| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkPoint.h" |
| #include "include/private/SkColorData.h" |
| #include "include/private/SkFixed.h" |
| #include "include/private/SkHalf.h" |
| #include "include/private/SkTo.h" |
| #include "include/utils/SkRandom.h" |
| #include "src/core/SkEndian.h" |
| #include "src/core/SkFDot6.h" |
| #include "src/core/SkMathPriv.h" |
| #include "tests/Test.h" |
| |
| #include <cinttypes> |
| |
| static void test_clz(skiatest::Reporter* reporter) { |
| REPORTER_ASSERT(reporter, 32 == SkCLZ(0)); |
| REPORTER_ASSERT(reporter, 31 == SkCLZ(1)); |
| REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30)); |
| REPORTER_ASSERT(reporter, 1 == SkCLZ((1 << 30) | (1 << 24) | 1)); |
| REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U)); |
| |
| SkRandom rand; |
| for (int i = 0; i < 1000; ++i) { |
| uint32_t mask = rand.nextU(); |
| // need to get some zeros for testing, but in some obscure way so the |
| // compiler won't "see" that, and work-around calling the functions. |
| mask >>= (mask & 31); |
| int intri = SkCLZ(mask); |
| int porta = SkCLZ_portable(mask); |
| REPORTER_ASSERT(reporter, intri == porta, "mask:%d intri:%d porta:%d", mask, intri, porta); |
| } |
| } |
| |
| static void test_ctz(skiatest::Reporter* reporter) { |
| REPORTER_ASSERT(reporter, 32 == SkCTZ(0)); |
| REPORTER_ASSERT(reporter, 0 == SkCTZ(1)); |
| REPORTER_ASSERT(reporter, 30 == SkCTZ(1 << 30)); |
| REPORTER_ASSERT(reporter, 2 == SkCTZ((1 << 30) | (1 << 24) | (1 << 2))); |
| REPORTER_ASSERT(reporter, 0 == SkCTZ(~0U)); |
| |
| SkRandom rand; |
| for (int i = 0; i < 1000; ++i) { |
| uint32_t mask = rand.nextU(); |
| // need to get some zeros for testing, but in some obscure way so the |
| // compiler won't "see" that, and work-around calling the functions. |
| mask >>= (mask & 31); |
| int intri = SkCTZ(mask); |
| int porta = SkCTZ_portable(mask); |
| REPORTER_ASSERT(reporter, intri == porta, "mask:%d intri:%d porta:%d", mask, intri, porta); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static float sk_fsel(float pred, float result_ge, float result_lt) { |
| return pred >= 0 ? result_ge : result_lt; |
| } |
| |
| static float fast_floor(float x) { |
| // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); |
| float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); |
| return (float)(x + big) - big; |
| } |
| |
| static float std_floor(float x) { |
| return sk_float_floor(x); |
| } |
| |
| static void test_floor_value(skiatest::Reporter* reporter, float value) { |
| float fast = fast_floor(value); |
| float std = std_floor(value); |
| if (std != fast) { |
| ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)", |
| value, fast, std, value); |
| } |
| } |
| |
| static void test_floor(skiatest::Reporter* reporter) { |
| static const float gVals[] = { |
| 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { |
| test_floor_value(reporter, gVals[i]); |
| // test_floor_value(reporter, -gVals[i]); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // test that SkMul16ShiftRound and SkMulDiv255Round return the same result |
| static void test_muldivround(skiatest::Reporter* reporter) { |
| #if 0 |
| // this "complete" test is too slow, so we test a random sampling of it |
| |
| for (int a = 0; a <= 32767; ++a) { |
| for (int b = 0; b <= 32767; ++b) { |
| unsigned prod0 = SkMul16ShiftRound(a, b, 8); |
| unsigned prod1 = SkMulDiv255Round(a, b); |
| SkASSERT(prod0 == prod1); |
| } |
| } |
| #endif |
| |
| SkRandom rand; |
| for (int i = 0; i < 10000; ++i) { |
| unsigned a = rand.nextU() & 0x7FFF; |
| unsigned b = rand.nextU() & 0x7FFF; |
| |
| unsigned prod0 = SkMul16ShiftRound(a, b, 8); |
| unsigned prod1 = SkMulDiv255Round(a, b); |
| |
| REPORTER_ASSERT(reporter, prod0 == prod1); |
| } |
| } |
| |
| static float float_blend(int src, int dst, float unit) { |
| return dst + (src - dst) * unit; |
| } |
| |
| static int blend31(int src, int dst, int a31) { |
