blob: 58f864d1e5f888679696fec23e97d5c03fae12db [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkParse.h"
#include "SkParsePath.h"
#include "SkPathEffect.h"
#include "SkRandom.h"
#include "SkReader32.h"
#include "SkSize.h"
#include "SkWriter32.h"
#include "SkSurface.h"
#if defined(WIN32)
#define SUPPRESS_VISIBILITY_WARNING
#else
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif
static SkSurface* new_surface(int w, int h) {
SkImage::Info info = {
w, h, SkImage::kPMColor_ColorType, SkImage::kPremul_AlphaType
};
return SkSurface::NewRaster(info);
}
// Make sure we stay non-finite once we get there (unless we reset or rewind).
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
SkPath path;
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
path.moveTo(0, 0);
path.lineTo(SK_ScalarInfinity, 42);
REPORTER_ASSERT(reporter, !path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
}
// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
// which triggered an assert, from a tricky cubic. This test replicates that
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
// assert in the SK_DEBUG build.
static void test_tricky_cubic(skiatest::Reporter* reporter) {
const SkPoint pts[] = {
{ SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) },
{ SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) },
{ SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) },
{ SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) },
};
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setAntiAlias(true);
SkSurface* surface = new_surface(19, 130);
surface->getCanvas()->drawPath(path, paint);
surface->unref();
}
// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
//
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
SkPath path;
path.quadTo(157, 366, 286, 208);
path.arcTo(37, 442, 315, 163, 957494590897113.0f);
SkMatrix matrix;
matrix.setScale(1000*1000, 1000*1000);
// Be sure that path::transform correctly updates isFinite and the bounds
// if the transformation overflows. The previous bug was that isFinite was
// set to true in this case, but the bounds were not set to empty (which
// they should be).
while (path.isFinite()) {
REPORTER_ASSERT(reporter, path.getBounds().isFinite());
REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
path.transform(matrix);
}
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
path.transform(matrix);
// we need to still be non-finite
REPORTER_ASSERT(reporter, !path.isFinite());
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
}
static void add_corner_arc(SkPath* path, const SkRect& rect,
SkScalar xIn, SkScalar yIn,
int startAngle)
{
SkScalar rx = SkMinScalar(rect.width(), xIn);
SkScalar ry = SkMinScalar(rect.height(), yIn);
SkRect arcRect;
arcRect.set(-rx, -ry, rx, ry);
switch (startAngle) {
case 0:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
break;
case 90:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
break;
case 180:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
break;
case 270:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
break;
default:
break;
}
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}
static void make_arb_round_rect(SkPath* path, const SkRect& r,
SkScalar xCorner, SkScalar yCorner) {
// we are lazy here and use the same x & y for each corner
add_corner_arc(path, r, xCorner, yCorner, 270);
add_corner_arc(path, r, xCorner, yCorner, 0);
add_corner_arc(path, r, xCorner, yCorner, 90);
add_corner_arc(path, r, xCorner, yCorner, 180);
path->close();
}
// Chrome creates its own round rects with each corner possibly being different.
// Performance will suffer if they are not convex.
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);
#ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX
REPORTER_ASSERT(reporter, temp.isConvex());
#endif
}
}
// Chrome will sometimes create a 0 radius round rect. The degenerate
// quads prevent the path from being converted to a rect
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, 0, 0);
#ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX
SkRect result;
REPORTER_ASSERT(reporter, temp.isRect(&result));
REPORTER_ASSERT(reporter, r == result);
#endif
}
}
static void test_rect_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar nan = SK_ScalarNaN;
SkRect r;
r.setEmpty();
REPORTER_ASSERT(reporter, r.isFinite());
r.set(0, 0, inf, -inf);
REPORTER_ASSERT(reporter, !r.isFinite());
r.set(0, 0, nan, 0);
REPORTER_ASSERT(reporter, !r.isFinite());
SkPoint pts[] = {
{ 0, 0 },
{ SK_Scalar1, 0 },
{ 0, SK_Scalar1 },
};
bool isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, isFine);
REPORTER_ASSERT(reporter, !r.isEmpty());
pts[1].set(inf, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
pts[1].set(nan, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
}
static void test_path_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar nan = SK_ScalarNaN;
SkPath path;
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(SK_Scalar1, 0);
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(inf, -inf);
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
path.moveTo(nan, 0);
REPORTER_ASSERT(reporter, !path.isFinite());
}
static void test_isfinite(skiatest::Reporter* reporter) {
test_rect_isfinite(reporter);
test_path_isfinite(reporter);
}
// assert that we always
// start with a moveTo
// only have 1 moveTo
// only have Lines after that
// end with a single close
// only have (at most) 1 close
//
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
const SkPoint srcPts[], int count, bool expectClose) {
SkPath::RawIter iter(path);
SkPoint pts[4];
bool firstTime = true;
bool foundClose = false;
for (;;) {
switch (iter.next(pts)) {
case SkPath::kMove_Verb:
REPORTER_ASSERT(reporter, firstTime);
REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
srcPts++;
firstTime = false;
break;
case SkPath::kLine_Verb:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
srcPts++;
break;
case SkPath::kQuad_Verb:
REPORTER_ASSERT(reporter, !"unexpected quad verb");
break;
case SkPath::kCubic_Verb:
REPORTER_ASSERT(reporter, !"unexpected cubic verb");
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, !foundClose);
REPORTER_ASSERT(reporter, expectClose);
foundClose = true;
break;
case SkPath::kDone_Verb:
goto DONE;
}
}
DONE:
REPORTER_ASSERT(reporter, foundClose == expectClose);
}
static void test_addPoly(skiatest::Reporter* reporter) {
SkPoint pts[32];
SkRandom rand;
for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
pts[i].fX = rand.nextSScalar1();
pts[i].fY = rand.nextSScalar1();
}
for (int doClose = 0; doClose <= 1; ++doClose) {
for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) {
SkPath path;
path.addPoly(pts, count, SkToBool(doClose));
test_poly(reporter, path, pts, count, SkToBool(doClose));
}
}
}
static void test_strokerec(skiatest::Reporter* reporter) {
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
REPORTER_ASSERT(reporter, rec.isFillStyle());
rec.setHairlineStyle();
REPORTER_ASSERT(reporter, rec.isHairlineStyle());
rec.setStrokeStyle(SK_Scalar1, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());
rec.setStrokeStyle(SK_Scalar1, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());
rec.setStrokeStyle(0, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());
rec.setStrokeStyle(0, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
}
// Set this for paths that don't have a consistent direction such as a bowtie.
// (cheapComputeDirection is not expected to catch these.)
static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1);
static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
SkPath::Direction expected) {
if (expected == kDontCheckDir) {
return;
}
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
SkPath::Direction dir;
if (copy.cheapComputeDirection(&dir)) {
REPORTER_ASSERT(reporter, dir == expected);
} else {
REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected);
}
}
static void test_direction(skiatest::Reporter* reporter) {
size_t i;
SkPath path;
REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction));
REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction));
static const char* gDegen[] = {
"M 10 10",
"M 10 10 M 20 20",
"M 10 10 L 20 20",
"M 10 10 L 10 10 L 10 10",
"M 10 10 Q 10 10 10 10",
"M 10 10 C 10 10 10 10 10 10",
};
for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
}
static const char* gCW[] = {
"M 10 10 L 10 10 Q 20 10 20 20",
"M 10 10 C 20 10 20 20 20 20",
"M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
"M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif
};
for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPath::kCW_Direction);
}
static const char* gCCW[] = {
"M 10 10 L 10 10 Q 20 10 20 -20",
"M 10 10 C 20 10 20 -20 20 -20",
"M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
"M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif
};
for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPath::kCCW_Direction);
}
// Test two donuts, each wound a different direction. Only the outer contour
// determines the cheap direction
path.reset();
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction);
check_direction(reporter, path, SkPath::kCW_Direction);
path.reset();
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction);
check_direction(reporter, path, SkPath::kCCW_Direction);
#ifdef SK_SCALAR_IS_FLOAT
// triangle with one point really far from the origin.
path.reset();
// the first point is roughly 1.05e10, 1.05e10
path.moveTo(SkFloatToScalar(SkBits2Float(0x501c7652)), SkFloatToScalar(SkBits2Float(0x501c7652)));
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
check_direction(reporter, path, SkPath::kCCW_Direction);
#endif
}
static void add_rect(SkPath* path, const SkRect& r) {
path->moveTo(r.fLeft, r.fTop);
path->lineTo(r.fRight, r.fTop);
path->lineTo(r.fRight, r.fBottom);
path->lineTo(r.fLeft, r.fBottom);
path->close();
}
static void test_bounds(skiatest::Reporter* reporter) {
static const SkRect rects[] = {
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
{ SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
};
SkPath path0, path1;
for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) {
path0.addRect(rects[i]);
add_rect(&path1, rects[i]);
}
REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
}
static void stroke_cubic(const SkPoint pts[4]) {
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(SK_Scalar1 * 2);
SkPath fill;
paint.getFillPath(path, &fill);
}
// just ensure this can run w/o any SkASSERTS firing in the debug build
// we used to assert due to differences in how we determine a degenerate vector
// but that was fixed with the introduction of SkPoint::CanNormalize
static void stroke_tiny_cubic() {
SkPoint p0[] = {
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
};
stroke_cubic(p0);
SkPoint p1[] = {
{ 372.0f, 92.0f },
{ 372.0007f, 92.000755f },
{ 371.99927f, 92.003922f },
{ 371.99826f, 92.003899f },
};
stroke_cubic(p1);
}
static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
for (int i = 0; i < 2; ++i) {
SkPath::Iter iter(path, SkToBool(i));
SkPoint mv;
SkPoint pts[4];
SkPath::Verb v;
int nMT = 0;
int nCL = 0;
mv.set(0, 0);
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
switch (v) {
case SkPath::kMove_Verb:
mv = pts[0];
++nMT;
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, mv == pts[0]);
++nCL;
break;
default:
break;
}
}
// if we force a close on the interator we should have a close
// for every moveTo
REPORTER_ASSERT(reporter, !i || nMT == nCL);
