| merge_edges_below(edge->fNextEdgeBelow, edge, activeEdges, current, c); |
| } else { |
| break; |
| } |
| } |
| SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge)); |
| SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove)); |
| SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge)); |
| SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow)); |
| } |
| |
| bool split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c, |
| SkArenaAlloc& alloc) { |
| if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) { |
| return false; |
| } |
| TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", |
| edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY); |
| Vertex* top; |
| Vertex* bottom; |
| int winding = edge->fWinding; |
| if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { |
| top = v; |
| bottom = edge->fTop; |
| set_top(edge, v, activeEdges, current, c); |
| } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) { |
| top = edge->fBottom; |
| bottom = v; |
| set_bottom(edge, v, activeEdges, current, c); |
| } else { |
| top = v; |
| bottom = edge->fBottom; |
| set_bottom(edge, v, activeEdges, current, c); |
| } |
| Edge* newEdge = alloc.make<Edge>(top, bottom, winding, edge->fType); |
| insert_edge_below(newEdge, top, c); |
| insert_edge_above(newEdge, bottom, c); |
| merge_collinear_edges(newEdge, activeEdges, current, c); |
| return true; |
| } |
| |
| bool intersect_edge_pair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, Comparator& c, SkArenaAlloc& alloc) { |
| if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) { |
| return false; |
| } |
| if (left->fTop == right->fTop || left->fBottom == right->fBottom) { |
| return false; |
| } |
| if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { |
| if (!left->isLeftOf(right->fTop)) { |
| rewind(activeEdges, current, right->fTop, c); |
| return split_edge(left, right->fTop, activeEdges, current, c, alloc); |
| } |
| } else { |
| if (!right->isRightOf(left->fTop)) { |
| rewind(activeEdges, current, left->fTop, c); |
| return split_edge(right, left->fTop, activeEdges, current, c, alloc); |
| } |
| } |
| if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { |
| if (!left->isLeftOf(right->fBottom)) { |
| rewind(activeEdges, current, right->fBottom, c); |
| return split_edge(left, right->fBottom, activeEdges, current, c, alloc); |
| } |
| } else { |
| if (!right->isRightOf(left->fBottom)) { |
| rewind(activeEdges, current, left->fBottom, c); |
| return split_edge(right, left->fBottom, activeEdges, current, c, alloc); |
| } |
| } |
| return false; |
| } |
| |
| Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc, |
| int winding_scale = 1) { |
| if (!prev || !next || prev->fPoint == next->fPoint) { |
| return nullptr; |
| } |
| Edge* edge = new_edge(prev, next, type, c, alloc); |
| insert_edge_below(edge, edge->fTop, c); |
| insert_edge_above(edge, edge->fBottom, c); |
| edge->fWinding *= winding_scale; |
| merge_collinear_edges(edge, nullptr, nullptr, c); |
| return edge; |
| } |
| |
| void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c, |
| SkArenaAlloc& alloc) { |
| TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n", |
| src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID); |
| dst->fAlpha = std::max(src->fAlpha, dst->fAlpha); |
| if (src->fPartner) { |
| src->fPartner->fPartner = dst; |
| } |
| while (Edge* edge = src->fFirstEdgeAbove) { |
| set_bottom(edge, dst, nullptr, nullptr, c); |
| } |
| while (Edge* edge = src->fFirstEdgeBelow) { |
| set_top(edge, dst, nullptr, nullptr, c); |
| } |
| mesh->remove(src); |
| dst->fSynthetic = true; |
| } |
| |
| Vertex* create_sorted_vertex(const SkPoint& p, uint8_t alpha, VertexList* mesh, |
| Vertex* reference, Comparator& c, SkArenaAlloc& alloc) { |
| Vertex* prevV = reference; |
| while (prevV && c.sweep_lt(p, prevV->fPoint)) { |
| prevV = prevV->fPrev; |
| } |
| Vertex* nextV = prevV ? prevV->fNext : mesh->fHead; |
| while (nextV && c.sweep_lt(nextV->fPoint, p)) { |
| prevV = nextV; |
| nextV = nextV->fNext; |
| } |
| Vertex* v; |
| if (prevV && coincident(prevV->fPoint, p)) { |
| v = prevV; |
| } else if (nextV && coincident(nextV->fPoint, p)) { |
| v = nextV; |
| } else { |
| v = alloc.make<Vertex>(p, alpha); |
| #if LOGGING_ENABLED |
| if (!prevV) { |
| v->fID = mesh->fHead->fID - 1.0f; |
| } else if (!nextV) { |
| v->fID = mesh->fTail->fID + 1.0f; |
| } else { |
| v->fID = (prevV->fID + nextV->fID) * 0.5f; |
| } |
| #endif |
| mesh->insert(v, prevV, nextV); |
| } |
| return v; |
| } |
| |
| // If an edge's top and bottom points differ only by 1/2 machine epsilon in the primary |
| // sort criterion, it may not be possible to split correctly, since there is no point which is |
| // below the top and above the bottom. This function detects that case. |
| bool nearly_flat(Comparator& c, Edge* edge) { |
| SkPoint diff = edge->fBottom->fPoint - edge->fTop->fPoint; |
| float primaryDiff = c.fDirection == Comparator::Direction::kHorizontal ? diff.fX : diff.fY; |
| return fabs(primaryDiff) < std::numeric_limits<float>::epsilon() && primaryDiff != 0.0f; |
| } |
| |
| SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, Comparator& c) { |
| if (c.sweep_lt(p, min)) { |
| return min; |
| } else if (c.sweep_lt(max, p)) { |
| return max; |
| } else { |
| return p; |
| } |
| } |
| |
| void compute_bisector(Edge* edge1, Edge* edge2, Vertex* v, SkArenaAlloc& alloc) { |
| Line line1 = edge1->fLine; |
| Line line2 = edge2->fLine; |
| line1.normalize(); |
| line2.normalize(); |
| double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB; |
| if (cosAngle > 0.999) { |
| return; |
| } |
| line1.fC += edge1->fWinding > 0 ? -1 : 1; |
| line2.fC += edge2->fWinding > 0 ? -1 : 1; |
