blob: 628adc4c9695907252b45938a583004b5f7553aa [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGpuDevice.h"
#include "effects/GrGradientEffects.h"
#include "GrContext.h"
#include "GrDefaultTextContext.h"
#include "GrTextContext.h"
#include "SkGrTexturePixelRef.h"
#include "SkColorFilter.h"
#include "SkDrawProcs.h"
#include "SkGlyphCache.h"
#include "SkImageFilter.h"
#include "SkTLazy.h"
#include "SkUtils.h"
#define CACHE_COMPATIBLE_DEVICE_TEXTURES 1
#if 0
extern bool (*gShouldDrawProc)();
#define CHECK_SHOULD_DRAW(draw) \
do { \
if (gShouldDrawProc && !gShouldDrawProc()) return; \
this->prepareRenderTarget(draw); \
GrAssert(!fNeedClear) \
} while (0)
#else
#define CHECK_SHOULD_DRAW(draw) this->prepareRenderTarget(draw); \
GrAssert(!fNeedClear)
#endif
// we use the same texture slot on GrPaint for bitmaps and shaders
// (since drawBitmap, drawSprite, and drawDevice ignore skia's shader)
enum {
kBitmapTextureIdx = 0,
kShaderTextureIdx = 0
};
#define MAX_BLUR_SIGMA 4.0f
// FIXME: This value comes from from SkBlurMaskFilter.cpp.
// Should probably be put in a common header someplace.
#define MAX_BLUR_RADIUS SkIntToScalar(128)
// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
// IMHO, it actually should be 1: we blur "less" than we should do
// according to the CSS and canvas specs, simply because Safari does the same.
// Firefox used to do the same too, until 4.0 where they fixed it. So at some
// point we should probably get rid of these scaling constants and rebaseline
// all the blur tests.
#define BLUR_SIGMA_SCALE 0.6f
// This constant represents the screen alignment criterion in texels for
// requiring texture domain clamping to prevent color bleeding when drawing
// a sub region of a larger source image.
#define COLOR_BLEED_TOLERANCE SkFloatToScalar(0.001f)
#define DO_DEFERRED_CLEAR \
do { \
if (fNeedClear) { \
this->clear(0x0); \
fNeedClear = false; \
} \
} while (false) \
///////////////////////////////////////////////////////////////////////////////
class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable {
public:
SkAutoCachedTexture() { }
SkAutoCachedTexture(SkGpuDevice* device,
const SkBitmap& bitmap,
const GrSamplerState* sampler,
GrTexture** texture) {
GrAssert(texture);
*texture = this->set(device, bitmap, sampler);
}
~SkAutoCachedTexture() {
if (fTex.texture()) {
fDevice->unlockCachedTexture(fTex);
}
}
GrTexture* set(SkGpuDevice* device,
const SkBitmap& bitmap,
const GrSamplerState* sampler) {
if (fTex.texture()) {
fDevice->unlockCachedTexture(fTex);
}
fDevice = device;
GrTexture* texture = (GrTexture*)bitmap.getTexture();
if (texture) {
// return the native texture
fTex.reset();
} else {
// look it up in our cache
fTex = device->lockCachedTexture(bitmap, sampler);
texture = fTex.texture();
}
return texture;
}
private:
SkGpuDevice* fDevice;
GrContext::TextureCacheEntry fTex;
};
///////////////////////////////////////////////////////////////////////////////
bool gDoTraceDraw;
struct GrSkDrawProcs : public SkDrawProcs {
public:
GrContext* fContext;
GrTextContext* fTextContext;
GrFontScaler* fFontScaler; // cached in the skia glyphcache
};
///////////////////////////////////////////////////////////////////////////////
static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) {
switch (config) {
case kAlpha_8_GrPixelConfig:
*isOpaque = false;
return SkBitmap::kA8_Config;
case kRGB_565_GrPixelConfig:
*isOpaque = true;
return SkBitmap::kRGB_565_Config;
case kRGBA_4444_GrPixelConfig:
*isOpaque = false;
return SkBitmap::kARGB_4444_Config;
case kSkia8888_PM_GrPixelConfig:
// we don't currently have a way of knowing whether
// a 8888 is opaque based on the config.