}
}
static void test_close(skiatest::Reporter* reporter) {
SkPath closePt;
closePt.moveTo(0, 0);
closePt.close();
check_close(reporter, closePt);
SkPath openPt;
openPt.moveTo(0, 0);
check_close(reporter, openPt);
SkPath empty;
check_close(reporter, empty);
empty.close();
check_close(reporter, empty);
SkPath rect;
rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect);
rect.close();
check_close(reporter, rect);
SkPath quad;
quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, quad);
quad.close();
check_close(reporter, quad);
SkPath cubic;
quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
check_close(reporter, cubic);
cubic.close();
check_close(reporter, cubic);
SkPath line;
line.moveTo(SK_Scalar1, SK_Scalar1);
line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, line);
line.close();
check_close(reporter, line);
SkPath rect2;
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
rect2.close();
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect2);
rect2.close();
check_close(reporter, rect2);
SkPath oval3;
oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
oval3.close();
oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
check_close(reporter, oval3);
oval3.close();
check_close(reporter, oval3);
SkPath moves;
moves.moveTo(SK_Scalar1, SK_Scalar1);
moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
check_close(reporter, moves);
stroke_tiny_cubic();
}
static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
SkPath::Convexity expected) {
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
SkPath::Convexity c = copy.getConvexity();
REPORTER_ASSERT(reporter, c == expected);
}
static void test_convexity2(skiatest::Reporter* reporter) {
SkPath pt;
pt.moveTo(0, 0);
pt.close();
check_convexity(reporter, pt, SkPath::kConvex_Convexity);
check_direction(reporter, pt, SkPath::kUnknown_Direction);
SkPath line;
line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
line.close();
check_convexity(reporter, line, SkPath::kConvex_Convexity);
check_direction(reporter, line, SkPath::kUnknown_Direction);
SkPath triLeft;
triLeft.moveTo(0, 0);
triLeft.lineTo(SK_Scalar1, 0);
triLeft.lineTo(SK_Scalar1, SK_Scalar1);
triLeft.close();
check_convexity(reporter, triLeft, SkPath::kConvex_Convexity);
check_direction(reporter, triLeft, SkPath::kCW_Direction);
SkPath triRight;
triRight.moveTo(0, 0);
triRight.lineTo(-SK_Scalar1, 0);
triRight.lineTo(SK_Scalar1, SK_Scalar1);
triRight.close();
check_convexity(reporter, triRight, SkPath::kConvex_Convexity);
check_direction(reporter, triRight, SkPath::kCCW_Direction);
SkPath square;
square.moveTo(0, 0);
square.lineTo(SK_Scalar1, 0);
square.lineTo(SK_Scalar1, SK_Scalar1);
square.lineTo(0, SK_Scalar1);
square.close();
check_convexity(reporter, square, SkPath::kConvex_Convexity);
check_direction(reporter, square, SkPath::kCW_Direction);
SkPath redundantSquare;
redundantSquare.moveTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.close();
check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity);
check_direction(reporter, redundantSquare, SkPath::kCW_Direction);
SkPath bowTie;
bowTie.moveTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.close();
check_convexity(reporter, bowTie, SkPath::kConcave_Convexity);
check_direction(reporter, bowTie, kDontCheckDir);
SkPath spiral;
spiral.moveTo(0, 0);
spiral.lineTo(100*SK_Scalar1, 0);
spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
spiral.lineTo(0, 100*SK_Scalar1);
spiral.lineTo(0, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
spiral.close();
check_convexity(reporter, spiral, SkPath::kConcave_Convexity);
check_direction(reporter, spiral, kDontCheckDir);
SkPath dent;
dent.moveTo(0, 0);
dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
dent.lineTo(0, 100*SK_Scalar1);
dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
dent.close();
check_convexity(reporter, dent, SkPath::kConcave_Convexity);
check_direction(reporter, dent, SkPath::kCW_Direction);
}
static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
const SkRect& bounds) {
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getBounds() == bounds);
SkPath p2(p);
REPORTER_ASSERT(reporter, p2.isConvex());
REPORTER_ASSERT(reporter, p2.getBounds() == bounds);
SkPath other;
other.swap(p2);
REPORTER_ASSERT(reporter, other.isConvex());
REPORTER_ASSERT(reporter, other.getBounds() == bounds);
}
static void setFromString(SkPath* path, const char str[]) {
bool first = true;
while (str) {
SkScalar x, y;
str = SkParse::FindScalar(str, &x);
if (NULL == str) {
break;
}
str = SkParse::FindScalar(str, &y);
SkASSERT(str);
if (first) {
path->moveTo(x, y);
first = false;
} else {
path->lineTo(x, y);
}
}
}
static void test_convexity(skiatest::Reporter* reporter) {
SkPath path;
check_convexity(reporter, path, SkPath::kConvex_Convexity);
path.addCircle(0, 0, SkIntToScalar(10));
check_convexity(reporter, path, SkPath::kConvex_Convexity);
path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle
check_convexity(reporter, path, SkPath::kConcave_Convexity);
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction);
check_convexity(reporter, path, SkPath::kConvex_Convexity);
REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction));
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction);
check_convexity(reporter, path, SkPath::kConvex_Convexity);
REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction));
static const struct {
const char* fPathStr;
SkPath::Convexity fExpectedConvexity;
SkPath::Direction fExpectedDirection;
} gRec[] = {
{ "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction },
{ "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction },
{ "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir },
{ "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
SkPath path;
setFromString(&path, gRec[i].fPathStr);
check_convexity(reporter, path, gRec[i].fExpectedConvexity);
check_direction(reporter, path, gRec[i].fExpectedDirection);
}
}
static void test_isLine(skiatest::Reporter* reporter) {
SkPath path;
SkPoint pts[2];
const SkScalar value = SkIntToScalar(5);
REPORTER_ASSERT(reporter, !path.isLine(NULL));
// set some non-zero values
pts[0].set(value, value);
pts[1].set(value, value);
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar moveX = SkIntToScalar(1);
const SkScalar moveY = SkIntToScalar(2);
SkASSERT(value != moveX && value != moveY);
path.moveTo(moveX, moveY);
REPORTER_ASSERT(reporter, !path.isLine(NULL));
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar lineX = SkIntToScalar(2);
const SkScalar lineY = SkIntToScalar(2);
SkASSERT(value != lineX && value != lineY);
path.lineTo(lineX, lineY);
REPORTER_ASSERT(reporter, path.isLine(NULL));
REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
REPORTER_ASSERT(reporter, path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
path.lineTo(0, 0); // too many points/verbs
REPORTER_ASSERT(reporter, !path.isLine(NULL));
REPORTER_ASSERT(reporter, !path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
}
static void test_conservativelyContains(skiatest::Reporter* reporter) {
SkPath path;
// kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
// A circle that bounds kBaseRect (with a significant amount of slop)
SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height());
circleR = SkScalarMul(circleR, SkFloatToScalar(1.75f)) / 2;
static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};
// round-rect radii
static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};
static const struct SUPPRESS_VISIBILITY_WARNING {
SkRect fQueryRect;
bool fInRect;
bool fInCircle;
bool fInRR;
} kQueries[] = {
{kBaseRect, true, true, false},
// rect well inside of kBaseRect
{SkRect::MakeLTRB(kBaseRect.fLeft + SkFloatToScalar(0.25f)*kBaseRect.width(),
kBaseRect.fTop + SkFloatToScalar(0.25f)*kBaseRect.height(),
kBaseRect.fRight - SkFloatToScalar(0.25f)*kBaseRect.width(),
kBaseRect.fBottom - SkFloatToScalar(0.25f)*kBaseRect.height()),
true, true, true},
// rects with edges off by one from kBaseRect's edges
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height() + 1),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height()),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height() + 1),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height()),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width(), kBaseRect.height()),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false},
// zero-w/h rects at each corner of kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false},
// far away rect
{SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
SkIntToScalar(10), SkIntToScalar(10)),
false, false, false},
// very large rect containing kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
kBaseRect.fTop - 5 * kBaseRect.height(),
11 * kBaseRect.width(), 11 * kBaseRect.height()),
false, false, false},
// skinny rect that spans same y-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height()),
true, true, true},
// short rect that spans same x-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
true, true, true},
// skinny rect that spans slightly larger y-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height() + 1),
false, true, false},
// short rect that spans slightly larger x-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
kBaseRect.width() + 1, SkScalar(1)),
false, true, false},
};
for (int inv = 0; inv < 4; ++inv) {
for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) {
SkRect qRect = kQueries[q].fQueryRect;
if (inv & 0x1) {
SkTSwap(qRect.fLeft, qRect.fRight);
}
if (inv & 0x2) {
SkTSwap(qRect.fTop, qRect.fBottom);
}
for (int d = 0; d < 2; ++d) {
SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
path.reset();
path.addRect(kBaseRect, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
path.conservativelyContainsRect(qRect));
}
// Slightly non-convex shape, shouldn't contain any rects.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(50), SkFloatToScalar(0.05f));
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
path.lineTo(0, SkIntToScalar(100));
path.close();
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
}
}
// make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
// inside, on along top edge
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// above
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
SkRect::MakeXYWH(SkIntToScalar(50),
SkIntToScalar(-10),
SkIntToScalar(10),
SkIntToScalar(10))));
// to the left
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
SkIntToScalar(5),
SkIntToScalar(5),
SkIntToScalar(5))));
// outside the diagonal edge
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
SkIntToScalar(200),
SkIntToScalar(20),
SkIntToScalar(5))));
}
// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f},
{1, 0}, {.5f, 0}};
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1},
{0, 1}, {0, .5f}};
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short
// failing, no close
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
size_t testLen[] = {
sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6),
sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc),
sizeof(rd), sizeof(re), sizeof(rf),
sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6),
sizeof(f7), sizeof(f8), sizeof(f9), sizeof(fa), sizeof(fb),
sizeof(c1), sizeof(c2)
};
SkPoint* tests[] = {
r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf,
f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb,
c1, c2
