| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCCFillGeometry.h" |
| |
| #include "GrTypes.h" |
| #include "SkGeometry.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdlib> |
| |
| static constexpr float kFlatnessThreshold = 1/16.f; // 1/16 of a pixel. |
| |
| void GrCCFillGeometry::beginPath() { |
| SkASSERT(!fBuildingContour); |
| fVerbs.push_back(Verb::kBeginPath); |
| } |
| |
| void GrCCFillGeometry::beginContour(const SkPoint& pt) { |
| SkASSERT(!fBuildingContour); |
| // Store the current verb count in the fTriangles field for now. When we close the contour we |
| // will use this value to calculate the actual number of triangles in its fan. |
| fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0}; |
| |
| fPoints.push_back(pt); |
| fVerbs.push_back(Verb::kBeginContour); |
| fCurrAnchorPoint = pt; |
| |
| SkDEBUGCODE(fBuildingContour = true); |
| } |
| |
| void GrCCFillGeometry::lineTo(const SkPoint P[2]) { |
| SkASSERT(fBuildingContour); |
| SkASSERT(P[0] == fPoints.back()); |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| this->appendLine(p0, p1); |
| } |
| |
| inline void GrCCFillGeometry::appendLine(const Sk2f& p0, const Sk2f& p1) { |
| SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| if ((p0 == p1).allTrue()) { |
| return; |
| } |
| p1.store(&fPoints.push_back()); |
| fVerbs.push_back(Verb::kLineTo); |
| } |
| |
| static inline Sk2f normalize(const Sk2f& n) { |
| Sk2f nn = n*n; |
| return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt(); |
| } |
| |
| static inline float dot(const Sk2f& a, const Sk2f& b) { |
| float product[2]; |
| (a * b).store(product); |
| return product[0] + product[1]; |
| } |
| |
| static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| float tolerance = kFlatnessThreshold) { |
| Sk2f l = p2 - p0; // Line from p0 -> p2. |
| |
| // lwidth = Manhattan width of l. |
| Sk2f labs = l.abs(); |
| float lwidth = labs[0] + labs[1]; |
| |
| // d = |p1 - p0| dot | l.y| |
| // |-l.x| = distance from p1 to l. |
| Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l); |
| float d = dd[0] - dd[1]; |
| |
| // We are collinear if a box with radius "tolerance", centered on p1, touches the line l. |
| // To decide this, we check if the distance from p1 to the line is less than the distance from |
| // p1 to the far corner of this imaginary box, along that same normal vector. |
| // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l: |
| // |
| // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n) |
| // |
| // Which reduces to: |
| // |
| // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance |
| // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance |
| // |
| // Use "<=" in case l == 0. |
| return std::abs(d) <= lwidth * tolerance; |
| } |
| |
| static inline bool are_collinear(const SkPoint P[4], float tolerance = kFlatnessThreshold) { |
| Sk4f Px, Py; // |Px Py| |p0 - p3| |
| Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3| |
| Px -= Px[3]; // |. . | |p2 - p3| |
| Py -= Py[3]; // |. . | | 0 | |
| |
| // Find [lx, ly] = the line from p3 to the furthest-away point from p3. |
| Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point. |
| int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1; |
| lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2; |
| float lx = Px[lidx], ly = Py[lidx]; |
| float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly]. |
| |
| // |Px Py| |
| // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero). |
| // |. . | |-lx| |
| // |. . | |
| Sk4f d = Px*ly - Py*lx; |
| |
| // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l. |
| // (See the rationale for this formula in the above, 3-point version of this function.) |
| // Use "<=" in case l == 0. |
| return (d.abs() <= lwidth * tolerance).allTrue(); |
| } |
| |
| // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt]. |
| static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0, |
| const Sk2f& endPt, const Sk2f& tan1) { |