*isOpaque = false;
return SkBitmap::kARGB_8888_Config;
default:
*isOpaque = false;
return SkBitmap::kNo_Config;
}
}
static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) {
GrPixelConfig config = renderTarget->config();
bool isOpaque;
SkBitmap bitmap;
bitmap.setConfig(grConfig2skConfig(config, &isOpaque),
renderTarget->width(), renderTarget->height());
bitmap.setIsOpaque(isOpaque);
return bitmap;
}
SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture)
: SkDevice(make_bitmap(context, texture->asRenderTarget())) {
this->initFromRenderTarget(context, texture->asRenderTarget());
}
SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget)
: SkDevice(make_bitmap(context, renderTarget)) {
this->initFromRenderTarget(context, renderTarget);
}
void SkGpuDevice::initFromRenderTarget(GrContext* context,
GrRenderTarget* renderTarget) {
fNeedPrepareRenderTarget = false;
fDrawProcs = NULL;
fContext = context;
fContext->ref();
fTexture = NULL;
fRenderTarget = NULL;
fNeedClear = false;
GrAssert(NULL != renderTarget);
fRenderTarget = renderTarget;
fRenderTarget->ref();
// if this RT is also a texture, hold a ref on it
fTexture = fRenderTarget->asTexture();
SkSafeRef(fTexture);
// Create a pixel ref for the underlying SkBitmap. We prefer a texture pixel
// ref to a render target pixel reft. The pixel ref may get ref'ed outside
// the device via accessBitmap. This external ref may outlive the device.
// Since textures own their render targets (but not vice-versa) we
// are ensuring that both objects will live as long as the pixel ref.
SkPixelRef* pr;
if (fTexture) {
pr = new SkGrTexturePixelRef(fTexture);
} else {
pr = new SkGrRenderTargetPixelRef(fRenderTarget);
}
this->setPixelRef(pr, 0)->unref();
fTextContext = NULL;
}
SkGpuDevice::SkGpuDevice(GrContext* context,
SkBitmap::Config config,
int width,
int height)
: SkDevice(config, width, height, false /*isOpaque*/) {
fNeedPrepareRenderTarget = false;
fDrawProcs = NULL;
fContext = context;
fContext->ref();
fTexture = NULL;
fRenderTarget = NULL;
fNeedClear = false;
if (config != SkBitmap::kRGB_565_Config) {
config = SkBitmap::kARGB_8888_Config;
}
SkBitmap bm;
bm.setConfig(config, width, height);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = SkGr::BitmapConfig2PixelConfig(bm.config());
fTexture = fContext->createUncachedTexture(desc, NULL, 0);
if (NULL != fTexture) {
fRenderTarget = fTexture->asRenderTarget();
fRenderTarget->ref();
GrAssert(NULL != fRenderTarget);
// wrap the bitmap with a pixelref to expose our texture
SkGrTexturePixelRef* pr = new SkGrTexturePixelRef(fTexture);
this->setPixelRef(pr, 0)->unref();
} else {
GrPrintf("--- failed to create gpu-offscreen [%d %d]\n",
width, height);
GrAssert(false);
}
fTextContext = NULL;
}
SkGpuDevice::~SkGpuDevice() {
if (fDrawProcs) {
delete fDrawProcs;
}
SkSafeUnref(fTexture);
SkSafeUnref(fRenderTarget);
if (fCache.texture()) {
GrAssert(NULL != fTexture);
GrAssert(fRenderTarget == fTexture->asRenderTarget());
fContext->unlockTexture(fCache);
}
fContext->unref();
if (NULL != fTextContext) {
fTextContext->unref();
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::makeRenderTargetCurrent() {
