blob: 08a2e1acacee73a770f8988ac08ec0e55cc6bbd5 [file] [log] [blame]
// Copyright 2021 Google LLC.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "experimental/ngatoy/Cmds.h"
#include "experimental/ngatoy/Fake.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkGraphics.h"
#include "include/gpu/GrDirectContext.h"
#include "src/core/SkOSFile.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/utils/SkOSPath.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommandLineFlags.h"
#include "tools/gpu/GrContextFactory.h"
#include <algorithm>
/*
* Questions this is trying to answer:
* How to handle saveLayers (in w/ everything or separate)
* How to handle blurs & other off screen draws
* How to handle clipping
* How does sorting stack up against buckets
* How does creating batches interact w/ the sorting
* How does batching work w/ text
* How does text (esp. atlasing) work at all
* Batching quality vs. existing
* Memory churn/overhead vs existing (esp. wrt batching)
* gpu vs cpu boundedness
*
* Futher Questions:
* How can we collect uniforms & not store the fps -- seems complicated
* Do all the blend modes (esp. advanced work front-to-back)?
* NGA perf vs. OGA perf
* Can we prepare any of the saveLayers or off-screen draw render passes in parallel?
*
* Small potatoes:
* Incorporate CTM into the simulator
*/
/*
* How does this all work:
*
* Each test is specified by a set of RectCmds (which have a unique ID and carry their material
* and MC state info) along with the order they are expected to be drawn in with the NGA.
*
* To generate an expected image, the RectCmds are replayed into an SkCanvas in the order
* provided.
*
* For the actual (NGA) image, the RectCmds are replayed into a FakeCanvas - preserving the
* unique ID of the RectCmd. The FakeCanvas creates new RectCmd objects, sorts them using
* the SortKey and then performs a kludgey z-buffered rasterization. The FakeCanvas also
* preserves the RectCmd order it ultimately used for its rendering and this can be compared
* with the expected order from the test.
*
* The use of the RectCmds to create the tests is a mere convenience to avoid creating a
* separate representation of the desired draws.
*
***************************
* Here are some of the simplifying assumptions of this simulation (and their justification):
*
* Only SkIRects are used for draws and clips - since MSAA should be taking care of AA for us in
* the NGA we don't really need SkRects. This also greatly simplifies the z-buffered rasterization.
*
**************************
* Areas for improvement:
* We should add strokes since there are two distinct drawing methods in the NGA (fill v. stroke)
*/
using sk_gpu_test::GrContextFactory;
static DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs.");
static void exitf(const char* format, ...) {
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
exit(1);
}
static void save_files(int testID, const SkBitmap& expected, const SkBitmap& actual) {
if (FLAGS_writePath.isEmpty()) {
return;
}
const char* dir = FLAGS_writePath[0];
SkString path = SkOSPath::Join(dir, "expected");
path.appendU32(testID);
path.append(".png");
if (!sk_mkdir(dir)) {
exitf("failed to create directory for png \"%s\"", path.c_str());
}
if (!ToolUtils::EncodeImageToFile(path.c_str(), expected, SkEncodedImageFormat::kPNG, 100)) {
exitf("failed to save png to \"%s\"", path.c_str());
}
path = SkOSPath::Join(dir, "actual");
path.appendU32(testID);
path.append(".png");
if (!ToolUtils::EncodeImageToFile(path.c_str(), actual, SkEncodedImageFormat::kPNG, 100)) {
exitf("failed to save png to \"%s\"", path.c_str());
}
}
// Exercise basic SortKey behavior
static void key_test() {
SortKey k;
SkASSERT(!k.transparent());
SkASSERT(k.clipID() == 0);
SkASSERT(k.depth() == 0);
SkASSERT(k.material() == 0);
// k.dump();
SortKey k1(false, 4, 1, 3);
SkASSERT(!k1.transparent());
SkASSERT(k1.clipID() == 4);
SkASSERT(k1.depth() == 1);
SkASSERT(k1.material() == 3);
// k1.dump();
SortKey k2(true, 7, 2, 1);
SkASSERT(k2.transparent());
SkASSERT(k2.clipID() == 7);
SkASSERT(k2.depth() == 2);
SkASSERT(k2.material() == 1);
// k2.dump();
}