| Sk2f v = endPt - startPt; |
| float dot0 = dot(tan0, v); |
| float dot1 = dot(tan1, v); |
| |
| // A small, negative tolerance handles floating-point error in the case when one tangent |
| // approaches 0 length, meaning the (convex) curve segment is effectively a flat line. |
| float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero; |
| return dot0 >= tolerance && dot1 >= tolerance; |
| } |
| |
| template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b, |
| const SkNx<N,float>& t) { |
| return SkNx_fma(t, b - a, a); |
| } |
| |
| void GrCCFillGeometry::quadraticTo(const SkPoint P[3]) { |
| SkASSERT(fBuildingContour); |
| SkASSERT(P[0] == fPoints.back()); |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| Sk2f p2 = Sk2f::Load(P+2); |
| |
| // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break |
| // The monotonic chopping math. |
| if (are_collinear(p0, p1, p2)) { |
| this->appendLine(p0, p2); |
| return; |
| } |
| |
| this->appendQuadratics(p0, p1, p2); |
| } |
| |
| inline void GrCCFillGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { |
| Sk2f tan0 = p1 - p0; |
| Sk2f tan1 = p2 - p1; |
| |
| // This should almost always be this case for well-behaved curves in the real world. |
| if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
| this->appendMonotonicQuadratic(p0, p1, p2); |
| return; |
| } |
| |
| // Chop the curve into two segments with equal curvature. To do this we find the T value whose |
| // tangent angle is halfway between tan0 and tan1. |
| Sk2f n = normalize(tan0) - normalize(tan1); |
| |
| // The midtangent can be found where (dQ(t) dot n) = 0: |
| // |
| // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n | |
| // | -2*p0 + 2*p1 | | . | |
| // |
| // = | 2*t 1 | * | tan1 - tan0 | * | n | |
| // | 2*tan0 | | . | |
| // |
| // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n) |
| // |
| // t = (tan0 dot n) / ((tan0 - tan1) dot n) |
| Sk2f dQ1n = (tan0 - tan1) * n; |
| Sk2f dQ0n = tan0 * n; |
| Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n)); |
| t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error. |
| |
| Sk2f p01 = SkNx_fma(t, tan0, p0); |
| Sk2f p12 = SkNx_fma(t, tan1, p1); |
| Sk2f p012 = lerp(p01, p12, t); |
| |
| this->appendMonotonicQuadratic(p0, p01, p012); |
| this->appendMonotonicQuadratic(p012, p12, p2); |
| } |
| |
| inline void GrCCFillGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, |
| const Sk2f& p2) { |
| // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
| if (are_collinear(p0, p1, p2)) { |
| this->appendLine(p0, p2); |
| return; |
| } |
| |
| SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| SkASSERT((p0 != p2).anyTrue()); |
| p1.store(&fPoints.push_back()); |
| p2.store(&fPoints.push_back()); |
| fVerbs.push_back(Verb::kMonotonicQuadraticTo); |
| ++fCurrContourTallies.fQuadratics; |
| } |
| |
| static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) { |
| Sk2f aa = a*a; |
| aa += SkNx_shuffle<1,0>(aa); |
| SkASSERT(aa[0] == aa[1]); |
| |
| Sk2f bb = b*b; |
| bb += SkNx_shuffle<1,0>(bb); |
| SkASSERT(bb[0] == bb[1]); |
| |
| return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b); |
| } |
| |
| static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) { |
| *tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); |
| *tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); |
| } |
| |
| static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, |
| Sk2f* c) { |
| Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0); |
| Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3); |
| *c = (c1 + c2) * .5f; // Hopefully optimized out if not used? |
| return ((c1 - c2).abs() <= 1).allTrue(); |
| } |
| |
| enum class ExcludedTerm : bool { |
| kQuadraticTerm, |
| kLinearTerm |
| }; |
| |
| // Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be |
| // chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is |
| // guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M). |