| return dst + ((src - dst) * a31 * 2114 >> 16); |
| // return dst + ((src - dst) * a31 * 33 >> 10); |
| } |
| |
| static int blend31_slow(int src, int dst, int a31) { |
| int prod = src * a31 + (31 - a31) * dst + 16; |
| prod = (prod + (prod >> 5)) >> 5; |
| return prod; |
| } |
| |
| static int blend31_round(int src, int dst, int a31) { |
| int prod = (src - dst) * a31 + 16; |
| prod = (prod + (prod >> 5)) >> 5; |
| return dst + prod; |
| } |
| |
| static int blend31_old(int src, int dst, int a31) { |
| a31 += a31 >> 4; |
| return dst + ((src - dst) * a31 >> 5); |
| } |
| |
| // suppress unused code warning |
| static int (*blend_functions[])(int, int, int) = { |
| blend31, |
| blend31_slow, |
| blend31_round, |
| blend31_old |
| }; |
| |
| static void test_blend31() { |
| int failed = 0; |
| int death = 0; |
| if (false) { // avoid bit rot, suppress warning |
| failed = (*blend_functions[0])(0,0,0); |
| } |
| for (int src = 0; src <= 255; src++) { |
| for (int dst = 0; dst <= 255; dst++) { |
| for (int a = 0; a <= 31; a++) { |
| // int r0 = blend31(src, dst, a); |
| // int r0 = blend31_round(src, dst, a); |
| // int r0 = blend31_old(src, dst, a); |
| int r0 = blend31_slow(src, dst, a); |
| |
| float f = float_blend(src, dst, a / 31.f); |
| int r1 = (int)f; |
| int r2 = SkScalarRoundToInt(f); |
| |
| if (r0 != r1 && r0 != r2) { |
| SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", |
| src, dst, a, r0, f); |
| failed += 1; |
| } |
| if (r0 > 255) { |
| death += 1; |
| SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n", |
| src, dst, a, r0, f); |
| } |
| } |
| } |
| } |
| SkDebugf("---- failed %d death %d\n", failed, death); |
| } |
| |
| static void check_length(skiatest::Reporter* reporter, |
| const SkPoint& p, SkScalar targetLen) { |
| float x = SkScalarToFloat(p.fX); |
| float y = SkScalarToFloat(p.fY); |
| float len = sk_float_sqrt(x*x + y*y); |
| |
| len /= SkScalarToFloat(targetLen); |
| |
| REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); |
| } |
| |
| static void unittest_isfinite(skiatest::Reporter* reporter) { |
| float nan = sk_float_asin(2); |
| float inf = SK_ScalarInfinity; |
| float big = 3.40282e+038f; |
| |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); |
| |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(nan)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); |
| REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); |
| |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(big)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(-big)); |
| REPORTER_ASSERT(reporter, SkScalarIsFinite(0)); |
| } |
| |
| static void unittest_half(skiatest::Reporter* reporter) { |
| static const float gFloats[] = { |
| 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, |
| -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3 |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) { |
| SkHalf h = SkFloatToHalf(gFloats[i]); |
| float f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i])); |
| } |
| |
| // check some special values |
| union FloatUnion { |
| uint32_t fU; |
| float fF; |
| }; |
| |
| static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) }; |
| SkHalf h = SkFloatToHalf(largestPositiveHalf.fF); |
| float f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF)); |
| |
| static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) }; |
| h = SkFloatToHalf(largestNegativeHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF)); |
| |
| static const FloatUnion smallestPositiveHalf = { 102 << 23 }; |
| h = SkFloatToHalf(smallestPositiveHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF)); |
| |
| static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) }; |
| h = SkFloatToHalf(overflowHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); |
| |
| static const FloatUnion underflowHalf = { 101 << 23 }; |
| h = SkFloatToHalf(underflowHalf.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, f == 0.0f ); |