DO_DEFERRED_CLEAR;
fContext->setRenderTarget(fRenderTarget);
fContext->flush(true);
fNeedPrepareRenderTarget = true;
}
///////////////////////////////////////////////////////////////////////////////
namespace {
GrPixelConfig config8888_to_gr_config(SkCanvas::Config8888 config8888) {
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
return kSkia8888_PM_GrPixelConfig;
case SkCanvas::kNative_Unpremul_Config8888:
return kSkia8888_UPM_GrPixelConfig;
case SkCanvas::kBGRA_Premul_Config8888:
return kBGRA_8888_PM_GrPixelConfig;
case SkCanvas::kBGRA_Unpremul_Config8888:
return kBGRA_8888_UPM_GrPixelConfig;
case SkCanvas::kRGBA_Premul_Config8888:
return kRGBA_8888_PM_GrPixelConfig;
case SkCanvas::kRGBA_Unpremul_Config8888:
return kRGBA_8888_UPM_GrPixelConfig;
default:
GrCrash("Unexpected Config8888.");
return kSkia8888_PM_GrPixelConfig;
}
}
}
bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) {
DO_DEFERRED_CLEAR;
SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config());
SkASSERT(!bitmap.isNull());
SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height())));
SkAutoLockPixels alp(bitmap);
GrPixelConfig config;
config = config8888_to_gr_config(config8888);
return fContext->readRenderTargetPixels(fRenderTarget,
x, y,
bitmap.width(),
bitmap.height(),
config,
bitmap.getPixels(),
bitmap.rowBytes());
}
void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888) {
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
return;
}
GrPixelConfig config;
if (SkBitmap::kARGB_8888_Config == bitmap.config()) {
config = config8888_to_gr_config(config8888);
} else {
config= SkGr::BitmapConfig2PixelConfig(bitmap.config());
}
fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(),
config, bitmap.getPixels(), bitmap.rowBytes());
}
///////////////////////////////////////////////////////////////////////////////
static void convert_matrixclip(GrContext* context, const SkMatrix& matrix,
const SkClipStack& clipStack,
const SkRegion& clipRegion,
const SkIPoint& origin) {
context->setMatrix(matrix);
SkGrClipIterator iter;
iter.reset(clipStack);
const SkIRect& skBounds = clipRegion.getBounds();
GrRect bounds;
bounds.setLTRB(GrIntToScalar(skBounds.fLeft),
GrIntToScalar(skBounds.fTop),
GrIntToScalar(skBounds.fRight),
GrIntToScalar(skBounds.fBottom));
GrClip grc(&iter, GrIntToScalar(-origin.x()), GrIntToScalar(-origin.y()),
&bounds);
context->setClip(grc);
}
// call this ever each draw call, to ensure that the context reflects our state,
// and not the state from some other canvas/device
void SkGpuDevice::prepareRenderTarget(const SkDraw& draw) {
if (fNeedPrepareRenderTarget ||
fContext->getRenderTarget() != fRenderTarget) {
fContext->setRenderTarget(fRenderTarget);
SkASSERT(draw.fClipStack);
convert_matrixclip(fContext, *draw.fMatrix,
*draw.fClipStack, *draw.fClip, this->getOrigin());
fNeedPrepareRenderTarget = false;
}
}
void SkGpuDevice::setMatrixClip(const SkMatrix& matrix, const SkRegion& clip,
const SkClipStack& clipStack) {
this->INHERITED::setMatrixClip(matrix, clip, clipStack);
// We don't need to set them now because the context may not reflect this device.