| // |
| // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be |
| // drawn with flat lines instead of cubics. |
| // |
| // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding |
| // for both in SIMD. |
| static inline void find_chops_around_inflection_points(float padRadius, Sk2f tl, Sk2f sl, |
| const Sk2f& C0, const Sk2f& C1, |
| ExcludedTerm skipTerm, float Cdet, |
| SkSTArray<4, float>* chops) { |
| SkASSERT(chops->empty()); |
| SkASSERT(padRadius >= 0); |
| |
| padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. |
| |
| // The homogeneous parametric functions for distance from lines L & M are: |
| // |
| // l(t,s) = (t*sl - s*tl)^3 |
| // m(t,s) = (t*sm - s*tm)^3 |
| // |
| // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
| // 4.3 Finding klmn: |
| // |
| // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| // |
| // From here on we use Sk2f with "L" names, but the second lane will be for line M. |
| tl = (sl > 0).thenElse(tl, -tl); // Tl=tl/sl is the triple root of l(t,s). Normalize so s >= 0. |
| sl = sl.abs(); |
| |
| // Convert l(t,s), m(t,s) to power-basis form: |
| // |
| // | l3 m3 | |
| // |l(t,s) m(t,s)| = |t^3 t^2*s t*s^2 s^3| * | l2 m2 | |
| // | l1 m1 | |
| // | l0 m0 | |
| // |
| Sk2f l3 = sl*sl*sl; |
| Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sl*tl*-3 : sl*tl*tl*3; |
| |
| // The equation for line L can be found as follows: |
| // |
| // L = C^-1 * (l excluding skipTerm) |
| // |
| // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) |
| // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather |
| // than divide by determinant(C) here, we have already performed this divide on padRadius. |
| Sk2f Lx = C1[1]*l3 - C0[1]*l2or1; |
| Sk2f Ly = -C1[0]*l3 + C0[0]*l2or1; |
| |
| // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan |
| // with of L. (See rationale in are_collinear.) |
| Sk2f Lwidth = Lx.abs() + Ly.abs(); |
| Sk2f pad = Lwidth * padRadius; |
| |
| // Will T=(t + cbrt(pad))/s be greater than 0? No need to solve roots outside T=0..1. |
| Sk2f insideLeftPad = pad + tl*tl*tl; |
| |
| // Will T=(t - cbrt(pad))/s be less than 1? No need to solve roots outside T=0..1. |
| Sk2f tms = tl - sl; |
| Sk2f insideRightPad = pad - tms*tms*tms; |
| |
| // Solve for the T values where abs(l(T)) = pad. |
| if (insideLeftPad[0] > 0 && insideRightPad[0] > 0) { |
| float padT = cbrtf(pad[0]); |
| Sk2f pts = (tl[0] + Sk2f(-padT, +padT)) / sl[0]; |
| pts.store(chops->push_back_n(2)); |
| } |
| |
| // Solve for the T values where abs(m(T)) = pad. |
| if (insideLeftPad[1] > 0 && insideRightPad[1] > 0) { |
| float padT = cbrtf(pad[1]); |
| Sk2f pts = (tl[1] + Sk2f(-padT, +padT)) / sl[1]; |
| pts.store(chops->push_back_n(2)); |
| } |
| } |
| |
| static inline void swap_if_greater(float& a, float& b) { |
| if (a > b) { |
| std::swap(a, b); |
| } |
| } |
| |
| // Finds where to chop a non-loop around its intersection point. The resulting cubic segments will |
| // be chopped such that a box of radius 'padRadius', centered at any point along the curve segment, |
| // is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M). |
| // |
| // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be |
| // drawn with quadratic splines instead of cubics. |
| // |
| // A loop intersection falls at two different T values, so this method takes Sk2f and computes the |
| // padding for both in SIMD. |
| static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2, |
| const Sk2f& C0, const Sk2f& C1, |
| ExcludedTerm skipTerm, float Cdet, |
| SkSTArray<4, float>* chops) { |
| SkASSERT(chops->empty()); |
| SkASSERT(padRadius >= 0); |
| |
| padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. |
| |
| // The parametric functions for distance from lines L & M are: |
| // |
| // l(T) = (T - Td)^2 * (T - Te) |
| // m(T) = (T - Td) * (T - Te)^2 |
| // |
| // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
| // 4.3 Finding klmn: |
| // |
| // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| Sk2f T2 = t2/s2; // T2 is the double root of l(T). |
| Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T). |
| |
| // Convert l(T), m(T) to power-basis form: |
| // |
| // | 1 1 | |
| // |l(T) m(T)| = |T^3 T^2 T 1| * | l2 m2 | |
| // | l1 m1 | |
| // | l0 m0 | |
| // |
| // From here on we use Sk2f with "L" names, but the second lane will be for line M. |
| Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1); |
| Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2); |
| Sk2f l0 = -T2*T2*T1; |
| |
| // The equation for line L can be found as follows: |
| // |
| // L = C^-1 * (l excluding skipTerm) |
| // |
| // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) |
| // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather |
| // than divide by determinant(C) here, we have already performed this divide on padRadius. |
| Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1; |
| Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1. |
| Sk2f Ly = C0[0]*l2or1 - C1[0]; |
| |
| // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan |
| // with of L. (See rationale in are_collinear.) |
| Sk2f Lwidth = Lx.abs() + Ly.abs(); |
| Sk2f pad = Lwidth * padRadius; |
| |
| // Is l(T=0) outside the padding around line L? |
| Sk2f lT0 = l0; // l(T=0) = |0 0 0 1| dot |1 l2 l1 l0| = l0 |
| Sk2f outsideT0 = lT0.abs() - pad; |
| |
| // Is l(T=1) outside the padding around line L? |
| Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1 1 1 1| dot |1 l2 l1 l0| |
| Sk2f outsideT1 = lT1.abs() - pad; |
| |
| // Values for solving the cubic. |
| Sk2f p, q, qqq, discr, numRoots, D; |
| bool hasDiscr = false; |
| |
| // Values for calculating one root (rarely needed). |
| Sk2f R, QQ; |
| bool hasOneRootVals = false; |
| |
| // Values for calculating three roots. |
| Sk2f P, cosTheta3; |
| bool hasThreeRootVals = false; |
| |
| // Solve for the T values where l(T) = +pad and m(T) = -pad. |
| for (int i = 0; i < 2; ++i) { |
| float T = T2[i]; // T is the point we are chopping around. |
| if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) { |
| // The padding around T is completely out of range. No point solving for it. |
| continue; |
| } |
| |
| if (!hasDiscr) { |
| p = Sk2f(+.5f, -.5f) * pad; |
| q = (1.f/3) * (T2 - T1); |
| qqq = q*q*q; |
| discr = qqq*p*2 + p*p; |
| numRoots = (discr < 0).thenElse(3, 1); |
| D = T2 - q; |
| hasDiscr = true; |
| } |
| |
| if (1 == numRoots[i]) { |
| if (!hasOneRootVals) { |
| Sk2f r = qqq + p; |
| Sk2f s = r.abs() + discr.sqrt(); |
| R = (r > 0).thenElse(-s, s); |
| QQ = q*q; |
| hasOneRootVals = true; |
| } |
| |
| float A = cbrtf(R[i]); |
| float B = A != 0 ? QQ[i]/A : 0; |
| // When there is only one root, ine L chops from root..1, line M chops from 0..root. |
| if (1 == i) { |
| chops->push_back(0); |
| } |
| chops->push_back(A + B + D[i]); |
| if (0 == i) { |
| chops->push_back(1); |
| } |
| continue; |
| } |
| |
| if (!hasThreeRootVals) { |
| P = q.abs() * -2; |
| cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs(); |
| hasThreeRootVals = true; |
| } |
| |
| static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3; |
| float theta = std::acos(cosTheta3[i]) * (1.f/3); |
| float roots[3] = {P[i] * std::cos(theta) + D[i], |
| P[i] * std::cos(theta + k2PiOver3) + D[i], |
| P[i] * std::cos(theta - k2PiOver3) + D[i]}; |
| |
| // Sort the three roots. |
| swap_if_greater(roots[0], roots[1]); |
| swap_if_greater(roots[1], roots[2]); |
| swap_if_greater(roots[0], roots[1]); |
| |
| // Line L chops around the first 2 roots, line M chops around the second 2. |
| chops->push_back_n(2, &roots[i]); |
| } |
| } |
| |
| void GrCCFillGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) { |
| SkASSERT(fBuildingContour); |
| SkASSERT(P[0] == fPoints.back()); |
| |
| // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small). |
| // Flat curves can break the math below. |
| if (are_collinear(P)) { |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p3 = Sk2f::Load(P+3); |