| SkPoint p; |
| if (line1.intersect(line2, &p)) { |
| uint8_t alpha = edge1->fType == Edge::Type::kOuter ? 255 : 0; |
| v->fPartner = alloc.make<Vertex>(p, alpha); |
| TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID); |
| } |
| } |
| |
| bool check_for_intersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, |
| VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) { |
| if (!left || !right) { |
| return false; |
| } |
| SkPoint p; |
| uint8_t alpha; |
| if (left->intersect(*right, &p, &alpha) && p.isFinite()) { |
| Vertex* v; |
| TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); |
| Vertex* top = *current; |
| // If the intersection point is above the current vertex, rewind to the vertex above the |
| // intersection. |
| while (top && c.sweep_lt(p, top->fPoint)) { |
| top = top->fPrev; |
| } |
| if (!nearly_flat(c, left)) { |
| p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c); |
| } |
| if (!nearly_flat(c, right)) { |
| p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c); |
| } |
| if (p == left->fTop->fPoint) { |
| v = left->fTop; |
| } else if (p == left->fBottom->fPoint) { |
| v = left->fBottom; |
| } else if (p == right->fTop->fPoint) { |
| v = right->fTop; |
| } else if (p == right->fBottom->fPoint) { |
| v = right->fBottom; |
| } else { |
| v = create_sorted_vertex(p, alpha, mesh, top, c, alloc); |
| if (left->fTop->fPartner) { |
| v->fSynthetic = true; |
| compute_bisector(left, right, v, alloc); |
| } |
| } |
| rewind(activeEdges, current, top ? top : v, c); |
| split_edge(left, v, activeEdges, current, c, alloc); |
| split_edge(right, v, activeEdges, current, c, alloc); |
| v->fAlpha = std::max(v->fAlpha, alpha); |
| return true; |
| } |
| return intersect_edge_pair(left, right, activeEdges, current, c, alloc); |
| } |
| |
| void sanitize_contours(VertexList* contours, int contourCnt, Mode mode) { |
| bool approximate = (Mode::kEdgeAntialias == mode); |
| bool removeCollinearVertices = (Mode::kSimpleInnerPolygons != mode); |
| for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { |
| SkASSERT(contour->fHead); |
| Vertex* prev = contour->fTail; |
| if (approximate) { |
| round(&prev->fPoint); |
| } |
| for (Vertex* v = contour->fHead; v;) { |
| if (approximate) { |
| round(&v->fPoint); |
| } |
| Vertex* next = v->fNext; |
| Vertex* nextWrap = next ? next : contour->fHead; |
| if (coincident(prev->fPoint, v->fPoint)) { |
| TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); |
| contour->remove(v); |
| } else if (!v->fPoint.isFinite()) { |
| TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY); |
| contour->remove(v); |
| } else if (removeCollinearVertices && |
| Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) { |
| TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY); |
| contour->remove(v); |
| } else { |
| prev = v; |
| } |
| v = next; |
| } |
| } |
| } |
| |
| bool merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) { |
| if (!mesh->fHead) { |
| return false; |
| } |
| bool merged = false; |
| for (Vertex* v = mesh->fHead->fNext; v;) { |
| Vertex* next = v->fNext; |
| if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { |
| v->fPoint = v->fPrev->fPoint; |
| } |
| if (coincident(v->fPrev->fPoint, v->fPoint)) { |
| merge_vertices(v, v->fPrev, mesh, c, alloc); |
| merged = true; |
| } |
| v = next; |
| } |
| return merged; |
| } |
| |
| // Stage 2: convert the contours to a mesh of edges connecting the vertices. |
| |
| void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c, |
| SkArenaAlloc& alloc) { |
| for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { |
| Vertex* prev = contour->fTail; |
| for (Vertex* v = contour->fHead; v;) { |
| Vertex* next = v->fNext; |
| connect(prev, v, Edge::Type::kInner, c, alloc); |
| mesh->append(v); |
| prev = v; |
| v = next; |
| } |
| } |
| } |
| |
| void connect_partners(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) { |
| for (Vertex* outer = mesh->fHead; outer; outer = outer->fNext) { |
| if (Vertex* inner = outer->fPartner) { |
| if ((inner->fPrev || inner->fNext) && (outer->fPrev || outer->fNext)) { |
| // Connector edges get zero winding, since they're only structural (i.e., to ensure |
| // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding |
| // number. |
| connect(outer, inner, Edge::Type::kConnector, c, alloc, 0); |
| inner->fPartner = outer->fPartner = nullptr; |
| } |
| } |
| } |
| } |
| |
| template <CompareFunc sweep_lt> |
| void sorted_merge(VertexList* front, VertexList* back, VertexList* result) { |
| Vertex* a = front->fHead; |
| Vertex* b = back->fHead; |
| while (a && b) { |
| if (sweep_lt(a->fPoint, b->fPoint)) { |
| front->remove(a); |
| result->append(a); |
| a = front->fHead; |
| } else { |
| back->remove(b); |
| result->append(b); |
| b = back->fHead; |
| } |
| } |
| result->append(*front); |
| result->append(*back); |
| } |
| |
| void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) { |
| if (c.fDirection == Comparator::Direction::kHorizontal) { |
| sorted_merge<sweep_lt_horiz>(front, back, result); |
| } else { |
| sorted_merge<sweep_lt_vert>(front, back, result); |
| } |
| #if LOGGING_ENABLED |
| float id = 0.0f; |
| for (Vertex* v = result->fHead; v; v = v->fNext) { |
| v->fID = id++; |
| } |
| #endif |
| } |
| |
| // Stage 3: sort the vertices by increasing sweep direction. |
| |
| template <CompareFunc sweep_lt> |
| void merge_sort(VertexList* vertices) { |
| Vertex* slow = vertices->fHead; |
| if (!slow) { |
| return; |
| } |
| Vertex* fast = slow->fNext; |
| if (!fast) { |
| return; |
| } |
| do { |
| fast = fast->fNext; |
| if (fast) { |
| fast = fast->fNext; |
| slow = slow->fNext; |
| } |
| } while (fast); |
| VertexList front(vertices->fHead, slow); |