};
SkPoint* lastPass = rf;
SkPoint* lastClose = fb;
bool fail = false;
bool close = true;
const size_t testCount = sizeof(tests) / sizeof(tests[0]);
size_t index;
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY);
for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) {
path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY);
}
if (close) {
path.close();
}
REPORTER_ASSERT(reporter, fail ^ path.isRect(0));
REPORTER_ASSERT(reporter, fail ^ path.isRect(NULL, NULL));
if (!fail) {
SkRect computed, expected;
expected.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint));
REPORTER_ASSERT(reporter, path.isRect(&computed));
REPORTER_ASSERT(reporter, expected == computed);
bool isClosed;
SkPath::Direction direction, cheapDirection;
REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection));
REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction));
REPORTER_ASSERT(reporter, isClosed == close);
REPORTER_ASSERT(reporter, direction == cheapDirection);
} else {
SkRect computed;
computed.set(123, 456, 789, 1011);
REPORTER_ASSERT(reporter, !path.isRect(&computed));
REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);
bool isClosed = (bool) -1;
SkPath::Direction direction = (SkPath::Direction) -1;
REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction));
REPORTER_ASSERT(reporter, isClosed == (bool) -1);
REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1);
}
if (tests[testIndex] == lastPass) {
fail = true;
}
if (tests[testIndex] == lastClose) {
close = false;
}
}
// fail, close then line
SkPath path1;
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
// fail, move in the middle
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
// fail, move on the edge
path1.reset();
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
// fail, quad
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
// fail, cubic
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
}
static void test_isNestedRects(skiatest::Reporter* reporter) {
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f},
{1, 0}, {.5f, 0}};
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1},
{0, 1}, {0, .5f}};
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
// failing, no close
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
size_t testLen[] = {
sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6),
sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc),
sizeof(rd), sizeof(re),
sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6),
sizeof(f7), sizeof(f8),
sizeof(c1), sizeof(c2)
};
SkPoint* tests[] = {
r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re,
f1, f2, f3, f4, f5, f6, f7, f8,
c1, c2
};
const SkPoint* lastPass = re;
const SkPoint* lastClose = f8;
const size_t testCount = sizeof(tests) / sizeof(tests[0]);
size_t index;
for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
bool fail = false;
bool close = true;
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
if (rectFirst) {
path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY);
for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) {
path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY);
}
if (close) {
path.close();
}
if (!rectFirst) {
path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path.isNestedRects(0));
if (!fail) {
SkRect expected[2], computed[2];
SkRect testBounds;
testBounds.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint));
expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
expected[1] = testBounds;
REPORTER_ASSERT(reporter, path.isNestedRects(computed));
REPORTER_ASSERT(reporter, expected[0] == computed[0]);
REPORTER_ASSERT(reporter, expected[1] == computed[1]);
}
if (tests[testIndex] == lastPass) {
fail = true;
}
if (tests[testIndex] == lastClose) {
close = false;
}
}
// fail, close then line
SkPath path1;
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
// fail, move in the middle
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
// fail, move on the edge
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
// fail, quad
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
// fail, cubic
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
// fail, not nested
path1.reset();
path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction);
path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction);
REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
}
// pass, stroke rect
SkPath src, dst;
src.addRect(1, 1, 7, 7, SkPath::kCW_Direction);
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setStrokeWidth(2);
strokePaint.getFillPath(src, &dst);
REPORTER_ASSERT(reporter, dst.isNestedRects(0));
}
static void write_and_read_back(skiatest::Reporter* reporter,
const SkPath& p) {
SkWriter32 writer(100);
writer.writePath(p);
size_t size = writer.size();
SkAutoMalloc storage(size);
writer.flatten(storage.get());
SkReader32 reader(storage.get(), size);
SkPath readBack;
REPORTER_ASSERT(reporter, readBack != p);
reader.readPath(&readBack);
REPORTER_ASSERT(reporter, readBack == p);
REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() ==
p.getConvexityOrUnknown());
REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL));
const SkRect& origBounds = p.getBounds();
const SkRect& readBackBounds = readBack.getBounds();
REPORTER_ASSERT(reporter, origBounds == readBackBounds);
}
static void test_flattening(skiatest::Reporter* reporter) {
SkPath p;
static const SkPoint pts[] = {
{ 0, 0 },
{ SkIntToScalar(10), SkIntToScalar(10) },
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
};
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
write_and_read_back(reporter, p);
// create a buffer that should be much larger than the path so we don't
// kill our stack if writer goes too far.