| this->appendLine(p0, p3); |
| return; |
| } |
| |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| Sk2f p2 = Sk2f::Load(P+2); |
| Sk2f p3 = Sk2f::Load(P+3); |
| |
| // Also detect near-quadratics ahead of time. |
| Sk2f tan0, tan1, c; |
| get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); |
| if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) { |
| this->appendQuadratics(p0, c, p3); |
| return; |
| } |
| |
| double tt[2], ss[2], D[4]; |
| fCurrCubicType = SkClassifyCubic(P, tt, ss, D); |
| SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); |
| Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1])); |
| Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1])); |
| |
| ExcludedTerm skipTerm = (std::abs(D[2]) > std::abs(D[1])) |
| ? ExcludedTerm::kQuadraticTerm |
| : ExcludedTerm::kLinearTerm; |
| Sk2f C0 = SkNx_fma(Sk2f(3), p1 - p2, p3 - p0); |
| Sk2f C1 = (ExcludedTerm::kLinearTerm == skipTerm |
| ? SkNx_fma(Sk2f(-2), p1, p0 + p2) |
| : p1 - p0) * 3; |
| Sk2f C0x1 = C0 * SkNx_shuffle<1,0>(C1); |
| float Cdet = C0x1[0] - C0x1[1]; |
| |
| SkSTArray<4, float> chops; |
| if (SkCubicType::kLoop != fCurrCubicType) { |
| find_chops_around_inflection_points(inflectPad, t, s, C0, C1, skipTerm, Cdet, &chops); |
| } else { |
| find_chops_around_loop_intersection(loopIntersectPad, t, s, C0, C1, skipTerm, Cdet, &chops); |
| } |
| if (4 == chops.count() && chops[1] >= chops[2]) { |
| // This just the means the KLM roots are so close that their paddings overlap. We will |
| // approximate the entire middle section, but still have it chopped midway. For loops this |
| // chop guarantees the append code only sees convex segments. Otherwise, it means we are (at |
| // least almost) a cusp and the chop makes sure we get a sharp point. |
| Sk2f ts = t * SkNx_shuffle<1,0>(s); |
| chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]); |
| } |
| |
| #ifdef SK_DEBUG |
| for (int i = 1; i < chops.count(); ++i) { |
| SkASSERT(chops[i] >= chops[i - 1]); |
| } |
| #endif |
| this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count()); |
| } |
| |
| static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, |
| float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) { |
| Sk2f TT = T; |
| *ab = lerp(p0, p1, TT); |
| Sk2f bc = lerp(p1, p2, TT); |
| *cd = lerp(p2, p3, TT); |
| *abc = lerp(*ab, bc, TT); |
| *bcd = lerp(bc, *cd, TT); |
| *abcd = lerp(*abc, *bcd, TT); |
| } |
| |
| void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, |
| const Sk2f& p2, const Sk2f& p3, const float chops[], |
| int numChops, float localT0, float localT1) { |
| if (numChops) { |
| SkASSERT(numChops > 0); |
| int midChopIdx = numChops/2; |
| float T = chops[midChopIdx]; |
| // Chops alternate between literal and approximate mode. |
| AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1); |
| |
| if (T <= localT0) { |
| // T is outside 0..1. Append the right side only. |
| this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1], |
| numChops - midChopIdx - 1, localT0, localT1); |
| return; |
| } |
| |
| if (T >= localT1) { |
| // T is outside 0..1. Append the left side only. |
| this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1); |
| return; |
| } |
| |
| float localT = (T - localT0) / (localT1 - localT0); |
| Sk2f p01, p02, pT, p11, p12; |
| chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12); |
| this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T); |
| this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1], |
| numChops - midChopIdx - 1, T, localT1); |
| return; |
| } |
| |
| this->appendCubics(mode, p0, p1, p2, p3); |
| } |
| |
| void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, |
| const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) { |
| if (SkCubicType::kLoop != fCurrCubicType) { |
| // Serpentines and cusps are always monotonic after chopping around inflection points. |
| SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); |