| VertexList back(slow->fNext, vertices->fTail); |
| front.fTail->fNext = back.fHead->fPrev = nullptr; |
| |
| merge_sort<sweep_lt>(&front); |
| merge_sort<sweep_lt>(&back); |
| |
| vertices->fHead = vertices->fTail = nullptr; |
| sorted_merge<sweep_lt>(&front, &back, vertices); |
| } |
| |
| void dump_mesh(const VertexList& mesh) { |
| #if LOGGING_ENABLED |
| for (Vertex* v = mesh.fHead; v; v = v->fNext) { |
| TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); |
| if (Vertex* p = v->fPartner) { |
| TESS_LOG(", partner %g (%g, %g) alpha %d\n", |
| p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha); |
| } else { |
| TESS_LOG(", null partner\n"); |
| } |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
| TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); |
| } |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); |
| } |
| } |
| #endif |
| } |
| |
| void dump_skel(const SSEdgeList& ssEdges) { |
| #if LOGGING_ENABLED |
| for (SSEdge* edge : ssEdges) { |
| if (edge->fEdge) { |
| TESS_LOG("skel edge %g -> %g", |
| edge->fPrev->fVertex->fID, |
| edge->fNext->fVertex->fID); |
| if (edge->fEdge->fTop && edge->fEdge->fBottom) { |
| TESS_LOG(" (original %g -> %g)\n", |
| edge->fEdge->fTop->fID, |
| edge->fEdge->fBottom->fID); |
| } else { |
| TESS_LOG("\n"); |
| } |
| } |
| } |
| #endif |
| } |
| |
| #ifdef SK_DEBUG |
| void validate_edge_pair(Edge* left, Edge* right, Comparator& c) { |
| if (!left || !right) { |
| return; |
| } |
| if (left->fTop == right->fTop) { |
| SkASSERT(left->isLeftOf(right->fBottom)); |
| SkASSERT(right->isRightOf(left->fBottom)); |
| } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { |
| SkASSERT(left->isLeftOf(right->fTop)); |
| } else { |
| SkASSERT(right->isRightOf(left->fTop)); |
| } |
| if (left->fBottom == right->fBottom) { |
| SkASSERT(left->isLeftOf(right->fTop)); |
| SkASSERT(right->isRightOf(left->fTop)); |
| } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { |
| SkASSERT(left->isLeftOf(right->fBottom)); |
| } else { |
| SkASSERT(right->isRightOf(left->fBottom)); |
| } |
| } |
| |
| void validate_edge_list(EdgeList* edges, Comparator& c) { |
| Edge* left = edges->fHead; |
| if (!left) { |
| return; |
| } |
| for (Edge* right = left->fRight; right; right = right->fRight) { |
| validate_edge_pair(left, right, c); |
| left = right; |
| } |
| } |
| #endif |
| |
| // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. |
| |
| bool connected(Vertex* v) { |
| return v->fFirstEdgeAbove || v->fFirstEdgeBelow; |
| } |
| |
| enum class SimplifyResult { |
| kAlreadySimple, |
| kFoundSelfIntersection, |
| kAbort |
| }; |
| |
| SimplifyResult simplify(Mode mode, VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) { |
| TESS_LOG("simplifying complex polygons\n"); |
| EdgeList activeEdges; |
| auto result = SimplifyResult::kAlreadySimple; |
| for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) { |
| if (!connected(v)) { |
| continue; |
| } |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| bool restartChecks; |
| do { |
| TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", |
| v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); |
| restartChecks = false; |
| find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| v->fLeftEnclosingEdge = leftEnclosingEdge; |
| v->fRightEnclosingEdge = rightEnclosingEdge; |
| if (v->fFirstEdgeBelow) { |
| for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) { |
| if (check_for_intersection( |
| leftEnclosingEdge, edge, &activeEdges, &v, mesh, c, alloc) || |
| check_for_intersection( |
| edge, rightEnclosingEdge, &activeEdges, &v, mesh, c, alloc)) { |
| if (Mode::kSimpleInnerPolygons == mode) { |
| return SimplifyResult::kAbort; |
| } |
| result = SimplifyResult::kFoundSelfIntersection; |
| restartChecks = true; |
| break; |
| } |
| } |
| } else { |
| if (check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, |
| &activeEdges, &v, mesh, c, alloc)) { |
| if (Mode::kSimpleInnerPolygons == mode) { |
| return SimplifyResult::kAbort; |
| } |
| result = SimplifyResult::kFoundSelfIntersection; |
| restartChecks = true; |
| } |
| |
| } |
| } while (restartChecks); |
| #ifdef SK_DEBUG |
| validate_edge_list(&activeEdges, c); |
| #endif |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
| remove_edge(e, &activeEdges); |
| } |
| Edge* leftEdge = leftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| insert_edge(e, leftEdge, &activeEdges); |
| leftEdge = e; |
| } |
| } |
| SkASSERT(!activeEdges.fHead && !activeEdges.fTail); |
| return result; |
| } |
| |
| // Stage 5: Tessellate the simplified mesh into monotone polygons. |
| |
| Poly* tessellate(SkPathFillType fillType, Mode mode, const VertexList& vertices, |
| SkArenaAlloc& alloc) { |
| TESS_LOG("\ntessellating simple polygons\n"); |
| int maxWindMagnitude = std::numeric_limits<int>::max(); |
| if (Mode::kSimpleInnerPolygons == mode && !SkPathFillType_IsEvenOdd(fillType)) { |
| maxWindMagnitude = 1; |
| } |
| EdgeList activeEdges; |
| Poly* polys = nullptr; |
| for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) { |
| if (!connected(v)) { |
| continue; |
| } |
| #if LOGGING_ENABLED |
| TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); |
| #endif |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| Poly* leftPoly; |
| Poly* rightPoly; |
| if (v->fFirstEdgeAbove) { |
| leftPoly = v->fFirstEdgeAbove->fLeftPoly; |
| rightPoly = v->fLastEdgeAbove->fRightPoly; |
| } else { |
| leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr; |
| rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr; |
| } |
| #if LOGGING_ENABLED |
| TESS_LOG("edges above:\n"); |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| TESS_LOG("edges below:\n"); |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| #endif |