fNeedPrepareRenderTarget = true;
}
void SkGpuDevice::gainFocus(SkCanvas* canvas, const SkMatrix& matrix,
const SkRegion& clip, const SkClipStack& clipStack) {
fContext->setRenderTarget(fRenderTarget);
this->INHERITED::gainFocus(canvas, matrix, clip, clipStack);
convert_matrixclip(fContext, matrix, clipStack, clip, this->getOrigin());
DO_DEFERRED_CLEAR;
}
SkGpuRenderTarget* SkGpuDevice::accessRenderTarget() {
DO_DEFERRED_CLEAR;
return (SkGpuRenderTarget*)fRenderTarget;
}
bool SkGpuDevice::bindDeviceAsTexture(GrPaint* paint) {
if (NULL != fTexture) {
paint->setTexture(kBitmapTextureIdx, fTexture);
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4,
shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 4, shader_type_mismatch);
namespace {
// converts a SkPaint to a GrPaint, ignoring the skPaint's shader
// justAlpha indicates that skPaint's alpha should be used rather than the color
// Callers may subsequently modify the GrPaint. Setting constantColor indicates
// that the final paint will draw the same color at every pixel. This allows
// an optimization where the the color filter can be applied to the skPaint's
// color once while converting to GrPain and then ignored.
inline bool skPaint2GrPaintNoShader(const SkPaint& skPaint,
bool justAlpha,
bool constantColor,
GrPaint* grPaint) {
grPaint->fDither = skPaint.isDither();
grPaint->fAntiAlias = skPaint.isAntiAlias();
grPaint->fCoverage = 0xFF;
SkXfermode::Coeff sm = SkXfermode::kOne_Coeff;
SkXfermode::Coeff dm = SkXfermode::kISA_Coeff;
SkXfermode* mode = skPaint.getXfermode();
if (mode) {
if (!mode->asCoeff(&sm, &dm)) {
//SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");)
#if 0
return false;
#endif
}
}
grPaint->fSrcBlendCoeff = sk_blend_to_grblend(sm);
grPaint->fDstBlendCoeff = sk_blend_to_grblend(dm);
if (justAlpha) {
uint8_t alpha = skPaint.getAlpha();
grPaint->fColor = GrColorPackRGBA(alpha, alpha, alpha, alpha);
// justAlpha is currently set to true only if there is a texture,
// so constantColor should not also be true.
GrAssert(!constantColor);
} else {
grPaint->fColor = SkGr::SkColor2GrColor(skPaint.getColor());
grPaint->setTexture(kShaderTextureIdx, NULL);
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
SkColor color;
SkXfermode::Mode filterMode;
SkScalar matrix[20];
if (colorFilter != NULL && colorFilter->asColorMode(&color, &filterMode)) {
grPaint->fColorMatrixEnabled = false;
if (!constantColor) {
grPaint->fColorFilterColor = SkGr::SkColor2GrColor(color);
grPaint->fColorFilterXfermode = filterMode;
} else {
SkColor filtered = colorFilter->filterColor(skPaint.getColor());
grPaint->fColor = SkGr::SkColor2GrColor(filtered);
grPaint->resetColorFilter();
}
} else if (colorFilter != NULL && colorFilter->asColorMatrix(matrix)) {
grPaint->fColorMatrixEnabled = true;
memcpy(grPaint->fColorMatrix, matrix, sizeof(matrix));
grPaint->fColorFilterXfermode = SkXfermode::kDst_Mode;
} else {
grPaint->resetColorFilter();
}
return true;
}
// This function is similar to skPaint2GrPaintNoShader but also converts
// skPaint's shader to a GrTexture/GrSamplerState if possible. The texture to
// be used is set on grPaint and returned in param act. constantColor has the
// same meaning as in skPaint2GrPaintNoShader.