| |
| static const FloatUnion inf32 = { 255 << 23 }; |
| h = SkFloatToHalf(inf32.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); |
| |
| static const FloatUnion nan32 = { 255 << 23 | 1 }; |
| h = SkFloatToHalf(nan32.fF); |
| f = SkHalfToFloat(h); |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(f) ); |
| |
| } |
| |
| template <typename RSqrtFn> |
| static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) { |
| const float maxRelativeError = 6.50196699e-4f; |
| |
| // test close to 0 up to 1 |
| float input = 0.000001f; |
| for (int i = 0; i < 1000; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 0.001f; |
| } |
| |
| // test 1 to ~100 |
| input = 1.0f; |
| for (int i = 0; i < 1000; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 0.01f; |
| } |
| |
| // test some big numbers |
| input = 1000000.0f; |
| for (int i = 0; i < 100; ++i) { |
| float exact = 1.0f/sk_float_sqrt(input); |
| float estimate = rsqrt(input); |
| float relativeError = sk_float_abs(exact - estimate)/exact; |
| REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); |
| input += 754326.f; |
| } |
| } |
| |
| static void test_nextlog2(skiatest::Reporter* r) { |
| REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::infinity()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::max()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(-1000.0f) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(-0.1f) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::min()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::denorm_min()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(0.0f) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::denorm_min()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::min()) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(0.1f) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(1.0f) == 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(1.1f) == 1); |
| REPORTER_ASSERT(r, sk_float_nextlog2(2.0f) == 1); |
| REPORTER_ASSERT(r, sk_float_nextlog2(2.1f) == 2); |
| REPORTER_ASSERT(r, sk_float_nextlog2(3.0f) == 2); |
| REPORTER_ASSERT(r, sk_float_nextlog2(3.1f) == 2); |
| REPORTER_ASSERT(r, sk_float_nextlog2(4.0f) == 2); |
| REPORTER_ASSERT(r, sk_float_nextlog2(4.1f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(5.0f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(5.1f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(6.0f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(6.1f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(7.0f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(7.1f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(8.0f) == 3); |
| REPORTER_ASSERT(r, sk_float_nextlog2(8.1f) == 4); |
| REPORTER_ASSERT(r, sk_float_nextlog2(9.0f) == 4); |
| REPORTER_ASSERT(r, sk_float_nextlog2(9.1f) == 4); |
| REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::max()) == 128); |
| REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::infinity()) > 0); |
| REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::quiet_NaN()) >= 0); |
| |
| for (int i = 0; i < 100; ++i) { |
| float pow2 = std::ldexp(1, i); |
| float epsilon = std::ldexp(SK_ScalarNearlyZero, i); |
| REPORTER_ASSERT(r, sk_float_nextlog2(pow2) == i); |
| REPORTER_ASSERT(r, sk_float_nextlog2(pow2 + epsilon) == i + 1); |
| REPORTER_ASSERT(r, sk_float_nextlog2(pow2 - epsilon) == i); |
| } |
| } |
| |
| static void test_muldiv255(skiatest::Reporter* reporter) { |
| for (int a = 0; a <= 255; a++) { |
| for (int b = 0; b <= 255; b++) { |
| int ab = a * b; |
| float s = ab / 255.0f; |
| int round = (int)floorf(s + 0.5f); |
| int trunc = (int)floorf(s); |
| |
| int iround = SkMulDiv255Round(a, b); |
| int itrunc = SkMulDiv255Trunc(a, b); |
| |
| REPORTER_ASSERT(reporter, iround == round); |
| REPORTER_ASSERT(reporter, itrunc == trunc); |
| |
| REPORTER_ASSERT(reporter, itrunc <= iround); |
| REPORTER_ASSERT(reporter, iround <= a); |