char buffer[1024];
uint32_t size1 = p.writeToMemory(NULL);
uint32_t size2 = p.writeToMemory(buffer);
REPORTER_ASSERT(reporter, size1 == size2);
SkPath p2;
uint32_t size3 = p2.readFromMemory(buffer);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, p == p2);
char buffer2[1024];
size3 = p2.writeToMemory(buffer2);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
// test persistence of the oval flag & convexity
{
SkPath oval;
SkRect rect = SkRect::MakeWH(10, 10);
oval.addOval(rect);
write_and_read_back(reporter, oval);
}
}
static void test_transform(skiatest::Reporter* reporter) {
SkPath p, p1;
static const SkPoint pts[] = {
{ 0, 0 },
{ SkIntToScalar(10), SkIntToScalar(10) },
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
};
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
SkMatrix matrix;
matrix.reset();
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p == p1);
matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);
p.transform(matrix, &p1);
SkPoint pts1[7];
int count = p1.getPoints(pts1, 7);
REPORTER_ASSERT(reporter, 7 == count);
for (int i = 0; i < count; ++i) {
SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
REPORTER_ASSERT(reporter, newPt == pts1[i]);
}
}
static void test_zero_length_paths(skiatest::Reporter* reporter) {
SkPath p;
uint8_t verbs[32];
struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
const char* testPath;
const size_t numResultPts;
const SkRect resultBound;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs8[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs12[] = {
SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs16[] = {
SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
};
static const struct zeroPathTestData gZeroLengthTests[] = {
{ "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
{ "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
{ "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
{ "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) },
{ "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) },
{ "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) },
{ "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) },
{ "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) },
{ "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) },
{ "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) },
{ "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) },
{ "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) },
{ "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
SK_ARRAY_COUNT(resultVerbs14)
},
{ "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) },
{ "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
SK_ARRAY_COUNT(resultVerbs16)
}
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs)));
for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
}
}
}
struct SegmentInfo {
SkPath fPath;
int fPointCount;
};
#define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)
static void test_segment_masks(skiatest::Reporter* reporter) {
SkPath p, p2;
p.moveTo(0, 0);
p.quadTo(100, 100, 200, 200);
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.reset();
p.moveTo(0, 0);
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
}
static void test_iter(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pts[4];
// Test an iterator with no path
SkPath::Iter noPathIter;
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that setting an empty path works
noPathIter.setPath(p, false);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference for an empty path
noPathIter.setPath(p, true);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test an iterator with an initial empty path
SkPath::Iter iter(p, false);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference
iter.setPath(p, true);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
struct iterTestData {
const char* testPath;
const bool forceClose;
const bool consumeDegenerates;
const size_t* numResultPtsPerVerb;
const SkPoint* resultPts;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
static const SkPath::Verb resultVerbs2[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs3[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs4[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs5[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const size_t resultPtsSizes1[] = { 0 };
static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 };
static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 };
static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 };
static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 };
static const SkPoint* resultPts1 = 0;
static const SkPoint resultPts2[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }
};
static const SkPoint resultPts3[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 },
{ 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }
};
static const SkPoint resultPts4[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const SkPoint resultPts5[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const struct iterTestData gIterTests[] = {
{ "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
{ "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
{ "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
iter.setPath(p, gIterTests[i].forceClose);
int j = 0, l = 0;
do {
REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]);
for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
}
} while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
}
// The GM degeneratesegments.cpp test is more extensive
}
static void test_raw_iter(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pts[4];
// Test an iterator with no path
SkPath::RawIter noPathIter;
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that setting an empty path works
noPathIter.setPath(p);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test an iterator with an initial empty path
SkPath::RawIter iter(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Test that a move-only path returns the move.