inline bool skPaint2GrPaintShader(SkGpuDevice* dev,
const SkPaint& skPaint,
bool constantColor,
SkGpuDevice::SkAutoCachedTexture* act,
GrPaint* grPaint) {
SkASSERT(NULL != act);
SkShader* shader = skPaint.getShader();
if (NULL == shader) {
return skPaint2GrPaintNoShader(skPaint,
false,
constantColor,
grPaint);
} else if (!skPaint2GrPaintNoShader(skPaint, true, false, grPaint)) {
return false;
}
SkBitmap bitmap;
SkMatrix* matrix = grPaint->textureSampler(kShaderTextureIdx)->matrix();
SkShader::TileMode tileModes[2];
SkScalar twoPointParams[3];
SkShader::BitmapType bmptype = shader->asABitmap(&bitmap, matrix,
tileModes, twoPointParams);
if (SkShader::kNone_BitmapType == bmptype) {
SkShader::GradientInfo info;
SkColor color;
info.fColors = &color;
info.fColorOffsets = NULL;
info.fColorCount = 1;
if (SkShader::kColor_GradientType == shader->asAGradient(&info)) {
SkPaint copy(skPaint);
copy.setShader(NULL);
// modulate the paint alpha by the shader's solid color alpha
U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha());
copy.setColor(SkColorSetA(color, newA));
return skPaint2GrPaintNoShader(copy,
false,
constantColor,
grPaint);
}
return false;
}
GrSamplerState* sampler = grPaint->textureSampler(kShaderTextureIdx);
switch (bmptype) {
case SkShader::kRadial_BitmapType:
sampler->setCustomStage(new GrRadialGradient())->unref();
sampler->setFilter(GrSamplerState::kBilinear_Filter);
break;
case SkShader::kSweep_BitmapType:
sampler->setCustomStage(new GrSweepGradient())->unref();
sampler->setFilter(GrSamplerState::kBilinear_Filter);
break;
case SkShader::kTwoPointRadial_BitmapType:
sampler->setCustomStage(new
GrRadial2Gradient(twoPointParams[0],
twoPointParams[1],
twoPointParams[2] < 0))->unref();
sampler->setFilter(GrSamplerState::kBilinear_Filter);
break;
default:
if (skPaint.isFilterBitmap()) {
sampler->setFilter(GrSamplerState::kBilinear_Filter);
} else {
sampler->setFilter(GrSamplerState::kNearest_Filter);
}
break;
}
sampler->setWrapX(sk_tile_mode_to_grwrap(tileModes[0]));
sampler->setWrapY(sk_tile_mode_to_grwrap(tileModes[1]));
GrTexture* texture = act->set(dev, bitmap, sampler);
if (NULL == texture) {
SkDebugf("Couldn't convert bitmap to texture.\n");
return false;
}
grPaint->setTexture(kShaderTextureIdx, texture);
// since our texture coords will be in local space, we wack the texture
// matrix to map them back into 0...1 before we load it
SkMatrix localM;
if (shader->getLocalMatrix(&localM)) {
SkMatrix inverse;
if (localM.invert(&inverse)) {
matrix->preConcat(inverse);
}
}
if (SkShader::kDefault_BitmapType == bmptype) {
GrScalar sx = SkFloatToScalar(1.f / bitmap.width());
GrScalar sy = SkFloatToScalar(1.f / bitmap.height());
matrix->postScale(sx, sy);
} else if (SkShader::kRadial_BitmapType == bmptype) {
GrScalar s = SkFloatToScalar(1.f / bitmap.width());
matrix->postScale(s, s);
}
return true;
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::clear(SkColor color) {
fContext->setRenderTarget(fRenderTarget);
fContext->clear(NULL, color);
}
void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
fContext->drawPaint(grPaint);
}
// must be in SkCanvas::PointMode order
static const GrPrimitiveType gPointMode2PrimtiveType[] = {
kPoints_GrPrimitiveType,
kLines_GrPrimitiveType,
kLineStrip_GrPrimitiveType
};
void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode,
size_t count, const SkPoint pts[], const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
SkScalar width = paint.getStrokeWidth();
if (width < 0) {
return;
}
// we only handle hairlines and paints without path effects or mask filters,
// else we let the SkDraw call our drawPath()
if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) {
draw.drawPoints(mode, count, pts, paint, true);
return;
}
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
fContext->drawVertices(grPaint,
gPointMode2PrimtiveType[mode],
count,
(GrPoint*)pts,
NULL,
NULL,
NULL,
0);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
bool doStroke = paint.getStyle() != SkPaint::kFill_Style;
SkScalar width = paint.getStrokeWidth();
/*
We have special code for hairline strokes, miter-strokes, and fills.