| if (v->fFirstEdgeAbove) { |
| if (leftPoly) { |
| leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc); |
| } |
| if (rightPoly) { |
| rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc); |
| } |
| for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { |
| Edge* rightEdge = e->fNextEdgeAbove; |
| remove_edge(e, &activeEdges); |
| if (e->fRightPoly) { |
| e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc); |
| } |
| if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) { |
| rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc); |
| } |
| } |
| remove_edge(v->fLastEdgeAbove, &activeEdges); |
| if (!v->fFirstEdgeBelow) { |
| if (leftPoly && rightPoly && leftPoly != rightPoly) { |
| SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr); |
| rightPoly->fPartner = leftPoly; |
| leftPoly->fPartner = rightPoly; |
| } |
| } |
| } |
| if (v->fFirstEdgeBelow) { |
| if (!v->fFirstEdgeAbove) { |
| if (leftPoly && rightPoly) { |
| if (leftPoly == rightPoly) { |
| if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) { |
| leftPoly = new_poly(&polys, leftPoly->lastVertex(), |
| leftPoly->fWinding, alloc); |
| leftEnclosingEdge->fRightPoly = leftPoly; |
| } else { |
| rightPoly = new_poly(&polys, rightPoly->lastVertex(), |
| rightPoly->fWinding, alloc); |
| rightEnclosingEdge->fLeftPoly = rightPoly; |
| } |
| } |
| Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner); |
| leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc); |
| rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc); |
| } |
| } |
| Edge* leftEdge = v->fFirstEdgeBelow; |
| leftEdge->fLeftPoly = leftPoly; |
| insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); |
| for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; |
| rightEdge = rightEdge->fNextEdgeBelow) { |
| insert_edge(rightEdge, leftEdge, &activeEdges); |
| int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; |
| winding += leftEdge->fWinding; |
| if (winding != 0) { |
| if (abs(winding) > maxWindMagnitude) { |
| return nullptr; // We can't have weighted wind in kSimpleInnerPolygons mode |
| } |
| Poly* poly = new_poly(&polys, v, winding, alloc); |
| leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; |
| } |
| leftEdge = rightEdge; |
| } |
| v->fLastEdgeBelow->fRightPoly = rightPoly; |
| } |
| #if LOGGING_ENABLED |
| TESS_LOG("\nactive edges:\n"); |
| for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| #endif |
| } |
| return polys; |
| } |
| |
| void remove_non_boundary_edges(const VertexList& mesh, SkPathFillType fillType, |
| SkArenaAlloc& alloc) { |
| TESS_LOG("removing non-boundary edges\n"); |
| EdgeList activeEdges; |
| for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) { |
| if (!connected(v)) { |
| continue; |
| } |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| bool prevFilled = leftEnclosingEdge && |
| apply_fill_type(fillType, leftEnclosingEdge->fWinding); |
| for (Edge* e = v->fFirstEdgeAbove; e;) { |
| Edge* next = e->fNextEdgeAbove; |
| remove_edge(e, &activeEdges); |
| bool filled = apply_fill_type(fillType, e->fWinding); |
| if (filled == prevFilled) { |
| disconnect(e); |
| } |
| prevFilled = filled; |
| e = next; |
| } |
| Edge* prev = leftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| if (prev) { |
| e->fWinding += prev->fWinding; |
| } |
| insert_edge(e, prev, &activeEdges); |
| prev = e; |
| } |
| } |
| } |
| |
| // Note: this is the normal to the edge, but not necessarily unit length. |
| void get_edge_normal(const Edge* e, SkVector* normal) { |
| normal->set(SkDoubleToScalar(e->fLine.fA), |
| SkDoubleToScalar(e->fLine.fB)); |
| } |
| |
| // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions |
| // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to |
| // invert on stroking. |
| |
| void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) { |
| Edge* prevEdge = boundary->fTail; |
| SkVector prevNormal; |
| get_edge_normal(prevEdge, &prevNormal); |
| for (Edge* e = boundary->fHead; e != nullptr;) { |
| Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom; |
| Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop; |
| double distPrev = e->dist(prev->fPoint); |
| double distNext = prevEdge->dist(next->fPoint); |
| SkVector normal; |
| get_edge_normal(e, &normal); |
| constexpr double kQuarterPixelSq = 0.25f * 0.25f; |
| if (prev == next) { |
| remove_edge(prevEdge, boundary); |
| remove_edge(e, boundary); |
| prevEdge = boundary->fTail; |
| e = boundary->fHead; |
| if (prevEdge) { |
| get_edge_normal(prevEdge, &prevNormal); |
| } |
| } else if (prevNormal.dot(normal) < 0.0 && |
| (distPrev * distPrev <= kQuarterPixelSq || distNext * distNext <= kQuarterPixelSq)) { |
| Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc); |
| if (prev->fPoint != next->fPoint) { |
| join->fLine.normalize(); |
| join->fLine = join->fLine * join->fWinding; |
| } |
| insert_edge(join, e, boundary); |
| remove_edge(prevEdge, boundary); |
| remove_edge(e, boundary); |
| if (join->fLeft && join->fRight) { |
| prevEdge = join->fLeft; |
| e = join; |
| } else { |
| prevEdge = boundary->fTail; |
| e = boundary->fHead; // join->fLeft ? join->fLeft : join; |
| } |
| get_edge_normal(prevEdge, &prevNormal); |
| } else { |
| prevEdge = e; |
| prevNormal = normal; |
| e = e->fRight; |
| } |
| } |
| } |
| |
| void ss_connect(Vertex* v, Vertex* dest, Comparator& c, SkArenaAlloc& alloc) { |
| if (v == dest) { |
| return; |
| } |
| TESS_LOG("ss_connecting vertex %g to vertex %g\n", v->fID, dest->fID); |
| if (v->fSynthetic) { |
| connect(v, dest, Edge::Type::kConnector, c, alloc, 0); |
| } else if (v->fPartner) { |
| TESS_LOG("setting %g's partner to %g ", v->fPartner->fID, dest->fID); |