| |
| if (AppendCubicMode::kApproximate == mode) { |
| // This section passes through an inflection point, so we can get away with a flat line. |
| // This can cause some curves to feel slightly more flat when inspected rigorously back |
| // and forth against another renderer, but for now this seems acceptable given the |
| // simplicity. |
| this->appendLine(p0, p3); |
| return; |
| } |
| } else { |
| Sk2f tan0, tan1; |
| get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); |
| |
| if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) { |
| this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, |
| maxSubdivisions - 1); |
| return; |
| } |
| |
| if (AppendCubicMode::kApproximate == mode) { |
| Sk2f c; |
| if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) { |
| this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, |
| maxSubdivisions - 1); |
| return; |
| } |
| |
| this->appendMonotonicQuadratic(p0, c, p3); |
| return; |
| } |
| } |
| |
| // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
| // Since the cubic segment is known to be convex at this point, our flatness check is simple. |
| if (are_collinear(p0, (p1 + p2) * .5f, p3)) { |
| this->appendLine(p0, p3); |
| return; |
| } |
| |
| SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| SkASSERT((p0 != p3).anyTrue()); |
| p1.store(&fPoints.push_back()); |
| p2.store(&fPoints.push_back()); |
| p3.store(&fPoints.push_back()); |
| fVerbs.push_back(Verb::kMonotonicCubicTo); |
| ++fCurrContourTallies.fCubics; |
| } |
| |
| // Given a convex curve segment with the following order-2 tangent function: |
| // |
| // |C2x C2y| |
| // tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y| |
| // |C0x C0y| |
| // |
| // This function finds the T value whose tangent angle is halfway between the tangents at T=0 and |
| // T=1 (tan0 and tan1). |
| static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1, |
| const Sk2f& C2, const Sk2f& C1, const Sk2f& C0) { |
| // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the |
| // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent. |
| // |
| // n dot midtangent = 0 |
| // |
| Sk2f n = normalize(tan0) - normalize(tan1); |
| |
| // Find the T value at the midtangent. This is a simple quadratic equation: |
| // |
| // midtangent dot n = 0 |
| // |
| // (|t^2 t 1| * C) dot n = 0 |
| // |
| // |t^2 t 1| dot C*n = 0 |
| // |
| // First find coeffs = C*n. |
| Sk4f C[2]; |
| Sk2f::Store4(C, C2, C1, C0, 0); |
| Sk4f coeffs = C[0]*n[0] + C[1]*n[1]; |
| |
| // Now solve the quadratic. |
| float a = coeffs[0], b = coeffs[1], c = coeffs[2]; |
| float discr = b*b - 4*a*c; |
| if (discr < 0) { |
| return 0; // This will only happen if the curve is a line. |
| } |
| |
| // The roots are q/a and c/q. Pick the one closer to T=.5. |
| float q = -.5f * (b + copysignf(std::sqrt(discr), b)); |
| float r = .5f*q*a; |
| return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q; |
| } |
| |
| inline void GrCCFillGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0, |
| const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3, const Sk2f& tan0, |
| const Sk2f& tan1, |
| int maxFutureSubdivisions) { |
| float midT = find_midtangent(tan0, tan1, p3 + (p1 - p2)*3 - p0, |
| (p0 - p1*2 + p2)*2, |
| p1 - p0); |
| // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull |
| // near-flat cubics in cubicTo().) |
| if (!(midT > 0 && midT < 1)) { |
| // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1. |
| this->appendLine(p0, p3); |
| return; |
| } |
| |
| Sk2f p01, p02, pT, p11, p12; |
| chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12); |
| this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions); |
| this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions); |
| } |
| |
| void GrCCFillGeometry::conicTo(const SkPoint P[3], float w) { |
| SkASSERT(fBuildingContour); |
| SkASSERT(P[0] == fPoints.back()); |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| Sk2f p2 = Sk2f::Load(P+2); |