| REPORTER_ASSERT(reporter, iround <= b); |
| } |
| } |
| } |
| |
| static void test_muldiv255ceiling(skiatest::Reporter* reporter) { |
| for (int c = 0; c <= 255; c++) { |
| for (int a = 0; a <= 255; a++) { |
| int product = (c * a + 255); |
| int expected_ceiling = (product + (product >> 8)) >> 8; |
| int webkit_ceiling = (c * a + 254) / 255; |
| REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); |
| int skia_ceiling = SkMulDiv255Ceiling(c, a); |
| REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); |
| } |
| } |
| } |
| |
| static void test_copysign(skiatest::Reporter* reporter) { |
| static const int32_t gTriples[] = { |
| // x, y, expected result |
| 0, 0, 0, |
| 0, 1, 0, |
| 0, -1, 0, |
| 1, 0, 1, |
| 1, 1, 1, |
| 1, -1, -1, |
| -1, 0, 1, |
| -1, 1, 1, |
| -1, -1, -1, |
| }; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { |
| REPORTER_ASSERT(reporter, |
| SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); |
| float x = (float)gTriples[i]; |
| float y = (float)gTriples[i+1]; |
| float expected = (float)gTriples[i+2]; |
| REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); |
| } |
| |
| SkRandom rand; |
| for (int j = 0; j < 1000; j++) { |
| int ix = rand.nextS(); |
| REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); |
| REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); |
| |
| SkScalar sx = rand.nextSScalar1(); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); |
| REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); |
| } |
| } |
| |
| static void huge_vector_normalize(skiatest::Reporter* reporter) { |
| // these values should fail (overflow/underflow) trying to normalize |
| const SkVector fail[] = { |
| { 0, 0 }, |
| { SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity }, |
| { 0, SK_ScalarNaN }, { SK_ScalarNaN, 0 }, |
| }; |
| for (SkVector v : fail) { |
| SkVector v2 = v; |
| if (v2.setLength(1.0f)) { |
| REPORTER_ASSERT(reporter, !v.setLength(1.0f)); |
| } |
| } |
| } |
| |
| DEF_TEST(Math, reporter) { |
| int i; |
| SkRandom rand; |
| |
| // these should assert |
| #if 0 |
| SkToS8(128); |
| SkToS8(-129); |
| SkToU8(256); |
| SkToU8(-5); |
| |
| SkToS16(32768); |
| SkToS16(-32769); |
| SkToU16(65536); |
| SkToU16(-5); |
| |
| if (sizeof(size_t) > 4) { |
| SkToS32(4*1024*1024); |
| SkToS32(-4*1024*1024); |
| SkToU32(5*1024*1024); |
| SkToU32(-5); |
| } |
| #endif |
| |
| test_muldiv255(reporter); |
| test_muldiv255ceiling(reporter); |
| test_copysign(reporter); |
| |
| { |
| SkScalar x = SK_ScalarNaN; |
| REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); |
| } |
| |
| for (i = 0; i < 10000; i++) { |
| SkPoint p; |
| |
| // These random values are being treated as 32-bit-patterns, not as |
| // ints; calling SkIntToScalar() here produces crashes. |
| p.setLength((SkScalar) rand.nextS(), |
| (SkScalar) rand.nextS(), |
| SK_Scalar1); |
| check_length(reporter, p, SK_Scalar1); |
| p.setLength((SkScalar) (rand.nextS() >> 13), |
| (SkScalar) (rand.nextS() >> 13), |
| SK_Scalar1); |
| check_length(reporter, p, SK_Scalar1); |
| } |
| |
| { |
| SkFixed result = SkFixedDiv(100, 100); |
| REPORTER_ASSERT(reporter, result == SK_Fixed1); |
| result = SkFixedDiv(1, SK_Fixed1); |
| REPORTER_ASSERT(reporter, result == 1); |
| result = SkFixedDiv(10 - 1, SK_Fixed1 * 3); |
| REPORTER_ASSERT(reporter, result == 3); |
| } |
| |
| { |
| REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); |
| } |
| |
| huge_vector_normalize(reporter); |
| unittest_isfinite(reporter); |
| unittest_half(reporter); |
| test_rsqrt(reporter, sk_float_rsqrt); |
| test_rsqrt(reporter, sk_float_rsqrt_portable); |
| test_nextlog2(reporter); |
| |
| for (i = 0; i < 10000; i++) { |
| SkFixed numer = rand.nextS(); |
| SkFixed denom = rand.nextS(); |
| SkFixed result = SkFixedDiv(numer, denom); |
| int64_t check = SkLeftShift((int64_t)numer, 16) / denom; |
| |
| (void)SkCLZ(numer); |
| (void)SkCLZ(denom); |
| |
| REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); |
| if (check > SK_MaxS32) { |
| check = SK_MaxS32; |
| } else if (check < -SK_MaxS32) { |
| check = SK_MinS32; |
| } |
| if (result != (int32_t)check) { |
| ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8" PRIx64 "\n", numer, denom, |
| result, check); |
| } |
| REPORTER_ASSERT(reporter, result == (int32_t)check); |
| } |
| |
| if (false) test_floor(reporter); |
| |
| // disable for now |
| if (false) test_blend31(); // avoid bit rot, suppress warning |
| |
| test_muldivround(reporter); |
| test_clz(reporter); |
| test_ctz(reporter); |
| } |
| |
| template <typename T> struct PairRec { |
| T fYin; |
| T fYang; |
| }; |
| |
| DEF_TEST(TestEndian, reporter) { |
| static const PairRec<uint16_t> g16[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFF, 0xFFFF }, |
| { 0x1122, 0x2211 }, |
| }; |
| static const PairRec<uint32_t> g32[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFFFFFF, 0xFFFFFFFF }, |
| { 0x11223344, 0x44332211 }, |
| }; |
| static const PairRec<uint64_t> g64[] = { |
| { 0x0, 0x0 }, |
| { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL }, |
| { 0x1122334455667788ULL, 0x8877665544332211ULL }, |
| }; |
| |
| REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value); |
| REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value); |
| REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value); |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) { |
| REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin)); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) { |
| REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin)); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) { |
| REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin)); |
| } |
| } |
| |
| template <typename T> |
| static void test_divmod(skiatest::Reporter* r) { |
| #if !defined(__MSVC_RUNTIME_CHECKS) |
| const struct { |
| T numer; |
| T denom; |
| } kEdgeCases[] = { |
| {(T)17, (T)17}, |
| {(T)17, (T)4}, |
| {(T)0, (T)17}, |
| // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them. |
| {(T)-17, (T)-17}, |
| {(T)-17, (T)4}, |
| {(T)17, (T)-4}, |
| {(T)-17, (T)-4}, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) { |
| const T numer = kEdgeCases[i].numer; |
| const T denom = kEdgeCases[i].denom; |
| T div, mod; |
| SkTDivMod(numer, denom, &div, &mod); |
| REPORTER_ASSERT(r, numer/denom == div); |
| REPORTER_ASSERT(r, numer%denom == mod); |
| } |
| |
| SkRandom rand; |
| for (size_t i = 0; i < 10000; i++) { |
| const T numer = (T)rand.nextS(); |
| T denom = 0; |
| while (0 == denom) { |
| denom = (T)rand.nextS(); |
| } |
| T div, mod; |
| SkTDivMod(numer, denom, &div, &mod); |
| REPORTER_ASSERT(r, numer/denom == div); |
| REPORTER_ASSERT(r, numer%denom == mod); |
| } |
| #endif |
| } |
| |
| DEF_TEST(divmod_u8, r) { |
| test_divmod<uint8_t>(r); |
| } |
| |
| DEF_TEST(divmod_u16, r) { |
| test_divmod<uint16_t>(r); |
| } |
| |
| DEF_TEST(divmod_u32, r) { |
| test_divmod<uint32_t>(r); |
| } |
| |
| DEF_TEST(divmod_u64, r) { |
| test_divmod<uint64_t>(r); |
| } |
| |
| DEF_TEST(divmod_s8, r) { |
| test_divmod<int8_t>(r); |
| } |
| |
| DEF_TEST(divmod_s16, r) { |
| test_divmod<int16_t>(r); |
| } |
| |
| DEF_TEST(divmod_s32, r) { |
| test_divmod<int32_t>(r); |
| } |
| |
| DEF_TEST(divmod_s64, r) { |
| test_divmod<int64_t>(r); |
| } |
| |
| static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) { |
| size_t ans = GrNextSizePow2(test); |
| |
| REPORTER_ASSERT(r, ans == expectedAns); |
| //SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns); |
| } |
| |
| DEF_TEST(GrNextSizePow2, reporter) { |
| constexpr int kNumSizeTBits = 8 * sizeof(size_t); |
| |
| size_t test = 0, expectedAns = 1; |
| |
| test_nextsizepow2(reporter, test, expectedAns); |
| |
| test = 1; expectedAns = 1; |
| |
| for (int i = 1; i < kNumSizeTBits; ++i) { |
| test_nextsizepow2(reporter, test, expectedAns); |
| |
| test++; |