| TESS_LOG("and %g's partner to null\n", v->fID); |
| v->fPartner->fPartner = dest; |
| v->fPartner = nullptr; |
| } |
| } |
| |
| void Event::apply(VertexList* mesh, Comparator& c, EventList* events, SkArenaAlloc& alloc) { |
| if (!fEdge) { |
| return; |
| } |
| Vertex* prev = fEdge->fPrev->fVertex; |
| Vertex* next = fEdge->fNext->fVertex; |
| SSEdge* prevEdge = fEdge->fPrev->fPrev; |
| SSEdge* nextEdge = fEdge->fNext->fNext; |
| if (!prevEdge || !nextEdge || !prevEdge->fEdge || !nextEdge->fEdge) { |
| return; |
| } |
| Vertex* dest = create_sorted_vertex(fPoint, fAlpha, mesh, prev, c, alloc); |
| dest->fSynthetic = true; |
| SSVertex* ssv = alloc.make<SSVertex>(dest); |
| TESS_LOG("collapsing %g, %g (original edge %g -> %g) to %g (%g, %g) alpha %d\n", |
| prev->fID, next->fID, fEdge->fEdge->fTop->fID, fEdge->fEdge->fBottom->fID, dest->fID, |
| fPoint.fX, fPoint.fY, fAlpha); |
| fEdge->fEdge = nullptr; |
| |
| ss_connect(prev, dest, c, alloc); |
| ss_connect(next, dest, c, alloc); |
| |
| prevEdge->fNext = nextEdge->fPrev = ssv; |
| ssv->fPrev = prevEdge; |
| ssv->fNext = nextEdge; |
| if (!prevEdge->fEdge || !nextEdge->fEdge) { |
| return; |
| } |
| if (prevEdge->fEvent) { |
| prevEdge->fEvent->fEdge = nullptr; |
| } |
| if (nextEdge->fEvent) { |
| nextEdge->fEvent->fEdge = nullptr; |
| } |
| if (prevEdge->fPrev == nextEdge->fNext) { |
| ss_connect(prevEdge->fPrev->fVertex, dest, c, alloc); |
| prevEdge->fEdge = nextEdge->fEdge = nullptr; |
| } else { |
| compute_bisector(prevEdge->fEdge, nextEdge->fEdge, dest, alloc); |
| SkASSERT(prevEdge != fEdge && nextEdge != fEdge); |
| if (dest->fPartner) { |
| create_event(prevEdge, events, alloc); |
| create_event(nextEdge, events, alloc); |
| } else { |
| create_event(prevEdge, prevEdge->fPrev->fVertex, nextEdge, dest, events, c, alloc); |
| create_event(nextEdge, nextEdge->fNext->fVertex, prevEdge, dest, events, c, alloc); |
| } |
| } |
| } |
| |
| bool is_overlap_edge(Edge* e) { |
| if (e->fType == Edge::Type::kOuter) { |
| return e->fWinding != 0 && e->fWinding != 1; |
| } else if (e->fType == Edge::Type::kInner) { |
| return e->fWinding != 0 && e->fWinding != -2; |
| } else { |
| return false; |
| } |
| } |
| |
| // This is a stripped-down version of tessellate() which computes edges which |
| // join two filled regions, which represent overlap regions, and collapses them. |
| bool collapse_overlap_regions(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc, |
| EventComparator comp) { |
| TESS_LOG("\nfinding overlap regions\n"); |
| EdgeList activeEdges; |
| EventList events(comp); |
| SSVertexMap ssVertices; |
| SSEdgeList ssEdges; |
| for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) { |
| if (!connected(v)) { |
| continue; |
| } |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| for (Edge* e = v->fLastEdgeAbove; e && e != leftEnclosingEdge;) { |
| Edge* prev = e->fPrevEdgeAbove ? e->fPrevEdgeAbove : leftEnclosingEdge; |
| remove_edge(e, &activeEdges); |
| bool leftOverlap = prev && is_overlap_edge(prev); |
| bool rightOverlap = is_overlap_edge(e); |
| bool isOuterBoundary = e->fType == Edge::Type::kOuter && |
| (!prev || prev->fWinding == 0 || e->fWinding == 0); |
| if (prev) { |
| e->fWinding -= prev->fWinding; |
| } |
| if (leftOverlap && rightOverlap) { |
| TESS_LOG("found interior overlap edge %g -> %g, disconnecting\n", |
| e->fTop->fID, e->fBottom->fID); |
| disconnect(e); |
| } else if (leftOverlap || rightOverlap) { |
| TESS_LOG("found overlap edge %g -> %g%s\n", |
| e->fTop->fID, e->fBottom->fID, |
| isOuterBoundary ? ", is outer boundary" : ""); |
| Vertex* prevVertex = e->fWinding < 0 ? e->fBottom : e->fTop; |
| Vertex* nextVertex = e->fWinding < 0 ? e->fTop : e->fBottom; |
| SSVertex* ssPrev = ssVertices[prevVertex]; |
| if (!ssPrev) { |
| ssPrev = ssVertices[prevVertex] = alloc.make<SSVertex>(prevVertex); |
| } |
| SSVertex* ssNext = ssVertices[nextVertex]; |
| if (!ssNext) { |
| ssNext = ssVertices[nextVertex] = alloc.make<SSVertex>(nextVertex); |
| } |
| SSEdge* ssEdge = alloc.make<SSEdge>(e, ssPrev, ssNext); |
| ssEdges.push_back(ssEdge); |
| // SkASSERT(!ssPrev->fNext && !ssNext->fPrev); |
| ssPrev->fNext = ssNext->fPrev = ssEdge; |
| create_event(ssEdge, &events, alloc); |
| if (!isOuterBoundary) { |
| disconnect(e); |
| } |
| } |
| e = prev; |
| } |
| Edge* prev = leftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| if (prev) { |
| e->fWinding += prev->fWinding; |
| } |
| insert_edge(e, prev, &activeEdges); |
| prev = e; |
| } |
| } |
| bool complex = events.size() > 0; |
| |
| TESS_LOG("\ncollapsing overlap regions\n"); |
| TESS_LOG("skeleton before:\n"); |
| dump_skel(ssEdges); |
| while (events.size() > 0) { |
| Event* event = events.top(); |
| events.pop(); |
| event->apply(mesh, c, &events, alloc); |
| } |
| TESS_LOG("skeleton after:\n"); |
| dump_skel(ssEdges); |
| for (SSEdge* edge : ssEdges) { |
| if (Edge* e = edge->fEdge) { |
| connect(edge->fPrev->fVertex, edge->fNext->fVertex, e->fType, c, alloc, 0); |
| } |
| } |
| return complex; |
| } |
| |
| bool inversion(Vertex* prev, Vertex* next, Edge* origEdge, Comparator& c) { |
| if (!prev || !next) { |
| return true; |
| } |
| int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
| return winding != origEdge->fWinding; |
| } |
| |
| // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to |
| // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a |
| // new antialiased mesh from those vertices. |
| |
| void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh, |
| Comparator& c, SkArenaAlloc& alloc) { |
| TESS_LOG("\nstroking boundary\n"); |
| // A boundary with fewer than 3 edges is degenerate. |
| if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) { |