| |
| Sk2f tan0 = p1 - p0; |
| Sk2f tan1 = p2 - p1; |
| |
| if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
| // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't |
| // necessary if we are only interested in a vector in the same *direction* as a given |
| // tangent line. Since the denominator scales dx and dy uniformly, we can throw it out |
| // completely after evaluating the derivative with the standard quotient rule. This leaves |
| // us with a simpler quadratic function that we use to find the midtangent. |
| float midT = find_midtangent(tan0, tan1, (w - 1) * (p2 - p0), |
| (p2 - p0) - 2*w*(p1 - p0), |
| w*(p1 - p0)); |
| // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we |
| // cull near-linear conics above. And while w=0 is flat, it's not a line and has valid |
| // midtangents.) |
| if (!(midT > 0 && midT < 1)) { |
| // The conic is flat. Otherwise there would be a real midtangent inside T=0..1. |
| this->appendLine(p0, p2); |
| return; |
| } |
| |
| // Chop the conic at midtangent to produce two monotonic segments. |
| Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0); |
| Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w; |
| Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0); |
| Sk4f midT4 = midT; |
| |
| Sk4f p3d01 = lerp(p3d0, p3d1, midT4); |
| Sk4f p3d12 = lerp(p3d1, p3d2, midT4); |
| Sk4f p3d012 = lerp(p3d01, p3d12, midT4); |
| |
| Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2]; |
| Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt(); |
| |
| this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]); |
| this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]); |
| return; |
| } |
| |
| this->appendMonotonicConic(p0, p1, p2, w); |
| } |
| |
| void GrCCFillGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| float w) { |
| SkASSERT(w >= 0); |
| |
| Sk2f base = p2 - p0; |
| Sk2f baseAbs = base.abs(); |
| float baseWidth = baseAbs[0] + baseAbs[1]; |
| |
| // Find the height of the curve. Max height always occurs at T=.5 for conics. |
| Sk2f d = (p1 - p0) * SkNx_shuffle<1,0>(base); |
| float h1 = std::abs(d[1] - d[0]); // Height of p1 above the base. |
| float ht = h1*w, hs = 1 + w; // Height of the conic = ht/hs. |
| |
| // i.e. (ht/hs <= baseWidth * kFlatnessThreshold). Use "<=" in case base == 0. |
| if (ht <= (baseWidth*hs) * kFlatnessThreshold) { |
| // We are flat. (See rationale in are_collinear.) |
| this->appendLine(p0, p2); |
| return; |
| } |
| |
| // i.e. (w > 1 && h1 - ht/hs < baseWidth). |
| if (w > 1 && h1*hs - ht < baseWidth*hs) { |
| // If we get within 1px of p1 when w > 1, we will pick up artifacts from the implicit |
| // function's reflection. Chop at max height (T=.5) and draw a triangle instead. |
| Sk2f p1w = p1*w; |
| Sk2f ab = p0 + p1w; |
| Sk2f bc = p1w + p2; |
| Sk2f highpoint = (ab + bc) / (2*(1 + w)); |
| this->appendLine(p0, highpoint); |
| this->appendLine(highpoint, p2); |
| return; |
| } |
| |
| SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| SkASSERT((p0 != p2).anyTrue()); |
| p1.store(&fPoints.push_back()); |
| p2.store(&fPoints.push_back()); |
| fConicWeights.push_back(w); |
| fVerbs.push_back(Verb::kMonotonicConicTo); |
| ++fCurrContourTallies.fConics; |
| } |
| |
| GrCCFillGeometry::PrimitiveTallies GrCCFillGeometry::endContour() { |
| SkASSERT(fBuildingContour); |
| SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles); |
| |
| // The fTriangles field currently contains this contour's starting verb index. We can now |
| // use it to calculate the size of the contour's fan. |
| int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles; |
| if (fPoints.back() == fCurrAnchorPoint) { |
| --fanSize; |
| fVerbs.push_back(Verb::kEndClosedContour); |
| } else { |
| fVerbs.push_back(Verb::kEndOpenContour); |
| } |
| |
| fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0); |
| |
| SkDEBUGCODE(fBuildingContour = false); |
| return fCurrContourTallies; |
| } |