| // Copyright 2021 Google LLC. |
| // Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. |
| |
| #include "experimental/ngatoy/Cmds.h" |
| #include "experimental/ngatoy/Fake.h" |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkGraphics.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/core/SkOSFile.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/utils/SkOSPath.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/flags/CommandLineFlags.h" |
| #include "tools/gpu/GrContextFactory.h" |
| |
| #include <algorithm> |
| |
| /* |
| * Questions this is trying to answer: |
| * How to handle saveLayers (in w/ everything or separate) |
| * How to handle blurs & other off screen draws |
| * How to handle clipping |
| * How does sorting stack up against buckets |
| * How does creating batches interact w/ the sorting |
| * How does batching work w/ text |
| * How does text (esp. atlasing) work at all |
| * Batching quality vs. existing |
| * Memory churn/overhead vs existing (esp. wrt batching) |
| * gpu vs cpu boundedness |
| * |
| * Futher Questions: |
| * How can we collect uniforms & not store the fps -- seems complicated |
| * Do all the blend modes (esp. advanced work front-to-back)? |
| * NGA perf vs. OGA perf |
| * Can we prepare any of the saveLayers or off-screen draw render passes in parallel? |
| * |
| * Small potatoes: |
| * Incorporate CTM into the simulator |
| */ |
| |
| /* |
| * How does this all work: |
| * |
| * Each test is specified by a set of RectCmds (which have a unique ID and carry their material |
| * and MC state info) along with the order they are expected to be drawn in with the NGA. |
| * |
| * To generate an expected image, the RectCmds are replayed into an SkCanvas in the order |
| * provided. |
| * |
| * For the actual (NGA) image, the RectCmds are replayed into a FakeCanvas - preserving the |
| * unique ID of the RectCmd. The FakeCanvas creates new RectCmd objects, sorts them using |
| * the SortKey and then performs a kludgey z-buffered rasterization. The FakeCanvas also |
| * preserves the RectCmd order it ultimately used for its rendering and this can be compared |
| * with the expected order from the test. |
| * |
| * The use of the RectCmds to create the tests is a mere convenience to avoid creating a |
| * separate representation of the desired draws. |
| * |
| *************************** |
| * Here are some of the simplifying assumptions of this simulation (and their justification): |
| * |
| * Only SkIRects are used for draws and clips - since MSAA should be taking care of AA for us in |
| * the NGA we don't really need SkRects. This also greatly simplifies the z-buffered rasterization. |
| * |
| ************************** |
| * Areas for improvement: |
| * We should add strokes since there are two distinct drawing methods in the NGA (fill v. stroke) |
| */ |
| |
| using sk_gpu_test::GrContextFactory; |
| |
| static DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs."); |
| |
| static void exitf(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| vfprintf(stderr, format, args); |
| va_end(args); |
| |
| exit(1); |
| } |
| |
| static void save_files(int testID, const SkBitmap& expected, const SkBitmap& actual) { |
| if (FLAGS_writePath.isEmpty()) { |
| return; |
| } |
| |
| const char* dir = FLAGS_writePath[0]; |
| |
| SkString path = SkOSPath::Join(dir, "expected"); |
| path.appendU32(testID); |
| path.append(".png"); |
| |
| if (!sk_mkdir(dir)) { |
| exitf("failed to create directory for png \"%s\"", path.c_str()); |
| } |
| if (!ToolUtils::EncodeImageToFile(path.c_str(), expected, SkEncodedImageFormat::kPNG, 100)) { |
| exitf("failed to save png to \"%s\"", path.c_str()); |
| } |
| |
| path = SkOSPath::Join(dir, "actual"); |
| path.appendU32(testID); |
| path.append(".png"); |
| |
| if (!ToolUtils::EncodeImageToFile(path.c_str(), actual, SkEncodedImageFormat::kPNG, 100)) { |
| exitf("failed to save png to \"%s\"", path.c_str()); |
| } |
| } |
| |
| // Exercise basic SortKey behavior |
| static void key_test() { |
| SortKey k; |
| SkASSERT(!k.transparent()); |
| SkASSERT(k.clipID() == 0); |
| SkASSERT(k.depth() == 0); |
| SkASSERT(k.material() == 0); |
| // k.dump(); |
| |
| SortKey k1(false, 4, 1, 3); |
| SkASSERT(!k1.transparent()); |
| SkASSERT(k1.clipID() == 4); |
| SkASSERT(k1.depth() == 1); |
| SkASSERT(k1.material() == 3); |
| // k1.dump(); |
| |
| SortKey k2(true, 7, 2, 1); |
| SkASSERT(k2.transparent()); |
| SkASSERT(k2.clipID() == 7); |
| SkASSERT(k2.depth() == 2); |