| return; |
| } |
| Edge* prevEdge = boundary->fTail; |
| Vertex* prevV = prevEdge->fWinding > 0 ? prevEdge->fTop : prevEdge->fBottom; |
| SkVector prevNormal; |
| get_edge_normal(prevEdge, &prevNormal); |
| double radius = 0.5; |
| Line prevInner(prevEdge->fLine); |
| prevInner.fC -= radius; |
| Line prevOuter(prevEdge->fLine); |
| prevOuter.fC += radius; |
| VertexList innerVertices; |
| VertexList outerVertices; |
| bool innerInversion = true; |
| bool outerInversion = true; |
| for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) { |
| Vertex* v = e->fWinding > 0 ? e->fTop : e->fBottom; |
| SkVector normal; |
| get_edge_normal(e, &normal); |
| Line inner(e->fLine); |
| inner.fC -= radius; |
| Line outer(e->fLine); |
| outer.fC += radius; |
| SkPoint innerPoint, outerPoint; |
| TESS_LOG("stroking vertex %g (%g, %g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); |
| if (!prevEdge->fLine.nearParallel(e->fLine) && prevInner.intersect(inner, &innerPoint) && |
| prevOuter.intersect(outer, &outerPoint)) { |
| float cosAngle = normal.dot(prevNormal); |
| if (cosAngle < -kCosMiterAngle) { |
| Vertex* nextV = e->fWinding > 0 ? e->fBottom : e->fTop; |
| |
| // This is a pointy vertex whose angle is smaller than the threshold; miter it. |
| Line bisector(innerPoint, outerPoint); |
| Line tangent(v->fPoint, v->fPoint + SkPoint::Make(bisector.fA, bisector.fB)); |
| if (tangent.fA == 0 && tangent.fB == 0) { |
| continue; |
| } |
| tangent.normalize(); |
| Line innerTangent(tangent); |
| Line outerTangent(tangent); |
| innerTangent.fC -= 0.5; |
| outerTangent.fC += 0.5; |
| SkPoint innerPoint1, innerPoint2, outerPoint1, outerPoint2; |
| if (prevNormal.cross(normal) > 0) { |
| // Miter inner points |
| if (!innerTangent.intersect(prevInner, &innerPoint1) || |
| !innerTangent.intersect(inner, &innerPoint2) || |
| !outerTangent.intersect(bisector, &outerPoint)) { |
| continue; |
| } |
| Line prevTangent(prevV->fPoint, |
| prevV->fPoint + SkVector::Make(prevOuter.fA, prevOuter.fB)); |
| Line nextTangent(nextV->fPoint, |
| nextV->fPoint + SkVector::Make(outer.fA, outer.fB)); |
| if (prevTangent.dist(outerPoint) > 0) { |
| bisector.intersect(prevTangent, &outerPoint); |
| } |
| if (nextTangent.dist(outerPoint) < 0) { |
| bisector.intersect(nextTangent, &outerPoint); |
| } |
| outerPoint1 = outerPoint2 = outerPoint; |
| } else { |
| // Miter outer points |
| if (!outerTangent.intersect(prevOuter, &outerPoint1) || |
| !outerTangent.intersect(outer, &outerPoint2)) { |
| continue; |
| } |
| Line prevTangent(prevV->fPoint, |
| prevV->fPoint + SkVector::Make(prevInner.fA, prevInner.fB)); |
| Line nextTangent(nextV->fPoint, |
| nextV->fPoint + SkVector::Make(inner.fA, inner.fB)); |
| if (prevTangent.dist(innerPoint) > 0) { |
| bisector.intersect(prevTangent, &innerPoint); |
| } |
| if (nextTangent.dist(innerPoint) < 0) { |
| bisector.intersect(nextTangent, &innerPoint); |
| } |
| innerPoint1 = innerPoint2 = innerPoint; |
| } |
| if (!innerPoint1.isFinite() || !innerPoint2.isFinite() || |
| !outerPoint1.isFinite() || !outerPoint2.isFinite()) { |
| continue; |
| } |
| TESS_LOG("inner (%g, %g), (%g, %g), ", |
| innerPoint1.fX, innerPoint1.fY, innerPoint2.fX, innerPoint2.fY); |
| TESS_LOG("outer (%g, %g), (%g, %g)\n", |
| outerPoint1.fX, outerPoint1.fY, outerPoint2.fX, outerPoint2.fY); |
| Vertex* innerVertex1 = alloc.make<Vertex>(innerPoint1, 255); |
| Vertex* innerVertex2 = alloc.make<Vertex>(innerPoint2, 255); |
| Vertex* outerVertex1 = alloc.make<Vertex>(outerPoint1, 0); |
| Vertex* outerVertex2 = alloc.make<Vertex>(outerPoint2, 0); |
| innerVertex1->fPartner = outerVertex1; |
| innerVertex2->fPartner = outerVertex2; |
| outerVertex1->fPartner = innerVertex1; |
| outerVertex2->fPartner = innerVertex2; |
| if (!inversion(innerVertices.fTail, innerVertex1, prevEdge, c)) { |
| innerInversion = false; |
| } |
| if (!inversion(outerVertices.fTail, outerVertex1, prevEdge, c)) { |
| outerInversion = false; |
| } |
| innerVertices.append(innerVertex1); |
| innerVertices.append(innerVertex2); |
| outerVertices.append(outerVertex1); |
| outerVertices.append(outerVertex2); |
| } else { |
| TESS_LOG("inner (%g, %g), ", innerPoint.fX, innerPoint.fY); |
| TESS_LOG("outer (%g, %g)\n", outerPoint.fX, outerPoint.fY); |
| Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255); |
| Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0); |
| innerVertex->fPartner = outerVertex; |
| outerVertex->fPartner = innerVertex; |
| if (!inversion(innerVertices.fTail, innerVertex, prevEdge, c)) { |
| innerInversion = false; |
| } |
| if (!inversion(outerVertices.fTail, outerVertex, prevEdge, c)) { |
| outerInversion = false; |
| } |
| innerVertices.append(innerVertex); |
| outerVertices.append(outerVertex); |
| } |
| } |
| prevInner = inner; |
| prevOuter = outer; |
| prevV = v; |
| prevEdge = e; |
| prevNormal = normal; |
| } |
| if (!inversion(innerVertices.fTail, innerVertices.fHead, prevEdge, c)) { |
| innerInversion = false; |
| } |
| if (!inversion(outerVertices.fTail, outerVertices.fHead, prevEdge, c)) { |
| outerInversion = false; |
| } |
| // Outer edges get 1 winding, and inner edges get -2 winding. This ensures that the interior |
| // is always filled (1 + -2 = -1 for normal cases, 1 + 2 = 3 for thin features where the |
| // interior inverts). |
| // For total inversion cases, the shape has now reversed handedness, so invert the winding |
| // so it will be detected during collapse_overlap_regions(). |
| int innerWinding = innerInversion ? 2 : -2; |
| int outerWinding = outerInversion ? -1 : 1; |
| for (Vertex* v = innerVertices.fHead; v && v->fNext; v = v->fNext) { |
| connect(v, v->fNext, Edge::Type::kInner, c, alloc, innerWinding); |
| } |