| expectedAns <<= 1; |
| |
| test_nextsizepow2(reporter, test, expectedAns); |
| |
| test = expectedAns; |
| } |
| |
| // For the remaining three tests there is no higher power (of 2) |
| test = 0x1; |
| test <<= kNumSizeTBits-1; |
| test_nextsizepow2(reporter, test, test); |
| |
| test++; |
| test_nextsizepow2(reporter, test, test); |
| |
| test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX); |
| } |
| |
| DEF_TEST(FloatSaturate32, reporter) { |
| const struct { |
| float fFloat; |
| int fExpectedInt; |
| } recs[] = { |
| { 0, 0 }, |
| { 100.5f, 100 }, |
| { (float)SK_MaxS32, SK_MaxS32FitsInFloat }, |
| { (float)SK_MinS32, SK_MinS32FitsInFloat }, |
| { SK_MaxS32 * 100.0f, SK_MaxS32FitsInFloat }, |
| { SK_MinS32 * 100.0f, SK_MinS32FitsInFloat }, |
| { SK_ScalarInfinity, SK_MaxS32FitsInFloat }, |
| { SK_ScalarNegativeInfinity, SK_MinS32FitsInFloat }, |
| { SK_ScalarNaN, SK_MaxS32FitsInFloat }, |
| }; |
| |
| for (auto r : recs) { |
| int i = sk_float_saturate2int(r.fFloat); |
| REPORTER_ASSERT(reporter, r.fExpectedInt == i); |
| |
| // Ensure that SkTPin bounds even non-finite values (including NaN) |
| SkScalar p = SkTPin<SkScalar>(r.fFloat, 0, 100); |
| REPORTER_ASSERT(reporter, p >= 0 && p <= 100); |
| } |
| } |
| |
| DEF_TEST(FloatSaturate64, reporter) { |
| const struct { |
| float fFloat; |
| int64_t fExpected64; |
| } recs[] = { |
| { 0, 0 }, |
| { 100.5f, 100 }, |
| { (float)SK_MaxS64, SK_MaxS64FitsInFloat }, |
| { (float)SK_MinS64, SK_MinS64FitsInFloat }, |
| { SK_MaxS64 * 100.0f, SK_MaxS64FitsInFloat }, |
| { SK_MinS64 * 100.0f, SK_MinS64FitsInFloat }, |
| { SK_ScalarInfinity, SK_MaxS64FitsInFloat }, |
| { SK_ScalarNegativeInfinity, SK_MinS64FitsInFloat }, |
| { SK_ScalarNaN, SK_MaxS64FitsInFloat }, |
| }; |
| |
| for (auto r : recs) { |
| int64_t i = sk_float_saturate2int64(r.fFloat); |
| REPORTER_ASSERT(reporter, r.fExpected64 == i); |
| } |
| } |
| |
| DEF_TEST(DoubleSaturate32, reporter) { |
| const struct { |
| double fDouble; |
| int fExpectedInt; |
| } recs[] = { |
| { 0, 0 }, |
| { 100.5, 100 }, |
| { SK_MaxS32, SK_MaxS32 }, |
| { SK_MinS32, SK_MinS32 }, |
| { SK_MaxS32 - 1, SK_MaxS32 - 1 }, |
| { SK_MinS32 + 1, SK_MinS32 + 1 }, |
| { SK_MaxS32 * 100.0, SK_MaxS32 }, |
| { SK_MinS32 * 100.0, SK_MinS32 }, |
| { SK_ScalarInfinity, SK_MaxS32 }, |
| { SK_ScalarNegativeInfinity, SK_MinS32 }, |
| { SK_ScalarNaN, SK_MaxS32 }, |
| }; |
| |
| for (auto r : recs) { |
| int i = sk_double_saturate2int(r.fDouble); |
| REPORTER_ASSERT(reporter, r.fExpectedInt == i); |
| } |
| } |
| |
| #if defined(__ARM_NEON) |
| #include <arm_neon.h> |
| |
| DEF_TEST(NeonU16Div255, r) { |
| |
| for (int v = 0; v <= 255*255; v++) { |
| int want = (v + 127)/255; |
| |
| uint16x8_t V = vdupq_n_u16(v); |
| int got = vrshrq_n_u16(vrsraq_n_u16(V, V, 8), 8)[0]; |
| |
| if (got != want) { |
| SkDebugf("%d -> %d, want %d\n", v, got, want); |
| } |
| REPORTER_ASSERT(r, got == want); |
| } |
| } |
| |
| #endif |
| |
| DEF_TEST(unit_floats, r) { |
| // pick a non-trivial, non-pow-2 value, to test the loop |
| float v[13]; |
| constexpr int N = SK_ARRAY_COUNT(v); |
| |
| // empty array reports true |
| REPORTER_ASSERT(r, sk_floats_are_unit(v, 0)); |
| |
| SkRandom rand; |
| for (int outer = 0; outer < 1000; ++outer) { |
| // check some good values |
| for (int i = 0; i < N; ++i) { |
| v[i] = rand.nextUScalar1(); |
| } |
| const int index = rand.nextU() % N; |
| |
| REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); |
| v[index] = -0.f; |
| REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); |
| v[index] = 1.0f; |
| REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); |
| |
| // check some bad values |
| const float non_norms[] = { |
| 1.0000001f, 2, SK_ScalarInfinity, SK_ScalarNaN |
| }; |
| for (float bad : non_norms) { |
| v[index] = bad; |
| REPORTER_ASSERT(r, !sk_floats_are_unit(v, N)); |
| v[index] = -bad; |
| REPORTER_ASSERT(r, !sk_floats_are_unit(v, N)); |
| } |
| } |
| } |