| SkASSERT(k2.material() == 1); |
| // k2.dump(); |
| } |
| |
| static void check_state(FakeMCBlob* actualState, |
| SkIPoint expectedCTM, |
| const std::vector<SkIRect>& expectedClips) { |
| SkASSERT(actualState->ctm() == expectedCTM); |
| |
| int i = 0; |
| auto states = actualState->mcStates(); |
| for (auto& s : states) { |
| for (auto r : s.rects()) { |
| SkAssertResult(i < (int) expectedClips.size()); |
| SkAssertResult(r == expectedClips[i]); |
| i++; |
| } |
| } |
| } |
| |
| // Exercise the FakeMCBlob object |
| static void mcstack_test() { |
| const SkIRect r { 0, 0, 10, 10 }; |
| const SkIPoint s1Trans { 10, 10 }; |
| const SkIPoint s2TransA { -5, -2 }; |
| const SkIPoint s2TransB { -3, -1 }; |
| |
| const std::vector<SkIRect> expectedS0Clips; |
| const std::vector<SkIRect> expectedS1Clips { |
| r.makeOffset(s1Trans) |
| }; |
| const std::vector<SkIRect> expectedS2aClips { |
| r.makeOffset(s1Trans), |
| r.makeOffset(s2TransA) |
| }; |
| const std::vector<SkIRect> expectedS2bClips { |
| r.makeOffset(s1Trans), |
| r.makeOffset(s2TransA), |
| r.makeOffset(s2TransA + s2TransB) |
| }; |
| |
| //---------------- |
| FakeStateTracker s; |
| |
| auto state0 = s.snapState(); |
| // The initial state should have no translation & no clip |
| check_state(state0.get(), { 0, 0 }, expectedS0Clips); |
| |
| //---------------- |
| s.push(); |
| s.translate(s1Trans); |
| s.clipRect(r); |
| |
| auto state1 = s.snapState(); |
| check_state(state1.get(), s1Trans, expectedS1Clips); |
| |
| //---------------- |
| s.push(); |
| s.translate(s2TransA); |
| s.clipRect(r); |
| |
| auto state2a = s.snapState(); |
| check_state(state2a.get(), s1Trans + s2TransA, expectedS2aClips); |
| |
| s.translate(s2TransB); |
| s.clipRect(r); |
| |
| auto state2b = s.snapState(); |
| check_state(state2b.get(), s1Trans + s2TransA + s2TransB, expectedS2bClips); |
| SkASSERT(state2a != state2b); |
| |
| //---------------- |
| s.pop(); |
| auto state3 = s.snapState(); |
| check_state(state3.get(), s1Trans, expectedS1Clips); |
| SkASSERT(state1 == state3); |
| |
| //---------------- |
| s.pop(); |
| auto state4 = s.snapState(); |
| check_state(state4.get(), { 0, 0 }, expectedS0Clips); |
| SkASSERT(state0 == state4); |
| } |
| |
| static void check_order(const std::vector<int>& actualOrder, |
| const std::vector<int>& expectedOrder) { |
| if (expectedOrder.size() != actualOrder.size()) { |
| exitf("Op count mismatch. Expected %d - got %d\n", |
| expectedOrder.size(), |
| actualOrder.size()); |
| } |
| |
| if (expectedOrder != actualOrder) { |
| SkDebugf("order mismatch:\n"); |
| SkDebugf("E %d: ", expectedOrder.size()); |
| for (auto t : expectedOrder) { |
| SkDebugf("%d", t); |
| } |
| SkDebugf("\n"); |
| |
| SkDebugf("A %d: ", actualOrder.size()); |
| for (auto t : actualOrder) { |
| SkDebugf("%d", t); |
| } |
| SkDebugf("\n"); |
| } |
| } |
| |
| typedef int (*PFTest)(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder); |
| |
| static void sort_test(PFTest testcase) { |
| std::vector<const Cmd*> test; |
| std::vector<int> expectedOrder; |
| int testID = testcase(&test, &expectedOrder); |
| |
| |
| SkBitmap expectedBM; |
| expectedBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256)); |
| expectedBM.eraseColor(SK_ColorBLACK); |
| SkCanvas real(expectedBM); |
| |
| SkBitmap actualBM; |
| actualBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256)); |
| actualBM.eraseColor(SK_ColorBLACK); |
| |
| FakeCanvas fake(actualBM); |
| const FakeMCBlob* prior = nullptr; |
| for (auto c : test) { |
| c->execute(&fake); |
| c->execute(&real, prior); |
| prior = c->state(); |
| } |
| |
| fake.finalize(); |
| |
| std::vector<int> actualOrder = fake.getOrder(); |
| check_order(actualOrder, expectedOrder); |
| |
| save_files(testID, expectedBM, actualBM); |
| } |
| |
| // Simple test - green rect should appear atop the red rect |
| static int test1(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // front-to-back order bc all opaque |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(0); |
| |
| FakeStateTracker s; |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state)); |
| return 1; |
| } |
| |
| // Simple test - blue rect atop green rect atop red rect |
| static int test2(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // front-to-back order bc all opaque |
| expectedOrder->push_back(2); |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(0); |
| |
| FakeStateTracker s; |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state)); |