Anything else we just call our path code.
*/
bool usePath = doStroke && width > 0 &&
paint.getStrokeJoin() != SkPaint::kMiter_Join;
// another two reasons we might need to call drawPath...
if (paint.getMaskFilter() || paint.getPathEffect()) {
usePath = true;
}
// until we aa rotated rects...
if (!usePath && paint.isAntiAlias() && !draw.fMatrix->rectStaysRect()) {
usePath = true;
}
// small miter limit means right angles show bevel...
if (SkPaint::kMiter_Join == paint.getStrokeJoin() &&
paint.getStrokeMiter() < SK_ScalarSqrt2)
{
usePath = true;
}
// until we can both stroke and fill rectangles
if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) {
usePath = true;
}
if (usePath) {
SkPath path;
path.addRect(rect);
this->drawPath(draw, path, paint, NULL, true);
return;
}
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
fContext->drawRect(grPaint, rect, doStroke ? width : -1);
}
#include "SkMaskFilter.h"
#include "SkBounder.h"
///////////////////////////////////////////////////////////////////////////////
// helpers for applying mask filters
namespace {
GrPathFill skToGrFillType(SkPath::FillType fillType) {
switch (fillType) {
case SkPath::kWinding_FillType:
return kWinding_GrPathFill;
case SkPath::kEvenOdd_FillType:
return kEvenOdd_GrPathFill;
case SkPath::kInverseWinding_FillType:
return kInverseWinding_GrPathFill;
case SkPath::kInverseEvenOdd_FillType:
return kInverseEvenOdd_GrPathFill;
default:
SkDebugf("Unsupported path fill type\n");
return kHairLine_GrPathFill;
}
}
// We prefer to blur small rect with small radius via CPU.
#define MIN_GPU_BLUR_SIZE SkIntToScalar(64)
#define MIN_GPU_BLUR_RADIUS SkIntToScalar(32)
inline bool shouldDrawBlurWithCPU(const SkRect& rect, SkScalar radius) {
if (rect.width() <= MIN_GPU_BLUR_SIZE &&
rect.height() <= MIN_GPU_BLUR_SIZE &&
radius <= MIN_GPU_BLUR_RADIUS) {
return true;
}
return false;
}
bool drawWithGPUMaskFilter(GrContext* context, const SkPath& path,
SkMaskFilter* filter, const SkMatrix& matrix,
const SkRegion& clip, SkBounder* bounder,
GrPaint* grp, GrPathFill pathFillType) {
#ifdef SK_DISABLE_GPU_BLUR
return false;
#endif
SkMaskFilter::BlurInfo info;
SkMaskFilter::BlurType blurType = filter->asABlur(&info);
if (SkMaskFilter::kNone_BlurType == blurType) {
return false;
}
SkScalar radius = info.fIgnoreTransform ? info.fRadius
: matrix.mapRadius(info.fRadius);
radius = SkMinScalar(radius, MAX_BLUR_RADIUS);
if (radius <= 0) {
return false;
}
SkRect srcRect = path.getBounds();
if (shouldDrawBlurWithCPU(srcRect, radius)) {
return false;
}
float sigma = SkScalarToFloat(radius) * BLUR_SIGMA_SCALE;
float sigma3 = sigma * 3.0f;
SkRect clipRect;
clipRect.set(clip.getBounds());
// Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
srcRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3));
clipRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3));
srcRect.intersect(clipRect);
SkRect finalRect = srcRect;
SkIRect finalIRect;
finalRect.roundOut(&finalIRect);
if (clip.quickReject(finalIRect)) {
return true;
}
if (bounder && !bounder->doIRect(finalIRect)) {
return true;
}
GrPoint offset = GrPoint::Make(-srcRect.fLeft, -srcRect.fTop);
srcRect.offset(offset);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = SkScalarCeilToInt(srcRect.width());
desc.fHeight = SkScalarCeilToInt(srcRect.height());
// We actually only need A8, but it often isn't supported as a
// render target so default to RGBA_8888
desc.fConfig = kRGBA_8888_PM_GrPixelConfig;
if (context->isConfigRenderable(kAlpha_8_GrPixelConfig)) {
desc.fConfig = kAlpha_8_GrPixelConfig;
}
GrAutoScratchTexture pathEntry(context, desc);
GrTexture* pathTexture = pathEntry.texture();
if (NULL == pathTexture) {
return false;
}
GrRenderTarget* oldRenderTarget = context->getRenderTarget();
// Once this code moves into GrContext, this should be changed to use
// an AutoClipRestore.