static void check_state(FakeMCBlob* actualState,
SkIPoint expectedCTM,
const std::vector<SkIRect>& expectedClips) {
SkASSERT(actualState->ctm() == expectedCTM);
int i = 0;
auto states = actualState->mcStates();
for (auto& s : states) {
for (auto r : s.rects()) {
SkAssertResult(i < (int) expectedClips.size());
SkAssertResult(r == expectedClips[i]);
i++;
}
}
}
// Exercise the FakeMCBlob object
static void mcstack_test() {
const SkIRect r { 0, 0, 10, 10 };
const SkIPoint s1Trans { 10, 10 };
const SkIPoint s2TransA { -5, -2 };
const SkIPoint s2TransB { -3, -1 };
const std::vector<SkIRect> expectedS0Clips;
const std::vector<SkIRect> expectedS1Clips {
r.makeOffset(s1Trans)
};
const std::vector<SkIRect> expectedS2aClips {
r.makeOffset(s1Trans),
r.makeOffset(s2TransA)
};
const std::vector<SkIRect> expectedS2bClips {
r.makeOffset(s1Trans),
r.makeOffset(s2TransA),
r.makeOffset(s2TransA + s2TransB)
};
//----------------
FakeStateTracker s;
auto state0 = s.snapState();
// The initial state should have no translation & no clip
check_state(state0.get(), { 0, 0 }, expectedS0Clips);
//----------------
s.push();
s.translate(s1Trans);
s.clipRect(r);
auto state1 = s.snapState();
check_state(state1.get(), s1Trans, expectedS1Clips);
//----------------
s.push();
s.translate(s2TransA);
s.clipRect(r);
auto state2a = s.snapState();
check_state(state2a.get(), s1Trans + s2TransA, expectedS2aClips);
s.translate(s2TransB);
s.clipRect(r);
auto state2b = s.snapState();
check_state(state2b.get(), s1Trans + s2TransA + s2TransB, expectedS2bClips);
SkASSERT(state2a != state2b);
//----------------
s.pop();
auto state3 = s.snapState();
check_state(state3.get(), s1Trans, expectedS1Clips);
SkASSERT(state1 == state3);
//----------------
s.pop();
auto state4 = s.snapState();
check_state(state4.get(), { 0, 0 }, expectedS0Clips);
SkASSERT(state0 == state4);
}
static void check_order(const std::vector<int>& actualOrder,
const std::vector<int>& expectedOrder) {
if (expectedOrder.size() != actualOrder.size()) {
exitf("Op count mismatch. Expected %d - got %d\n",
expectedOrder.size(),
actualOrder.size());
}
if (expectedOrder != actualOrder) {
SkDebugf("order mismatch:\n");
SkDebugf("E %d: ", expectedOrder.size());
for (auto t : expectedOrder) {
SkDebugf("%d", t);
}
SkDebugf("\n");
SkDebugf("A %d: ", actualOrder.size());
for (auto t : actualOrder) {
SkDebugf("%d", t);
}
SkDebugf("\n");
}
}
typedef int (*PFTest)(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder);
static void sort_test(PFTest testcase) {
std::vector<const Cmd*> test;
std::vector<int> expectedOrder;
int testID = testcase(&test, &expectedOrder);
SkBitmap expectedBM;
expectedBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256));
expectedBM.eraseColor(SK_ColorBLACK);
SkCanvas real(expectedBM);
SkBitmap actualBM;
actualBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256));
actualBM.eraseColor(SK_ColorBLACK);
FakeCanvas fake(actualBM);
const FakeMCBlob* prior = nullptr;
for (auto c : test) {
c->execute(&fake);
c->execute(&real, prior);
prior = c->state();
}
fake.finalize();
std::vector<int> actualOrder = fake.getOrder();
check_order(actualOrder, expectedOrder);
save_files(testID, expectedBM, actualBM);
}
// Simple test - green rect should appear atop the red rect
static int test1(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// front-to-back order bc all opaque
expectedOrder->push_back(1);
expectedOrder->push_back(0);
FakeStateTracker s;
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state));
return 1;
}
// Simple test - blue rect atop green rect atop red rect
static int test2(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// front-to-back order bc all opaque
expectedOrder->push_back(2);
expectedOrder->push_back(1);
expectedOrder->push_back(0);
FakeStateTracker s;
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state));
test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state));
return 2;
}
// Transparency test - opaque blue rect atop transparent green rect atop opaque red rect
static int test3(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// opaque draws are first and are front-to-back. Transparent draw is last.