p.moveTo(SK_Scalar1, 0);
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// No matter how many moves we add, we should get them all back
p.moveTo(SK_Scalar1*2, SK_Scalar1);
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Initial close is never ever stored
p.reset();
p.close();
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Move/close sequences
p.reset();
p.close(); // Not stored, no purpose
p.moveTo(SK_Scalar1, 0);
p.close();
p.close(); // Not stored, no purpose
p.moveTo(SK_Scalar1*2, SK_Scalar1);
p.close();
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
p.moveTo(SK_Scalar1*4, SK_Scalar1*3);
p.close();
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Generate random paths and verify
SkPoint randomPts[25];
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
}
}
// Max of 10 segments, max 3 points per segment
SkRandom rand(9876543);
SkPoint expectedPts[31]; // May have leading moveTo
SkPath::Verb expectedVerbs[22]; // May have leading moveTo
SkPath::Verb nextVerb;
for (int i = 0; i < 500; ++i) {
p.reset();
bool lastWasClose = true;
bool haveMoveTo = false;
SkPoint lastMoveToPt = { 0, 0 };
int numPoints = 0;
int numVerbs = (rand.nextU() >> 16) % 10;
int numIterVerbs = 0;
for (int j = 0; j < numVerbs; ++j) {
do {
nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
} while (lastWasClose && nextVerb == SkPath::kClose_Verb);
switch (nextVerb) {
case SkPath::kMove_Verb:
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
p.moveTo(expectedPts[numPoints]);
lastMoveToPt = expectedPts[numPoints];
numPoints += 1;
lastWasClose = false;
haveMoveTo = true;
break;
case SkPath::kLine_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
p.lineTo(expectedPts[numPoints]);
numPoints += 1;
lastWasClose = false;
break;
case SkPath::kQuad_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
numPoints += 2;
lastWasClose = false;
break;
case SkPath::kCubic_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
expectedPts[numPoints + 2]);
numPoints += 3;
lastWasClose = false;
break;
case SkPath::kClose_Verb:
p.close();
haveMoveTo = false;
lastWasClose = true;
break;
default:;
}
expectedVerbs[numIterVerbs++] = nextVerb;
}
iter.setPath(p);
numVerbs = numIterVerbs;
numIterVerbs = 0;
int numIterPts = 0;
SkPoint lastMoveTo;
SkPoint lastPt;
lastMoveTo.set(0, 0);
lastPt.set(0, 0);
while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) {
REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]);
numIterVerbs++;
switch (nextVerb) {
case SkPath::kMove_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints);
REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
lastPt = lastMoveTo = pts[0];
numIterPts += 1;
break;
case SkPath::kLine_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
lastPt = pts[1];
numIterPts += 1;
break;
case SkPath::kQuad_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
lastPt = pts[2];
numIterPts += 2;
break;
case SkPath::kCubic_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
lastPt = pts[3];
numIterPts += 3;
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, pts[0] == lastMoveTo);
lastPt = lastMoveTo;
break;
default:;
}
}
REPORTER_ASSERT(reporter, numIterPts == numPoints);
REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
}
}
static void check_for_circle(skiatest::Reporter* reporter,
const SkPath& path,
bool expectedCircle,
SkPath::Direction expectedDir) {
SkRect rect;
REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir));
if (expectedCircle) {
REPORTER_ASSERT(reporter, rect.height() == rect.width());
}
}
static void test_circle_skew(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
path.transform(m, &tmp);
// this matrix reverses the direction.
if (SkPath::kCCW_Direction == dir) {
dir = SkPath::kCW_Direction;
} else {
SkASSERT(SkPath::kCW_Direction == dir);
dir = SkPath::kCCW_Direction;
}
check_for_circle(reporter, tmp, false, dir);
}
static void test_circle_translate(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
// translate at small offset
SkMatrix m;
m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
tmp.reset();
m.reset();
// translate at a relatively big offset
m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_rotate(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
for (int angle = 0; angle < 360; ++angle) {
SkPath tmp;
SkMatrix m;
m.setRotate(SkIntToScalar(angle));
path.transform(m, &tmp);
// TODO: a rotated circle whose rotated angle is not a multiple of 90
// degrees is not an oval anymore, this can be improved. we made this
// for the simplicity of our implementation.
if (angle % 90 == 0) {
check_for_circle(reporter, tmp, true, dir);
} else {
check_for_circle(reporter, tmp, false, dir);
}
}
}
static void test_circle_mirror_x(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPath::kCW_Direction == dir) {
dir = SkPath::kCCW_Direction;
} else {
SkASSERT(SkPath::kCCW_Direction == dir);
dir = SkPath::kCW_Direction;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_y(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPath::kCW_Direction == dir) {
dir = SkPath::kCCW_Direction;
} else {
SkASSERT(SkPath::kCCW_Direction == dir);
dir = SkPath::kCW_Direction;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_xy(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_with_direction(skiatest::Reporter* reporter,
SkPath::Direction dir) {
SkPath path;
// circle at origin
path.addCircle(0, 0, SkIntToScalar(20), dir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
// circle at an offset at (10, 10)
path.reset();
path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
SkIntToScalar(20), dir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
test_circle_mirror_x(reporter, path, dir);
test_circle_mirror_y(reporter, path, dir);
test_circle_mirror_xy(reporter, path, dir);
}
static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
SkPath path;
SkPath circle;
SkPath rect;
SkPath empty;
static const SkPath::Direction kCircleDir = SkPath::kCW_Direction;
static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction;
circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction);
SkMatrix translate;
translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));
// For simplicity, all the path concatenation related operations
// would mark it non-circle, though in theory it's still a circle.