GrClip oldClip = context->getClip();
context->setRenderTarget(pathTexture->asRenderTarget());
context->setClip(srcRect);
context->clear(NULL, 0);
GrPaint tempPaint;
tempPaint.reset();
GrAutoMatrix avm(context, GrMatrix::I());
tempPaint.fAntiAlias = grp->fAntiAlias;
if (tempPaint.fAntiAlias) {
// AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst
// blend coeff of zero requires dual source blending support in order
// to properly blend partially covered pixels. This means the AA
// code path may not be taken. So we use a dst blend coeff of ISA. We
// could special case AA draws to a dst surface with known alpha=0 to
// use a zero dst coeff when dual source blending isn't available.
tempPaint.fSrcBlendCoeff = kOne_GrBlendCoeff;
tempPaint.fDstBlendCoeff = kISC_GrBlendCoeff;
}
// Draw hard shadow to pathTexture with path topleft at origin 0,0.
context->drawPath(tempPaint, path, pathFillType, &offset);
GrAutoScratchTexture temp1, temp2;
// If we're doing a normal blur, we can clobber the pathTexture in the
// gaussianBlur. Otherwise, we need to save it for later compositing.
bool isNormalBlur = blurType == SkMaskFilter::kNormal_BlurType;
GrTexture* blurTexture = context->gaussianBlur(pathTexture,
&temp1,
isNormalBlur ? NULL : &temp2,
srcRect, sigma, sigma);
if (!isNormalBlur) {
GrPaint paint;
paint.reset();
paint.textureSampler(0)->setFilter(GrSamplerState::kNearest_Filter);
paint.textureSampler(0)->matrix()->setIDiv(pathTexture->width(),
pathTexture->height());
// Blend pathTexture over blurTexture.
context->setRenderTarget(blurTexture->asRenderTarget());
paint.setTexture(0, pathTexture);
if (SkMaskFilter::kInner_BlurType == blurType) {
// inner: dst = dst * src
paint.fSrcBlendCoeff = kDC_GrBlendCoeff;
paint.fDstBlendCoeff = kZero_GrBlendCoeff;
} else if (SkMaskFilter::kSolid_BlurType == blurType) {
// solid: dst = src + dst - src * dst
// = (1 - dst) * src + 1 * dst
paint.fSrcBlendCoeff = kIDC_GrBlendCoeff;
paint.fDstBlendCoeff = kOne_GrBlendCoeff;
} else if (SkMaskFilter::kOuter_BlurType == blurType) {
// outer: dst = dst * (1 - src)
// = 0 * src + (1 - src) * dst
paint.fSrcBlendCoeff = kZero_GrBlendCoeff;
paint.fDstBlendCoeff = kISC_GrBlendCoeff;
}
context->drawRect(paint, srcRect);
}
context->setRenderTarget(oldRenderTarget);
context->setClip(oldClip);
if (grp->hasTextureOrMask()) {
GrMatrix inverse;
if (!matrix.invert(&inverse)) {
return false;
}
grp->preConcatActiveSamplerMatrices(inverse);
}
static const int MASK_IDX = GrPaint::kMaxMasks - 1;
// we assume the last mask index is available for use
GrAssert(NULL == grp->getMask(MASK_IDX));
grp->setMask(MASK_IDX, blurTexture);
grp->maskSampler(MASK_IDX)->reset();
grp->maskSampler(MASK_IDX)->matrix()->setTranslate(-finalRect.fLeft,
-finalRect.fTop);