| return 2; |
| } |
| |
| // Transparency test - opaque blue rect atop transparent green rect atop opaque red rect |
| static int test3(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // opaque draws are first and are front-to-back. Transparent draw is last. |
| expectedOrder->push_back(2); |
| expectedOrder->push_back(0); |
| expectedOrder->push_back(1); |
| |
| FakeStateTracker s; |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), 0x8000FF00, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state)); |
| return 3; |
| } |
| |
| // Multi-transparency test - transparent blue rect atop transparent green rect atop |
| // transparent red rect |
| static int test4(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // All in back-to-front order bc they're all transparent |
| expectedOrder->push_back(0); |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(2); |
| |
| FakeStateTracker s; |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), 0x80FF0000, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), 0x8000FF00, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), 0x800000FF, SK_ColorUNUSED, state)); |
| return 4; |
| } |
| |
| // Multiple opaque materials test |
| // All opaque: |
| // normal1, linear1, radial1, normal2, linear2, radial2 |
| // Which gets sorted to: |
| // normal2, normal1, linear2, linear1, radial2, radial1 |
| // So, front to back w/in each material type. |
| static int test5(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // Note: This pushes sorting by material above sorting by Z. Thus we'll get less front to |
| // back benefit. |
| expectedOrder->push_back(3); |
| expectedOrder->push_back(0); |
| expectedOrder->push_back(4); |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(5); |
| expectedOrder->push_back(2); |
| |
| FakeStateTracker s; |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kLinearMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorWHITE, state)); |
| test->push_back(new RectCmd(2, kRadialMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorBLACK, state)); |
| test->push_back(new RectCmd(3, kSolidMat, r.makeOffset(148, 148), SK_ColorCYAN, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(4, kLinearMat, r.makeOffset(148, 8), SK_ColorMAGENTA, SK_ColorWHITE, state)); |
| test->push_back(new RectCmd(5, kRadialMat, r.makeOffset(8, 148), SK_ColorYELLOW, SK_ColorBLACK, state)); |
| return 5; |
| } |
| |
| // simple clipping test - 1 clip rect |
| static int test6(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(0); |
| |
| FakeStateTracker s; |
| s.clipRect(SkIRect::MakeXYWH(28, 28, 40, 40)); |
| |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state)); |
| return 6; |
| } |
| |
| // more complicated clipping w/ opaque draws -> should reorder |
| static int test7(std::vector<const Cmd*>* test, std::vector<int>* expectedOrder) { |
| // The expected is front to back modulated by the two clip states |
| expectedOrder->push_back(5); |
| expectedOrder->push_back(4); |
| expectedOrder->push_back(1); |
| expectedOrder->push_back(0); |
| |
| expectedOrder->push_back(3); |
| expectedOrder->push_back(2); |
| |
| FakeStateTracker s; |
| s.clipRect(SkIRect::MakeXYWH(85, 0, 86, 256)); // select the middle third in x |
| |
| sk_sp<FakeMCBlob> state = s.snapState(); |
| |
| SkIRect r{0, 0, 100, 100}; |
| test->push_back(new RectCmd(0, kSolidMat, r.makeOffset(8, 8), SK_ColorRED, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(1, kSolidMat, r.makeOffset(48, 48), SK_ColorGREEN, SK_ColorUNUSED, state)); |
| |
| s.push(); |
| s.clipRect(SkIRect::MakeXYWH(0, 85, 256, 86)); // intersect w/ the middle third in y |
| state = s.snapState(); |
| |
| test->push_back(new RectCmd(2, kSolidMat, r.makeOffset(98, 98), SK_ColorBLUE, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(3, kSolidMat, r.makeOffset(148, 148), SK_ColorCYAN, SK_ColorUNUSED, state)); |
| |
| s.pop(); |
| state = s.snapState(); |
| |
| test->push_back(new RectCmd(4, kSolidMat, r.makeOffset(148, 8), SK_ColorMAGENTA, SK_ColorUNUSED, state)); |
| test->push_back(new RectCmd(5, kSolidMat, r.makeOffset(8, 148), SK_ColorYELLOW, SK_ColorUNUSED, state)); |
| return 7; |
| } |
| |
| |
| int main(int argc, char** argv) { |
| CommandLineFlags::Parse(argc, argv); |
| |
| SkGraphics::Init(); |
| |
| key_test(); |
| mcstack_test(); |
| sort_test(test1); |
| sort_test(test2); |
| sort_test(test3); |
| sort_test(test4); |
| sort_test(test5); |
| sort_test(test6); |
| sort_test(test7); |
| |
| return 0; |
| } |