expectedOrder->push_back(2);
expectedOrder->push_back(0);
expectedOrder->push_back(1);
FakeStateTracker s;
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), 0x8000FF00, SK_ColorUNUSED, state));
test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state));
return 3;
}
// Multi-transparency test - transparent blue rect atop transparent green rect atop
// transparent red rect
static int test4(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// All in back-to-front order bc they're all transparent
expectedOrder->push_back(0);
expectedOrder->push_back(1);
expectedOrder->push_back(2);
FakeStateTracker s;
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), 0x80FF0000, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), 0x8000FF00, SK_ColorUNUSED, state));
test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), 0x800000FF, SK_ColorUNUSED, state));
return 4;
}
// Multiple opaque materials test
// All opaque:
// normal1, linear1, radial1, normal2, linear2, radial2
// Which gets sorted to:
// normal2, normal1, linear2, linear1, radial2, radial1
// So, front to back w/in each material type.
static int test5(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// Note: This pushes sorting by material above sorting by Z. Thus we'll get less front to
// back benefit.
expectedOrder->push_back(3);
expectedOrder->push_back(0);
expectedOrder->push_back(4);
expectedOrder->push_back(1);
expectedOrder->push_back(5);
expectedOrder->push_back(2);
FakeStateTracker s;
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kLinearMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorWHITE, state));
test->push_back(new RectCmd(2, kRadialMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorBLACK, state));
test->push_back(new RectCmd(3, kSolidMat, r.makeOffset(148, 148), SK_ColorCYAN, SK_ColorUNUSED, state));
test->push_back(new RectCmd(4, kLinearMat, r.makeOffset(148, 8), SK_ColorMAGENTA, SK_ColorWHITE, state));
test->push_back(new RectCmd(5, kRadialMat, r.makeOffset(8, 148), SK_ColorYELLOW, SK_ColorBLACK, state));
return 5;
}
// simple clipping test - 1 clip rect
static int test6(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
expectedOrder->push_back(1);
expectedOrder->push_back(0);
FakeStateTracker s;
s.clipRect(SkIRect::MakeXYWH(28, 28, 40, 40));
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state));
return 6;
}
// more complicated clipping w/ opaque draws -> should reorder
static int test7(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) {
// The expected is front to back modulated by the two clip states
expectedOrder->push_back(5);
expectedOrder->push_back(4);
expectedOrder->push_back(1);
expectedOrder->push_back(0);
expectedOrder->push_back(3);
expectedOrder->push_back(2);
FakeStateTracker s;
s.clipRect(SkIRect::MakeXYWH(85, 0, 86, 256)); // select the middle third in x
sk_sp<FakeMCBlob> state = s.snapState();
SkIRect r{0, 0, 100, 100};
test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state));
test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state));
s.push();
s.clipRect(SkIRect::MakeXYWH(0, 85, 256, 86)); // intersect w/ the middle third in y
state = s.snapState();
test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state));
test->push_back(new RectCmd(3, kSolidMat, r.makeOffset(148, 148), SK_ColorCYAN, SK_ColorUNUSED, state));
s.pop();
state = s.snapState();
test->push_back(new RectCmd(4, kSolidMat, r.makeOffset(148, 8), SK_ColorMAGENTA, SK_ColorUNUSED, state));
test->push_back(new RectCmd(5, kSolidMat, r.makeOffset(8, 148), SK_ColorYELLOW, SK_ColorUNUSED, state));
return 7;
}
int main(int argc, char** argv) {
CommandLineFlags::Parse(argc, argv);
SkGraphics::Init();
key_test();
mcstack_test();
sort_test(test1);
sort_test(test2);
sort_test(test3);
sort_test(test4);
sort_test(test5);
sort_test(test6);
sort_test(test7);
return 0;
}