| connect(innerVertices.fTail, innerVertices.fHead, Edge::Type::kInner, c, alloc, innerWinding); |
| for (Vertex* v = outerVertices.fHead; v && v->fNext; v = v->fNext) { |
| connect(v, v->fNext, Edge::Type::kOuter, c, alloc, outerWinding); |
| } |
| connect(outerVertices.fTail, outerVertices.fHead, Edge::Type::kOuter, c, alloc, outerWinding); |
| innerMesh->append(innerVertices); |
| outerMesh->append(outerVertices); |
| } |
| |
| void extract_boundary(EdgeList* boundary, Edge* e, SkPathFillType fillType, SkArenaAlloc& alloc) { |
| TESS_LOG("\nextracting boundary\n"); |
| bool down = apply_fill_type(fillType, e->fWinding); |
| Vertex* start = down ? e->fTop : e->fBottom; |
| do { |
| e->fWinding = down ? 1 : -1; |
| Edge* next; |
| e->fLine.normalize(); |
| e->fLine = e->fLine * e->fWinding; |
| boundary->append(e); |
| if (down) { |
| // Find outgoing edge, in clockwise order. |
| if ((next = e->fNextEdgeAbove)) { |
| down = false; |
| } else if ((next = e->fBottom->fLastEdgeBelow)) { |
| down = true; |
| } else if ((next = e->fPrevEdgeAbove)) { |
| down = false; |
| } |
| } else { |
| // Find outgoing edge, in counter-clockwise order. |
| if ((next = e->fPrevEdgeBelow)) { |
| down = true; |
| } else if ((next = e->fTop->fFirstEdgeAbove)) { |
| down = false; |
| } else if ((next = e->fNextEdgeBelow)) { |
| down = true; |
| } |
| } |
| disconnect(e); |
| e = next; |
| } while (e && (down ? e->fTop : e->fBottom) != start); |
| } |
| |
| // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh. |
| |
| void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices, |
| VertexList* outerVertices, SkPathFillType fillType, |
| Comparator& c, SkArenaAlloc& alloc) { |
| remove_non_boundary_edges(inMesh, fillType, alloc); |
| for (Vertex* v = inMesh.fHead; v; v = v->fNext) { |
| while (v->fFirstEdgeBelow) { |
| EdgeList boundary; |
| extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc); |
| simplify_boundary(&boundary, c, alloc); |
| stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc); |
| } |
| } |
| } |
| |
| // This is a driver function that calls stages 2-5 in turn. |
| |
| void contours_to_mesh(VertexList* contours, int contourCnt, Mode mode, |
| VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) { |
| #if LOGGING_ENABLED |
| for (int i = 0; i < contourCnt; ++i) { |
| Vertex* v = contours[i].fHead; |
| SkASSERT(v); |
| TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
| for (v = v->fNext; v; v = v->fNext) { |
| TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
| } |
| } |
| #endif |
| sanitize_contours(contours, contourCnt, mode); |
| build_edges(contours, contourCnt, mesh, c, alloc); |
| } |
| |
| void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) { |
| if (!vertices || !vertices->fHead) { |
| return; |
| } |
| |
| // Sort vertices in Y (secondarily in X). |
| if (c.fDirection == Comparator::Direction::kHorizontal) { |
| merge_sort<sweep_lt_horiz>(vertices); |
| } else { |
| merge_sort<sweep_lt_vert>(vertices); |
| } |
| #if LOGGING_ENABLED |
| for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) { |
| static float gID = 0.0f; |
| v->fID = gID++; |
| } |
| #endif |
| } |
| |
| Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPathFillType fillType, |
| const SkRect& pathBounds, Mode mode, VertexList* outerMesh, |
| SkArenaAlloc& alloc) { |
| Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal |
| : Comparator::Direction::kVertical); |
| VertexList mesh; |
| contours_to_mesh(contours, contourCnt, mode, &mesh, c, alloc); |
| sort_mesh(&mesh, c, alloc); |
| merge_coincident_vertices(&mesh, c, alloc); |
| if (SimplifyResult::kAbort == simplify(mode, &mesh, c, alloc)) { |
| return nullptr; |
| } |
| TESS_LOG("\nsimplified mesh:\n"); |
| dump_mesh(mesh); |
| if (Mode::kEdgeAntialias == mode) { |
| VertexList innerMesh; |
| extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc); |
| sort_mesh(&innerMesh, c, alloc); |
| sort_mesh(outerMesh, c, alloc); |
| merge_coincident_vertices(&innerMesh, c, alloc); |
| bool was_complex = merge_coincident_vertices(outerMesh, c, alloc); |
| auto result = simplify(mode, &innerMesh, c, alloc); |
| SkASSERT(SimplifyResult::kAbort != result); |
| was_complex = (SimplifyResult::kFoundSelfIntersection == result) || was_complex; |
| result = simplify(mode, outerMesh, c, alloc); |
| SkASSERT(SimplifyResult::kAbort != result); |
| was_complex = (SimplifyResult::kFoundSelfIntersection == result) || was_complex; |
| TESS_LOG("\ninner mesh before:\n"); |
| dump_mesh(innerMesh); |
| TESS_LOG("\nouter mesh before:\n"); |
| dump_mesh(*outerMesh); |
| EventComparator eventLT(EventComparator::Op::kLessThan); |
| EventComparator eventGT(EventComparator::Op::kGreaterThan); |
| was_complex = collapse_overlap_regions(&innerMesh, c, alloc, eventLT) || was_complex; |
| was_complex = collapse_overlap_regions(outerMesh, c, alloc, eventGT) || was_complex; |
| if (was_complex) { |
| TESS_LOG("found complex mesh; taking slow path\n"); |
| VertexList aaMesh; |
| TESS_LOG("\ninner mesh after:\n"); |
| dump_mesh(innerMesh); |
| TESS_LOG("\nouter mesh after:\n"); |
| dump_mesh(*outerMesh); |
| connect_partners(outerMesh, c, alloc); |
| connect_partners(&innerMesh, c, alloc); |
| sorted_merge(&innerMesh, outerMesh, &aaMesh, c); |
| merge_coincident_vertices(&aaMesh, c, alloc); |
| result = simplify(mode, &aaMesh, c, alloc); |
| SkASSERT(SimplifyResult::kAbort != result); |
| TESS_LOG("combined and simplified mesh:\n"); |
| dump_mesh(aaMesh); |
| outerMesh->fHead = outerMesh->fTail = nullptr; |
| return tessellate(fillType, mode, aaMesh, alloc); |
| } else { |
| TESS_LOG("no complex polygons; taking fast path\n"); |
| return tessellate(fillType, mode, innerMesh, alloc); |
| } |
| } else { |