// empty + circle (translate)
path = empty;
path.addPath(circle, translate);
check_for_circle(reporter, path, false, kCircleDir);
// circle + empty (translate)
path = circle;
path.addPath(empty, translate);
check_for_circle(reporter, path, false, kCircleDir);
// test reverseAddPath
path = circle;
path.reverseAddPath(rect);
check_for_circle(reporter, path, false, kCircleDirOpposite);
}
static void test_circle(skiatest::Reporter* reporter) {
test_circle_with_direction(reporter, SkPath::kCW_Direction);
test_circle_with_direction(reporter, SkPath::kCCW_Direction);
// multiple addCircle()
SkPath path;
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction);
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
// some extra lineTo() would make isOval() fail
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.lineTo(0, 0);
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
// not back to the original point
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
test_circle_with_add_paths(reporter);
}
static void test_oval(skiatest::Reporter* reporter) {
SkRect rect;
SkMatrix m;
SkPath path;
rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
path.addOval(rect);
REPORTER_ASSERT(reporter, path.isOval(NULL));
m.setRotate(SkIntToScalar(90));
SkPath tmp;
path.transform(m, &tmp);
// an oval rotated 90 degrees is still an oval.
REPORTER_ASSERT(reporter, tmp.isOval(NULL));
m.reset();
m.setRotate(SkIntToScalar(30));
tmp.reset();
path.transform(m, &tmp);
// an oval rotated 30 degrees is not an oval anymore.
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// since empty path being transformed.
path.reset();
tmp.reset();
m.reset();
path.transform(m, &tmp);
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// empty path is not an oval
tmp.reset();
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// only has moveTo()s
tmp.reset();
tmp.moveTo(0, 0);
tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// mimic WebKit's calling convention,
// call moveTo() first and then call addOval()
path.reset();
path.moveTo(0, 0);
path.addOval(rect);
REPORTER_ASSERT(reporter, path.isOval(NULL));
// copy path
path.reset();
tmp.reset();
tmp.addOval(rect);
path = tmp;
REPORTER_ASSERT(reporter, path.isOval(NULL));
}
static void TestPath(skiatest::Reporter* reporter) {
SkTSize<SkScalar>::Make(3,4);
SkPath p, p2;
SkRect bounds, bounds2;
REPORTER_ASSERT(reporter, p.isEmpty());
REPORTER_ASSERT(reporter, 0 == p.countPoints());
REPORTER_ASSERT(reporter, 0 == p.countVerbs());
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType);
REPORTER_ASSERT(reporter, !p.isInverseFillType());
REPORTER_ASSERT(reporter, p == p2);
REPORTER_ASSERT(reporter, !(p != p2));
REPORTER_ASSERT(reporter, p.getBounds().isEmpty());
bounds.set(0, 0, SK_Scalar1, SK_Scalar1);
p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
check_convex_bounds(reporter, p, bounds);
// we have quads or cubics
REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask);
REPORTER_ASSERT(reporter, !p.isEmpty());
p.reset();
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
REPORTER_ASSERT(reporter, p.isEmpty());
p.addOval(bounds);
check_convex_bounds(reporter, p, bounds);
REPORTER_ASSERT(reporter, !p.isEmpty());
p.reset();
p.addRect(bounds);
check_convex_bounds(reporter, p, bounds);
// we have only lines
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, p != p2);
REPORTER_ASSERT(reporter, !(p == p2));
// do getPoints and getVerbs return the right result
REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4);
REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5);
SkPoint pts[4];
int count = p.getPoints(pts, 4);
REPORTER_ASSERT(reporter, count == 4);
uint8_t verbs[6];
verbs[5] = 0xff;
p.getVerbs(verbs, 5);
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
REPORTER_ASSERT(reporter, 0xff == verbs[5]);
bounds2.set(pts, 4);
REPORTER_ASSERT(reporter, bounds == bounds2);
bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
p.offset(SK_Scalar1*3, SK_Scalar1*4);
REPORTER_ASSERT(reporter, bounds == p.getBounds());
REPORTER_ASSERT(reporter, p.isRect(NULL));
bounds2.setEmpty();
REPORTER_ASSERT(reporter, p.isRect(&bounds2));
REPORTER_ASSERT(reporter, bounds == bounds2);
// now force p to not be a rect
bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2);
p.addRect(bounds);
REPORTER_ASSERT(reporter, !p.isRect(NULL));
test_isLine(reporter);
test_isRect(reporter);
test_isNestedRects(reporter);
test_zero_length_paths(reporter);
test_direction(reporter);
test_convexity(reporter);
test_convexity2(reporter);
test_conservativelyContains(reporter);
test_close(reporter);
test_segment_masks(reporter);
test_flattening(reporter);
test_transform(reporter);
test_bounds(reporter);
test_iter(reporter);
test_raw_iter(reporter);
test_circle(reporter);
test_oval(reporter);
test_strokerec(reporter);
test_addPoly(reporter);
test_isfinite(reporter);
test_isfinite_after_transform(reporter);
test_tricky_cubic(reporter);
test_arb_round_rect_is_convex(reporter);
test_arb_zero_rad_round_rect_is_rect(reporter);
test_addrect_isfinite(reporter);
}
#include "TestClassDef.h"
DEFINE_TESTCLASS("Path", PathTestClass, TestPath)