| return tessellate(fillType, mode, mesh, alloc); |
| } |
| } |
| |
| // Stage 6: Triangulate the monotone polygons into a vertex buffer. |
| void* polys_to_triangles(Poly* polys, SkPathFillType fillType, Mode mode, void* data) { |
| bool emitCoverage = (Mode::kEdgeAntialias == mode); |
| for (Poly* poly = polys; poly; poly = poly->fNext) { |
| if (apply_fill_type(fillType, poly)) { |
| data = poly->emit(emitCoverage, data); |
| } |
| } |
| return data; |
| } |
| |
| Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
| int contourCnt, SkArenaAlloc& alloc, Mode mode, int* numCountedCurves, |
| VertexList* outerMesh) { |
| SkPathFillType fillType = path.getFillType(); |
| if (SkPathFillType_IsInverse(fillType)) { |
| contourCnt++; |
| } |
| std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]); |
| |
| path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, mode, numCountedCurves); |
| return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(), |
| mode, outerMesh, alloc); |
| } |
| |
| int get_contour_count(const SkPath& path, SkScalar tolerance) { |
| // We could theoretically be more aggressive about not counting empty contours, but we need to |
| // actually match the exact number of contour linked lists the tessellator will create later on. |
| int contourCnt = 1; |
| bool hasPoints = false; |
| |
| SkPath::Iter iter(path, false); |
| SkPath::Verb verb; |
| SkPoint pts[4]; |
| bool first = true; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| if (!first) { |
| ++contourCnt; |
| } |
| [[fallthrough]]; |
| case SkPath::kLine_Verb: |
| case SkPath::kConic_Verb: |
| case SkPath::kQuad_Verb: |
| case SkPath::kCubic_Verb: |
| hasPoints = true; |
| break; |
| default: |
| break; |
| } |
| first = false; |
| } |
| if (!hasPoints) { |
| return 0; |
| } |
| return contourCnt; |
| } |
| |
| int64_t count_points(Poly* polys, SkPathFillType fillType) { |
| int64_t count = 0; |
| for (Poly* poly = polys; poly; poly = poly->fNext) { |
| if (apply_fill_type(fillType, poly) && poly->fCount >= 3) { |
| count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3); |
| } |
| } |
| return count; |
| } |
| |
| int64_t count_outer_mesh_points(const VertexList& outerMesh) { |
| int64_t count = 0; |
| for (Vertex* v = outerMesh.fHead; v; v = v->fNext) { |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| count += TRIANGULATOR_WIREFRAME ? 12 : 6; |
| } |
| } |
| return count; |
| } |
| |
| void* outer_mesh_to_triangles(const VertexList& outerMesh, bool emitCoverage, void* data) { |
| for (Vertex* v = outerMesh.fHead; v; v = v->fNext) { |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
| Vertex* v0 = e->fTop; |
| Vertex* v1 = e->fBottom; |
| Vertex* v2 = e->fBottom->fPartner; |
| Vertex* v3 = e->fTop->fPartner; |
| data = emit_triangle(v0, v1, v2, emitCoverage, data); |
| data = emit_triangle(v0, v2, v3, emitCoverage, data); |
| } |
| } |
| return data; |
| } |
| |
| } // namespace |
| |
| namespace GrTriangulator { |
| |
| // Stage 6: Triangulate the monotone polygons into a vertex buffer. |
| |
| int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
| GrEagerVertexAllocator* vertexAllocator, Mode mode, int* numCountedCurves) { |
| int contourCnt = get_contour_count(path, tolerance); |
| if (contourCnt <= 0) { |
| *numCountedCurves = 0; |
| return 0; |
| } |
| SkArenaAlloc alloc(kArenaChunkSize); |
| VertexList outerMesh; |
| Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, mode, |
| numCountedCurves, &outerMesh); |
| SkPathFillType fillType = (Mode::kEdgeAntialias == mode) ? |
| SkPathFillType::kWinding : path.getFillType(); |
| int64_t count64 = count_points(polys, fillType); |
| if (Mode::kEdgeAntialias == mode) { |
| count64 += count_outer_mesh_points(outerMesh); |
| } |
| if (0 == count64 || count64 > SK_MaxS32) { |
| return 0; |
| } |
| int count = count64; |
| |
| size_t vertexStride = GetVertexStride(mode); |
| void* verts = vertexAllocator->lock(vertexStride, count); |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return 0; |
| } |
| |
| TESS_LOG("emitting %d verts\n", count); |
| void* end = polys_to_triangles(polys, fillType, mode, verts); |
| end = outer_mesh_to_triangles(outerMesh, true, end); |
| |
| int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts)) |
| / vertexStride); |
| SkASSERT(actualCount <= count); |
| vertexAllocator->unlock(actualCount); |
| return actualCount; |
| } |
| |
| int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
| WindingVertex** verts) { |
| int contourCnt = get_contour_count(path, tolerance); |
| if (contourCnt <= 0) { |
| *verts = nullptr; |
| return 0; |
| } |
| SkArenaAlloc alloc(kArenaChunkSize); |
| int numCountedCurves; |
| Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, Mode::kNormal, |
| &numCountedCurves, nullptr); |
| SkPathFillType fillType = path.getFillType(); |
| int64_t count64 = count_points(polys, fillType); |
| if (0 == count64 || count64 > SK_MaxS32) { |
| *verts = nullptr; |
| return 0; |
| } |
| int count = count64; |
| |
| *verts = new WindingVertex[count]; |
| WindingVertex* vertsEnd = *verts; |
| SkPoint* points = new SkPoint[count]; |
| SkPoint* pointsEnd = points; |
| for (Poly* poly = polys; poly; poly = poly->fNext) { |
| if (apply_fill_type(fillType, poly)) { |
| SkPoint* start = pointsEnd; |
| pointsEnd = static_cast<SkPoint*>(poly->emit(false, pointsEnd)); |
| while (start != pointsEnd) { |
| vertsEnd->fPos = *start; |
| vertsEnd->fWinding = poly->fWinding; |
| ++start; |
| ++vertsEnd; |
| } |
| } |
| } |
| int actualCount = static_cast<int>(vertsEnd - *verts); |
| SkASSERT(actualCount <= count); |
| SkASSERT(pointsEnd - points == actualCount); |
| delete[] points; |
| return actualCount; |
| } |
| |
| } // namespace GrTriangulator |