grp->maskSampler(MASK_IDX)->matrix()->postIDiv(blurTexture->width(),
blurTexture->height());
context->drawRect(*grp, finalRect);
return true;
}
bool drawWithMaskFilter(GrContext* context, const SkPath& path,
SkMaskFilter* filter, const SkMatrix& matrix,
const SkRegion& clip, SkBounder* bounder,
GrPaint* grp, SkPaint::Style style) {
SkMask srcM, dstM;
if (!SkDraw::DrawToMask(path, &clip.getBounds(), filter, &matrix, &srcM,
SkMask::kComputeBoundsAndRenderImage_CreateMode,
style)) {
return false;
}
SkAutoMaskFreeImage autoSrc(srcM.fImage);
if (!filter->filterMask(&dstM, srcM, matrix, NULL)) {
return false;
}
// this will free-up dstM when we're done (allocated in filterMask())
SkAutoMaskFreeImage autoDst(dstM.fImage);
if (clip.quickReject(dstM.fBounds)) {
return false;
}
if (bounder && !bounder->doIRect(dstM.fBounds)) {
return false;
}
// we now have a device-aligned 8bit mask in dstM, ready to be drawn using
// the current clip (and identity matrix) and grpaint settings
// used to compute inverse view, if necessary
GrMatrix ivm = matrix;
GrAutoMatrix avm(context, GrMatrix::I());
GrTextureDesc desc;
desc.fWidth = dstM.fBounds.width();
desc.fHeight = dstM.fBounds.height();
desc.fConfig = kAlpha_8_GrPixelConfig;
GrAutoScratchTexture ast(context, desc);
GrTexture* texture = ast.texture();
if (NULL == texture) {
return false;
}
texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig,
dstM.fImage, dstM.fRowBytes);
if (grp->hasTextureOrMask() && ivm.invert(&ivm)) {
grp->preConcatActiveSamplerMatrices(ivm);
}
static const int MASK_IDX = GrPaint::kMaxMasks - 1;
// we assume the last mask index is available for use
GrAssert(NULL == grp->getMask(MASK_IDX));
grp->setMask(MASK_IDX, texture);
grp->maskSampler(MASK_IDX)->reset();
GrRect d;
d.setLTRB(GrIntToScalar(dstM.fBounds.fLeft),
GrIntToScalar(dstM.fBounds.fTop),
GrIntToScalar(dstM.fBounds.fRight),
GrIntToScalar(dstM.fBounds.fBottom));
GrMatrix* m = grp->maskSampler(MASK_IDX)->matrix();
m->setTranslate(-dstM.fBounds.fLeft*SK_Scalar1,
-dstM.fBounds.fTop*SK_Scalar1);
m->postIDiv(texture->width(), texture->height());
context->drawRect(*grp, d);
return true;
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath,
const SkPaint& paint, const SkMatrix* prePathMatrix,
bool pathIsMutable) {
CHECK_SHOULD_DRAW(draw);
bool doFill = true;
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
// can we cheat, and threat a thin stroke as a hairline w/ coverage
// if we can, we draw lots faster (raster device does this same test)
SkScalar hairlineCoverage;
if (SkDrawTreatAsHairline(paint, *draw.fMatrix, &hairlineCoverage)) {
doFill = false;
grPaint.fCoverage = SkScalarRoundToInt(hairlineCoverage *
grPaint.fCoverage);
}
// If we have a prematrix, apply it to the path, optimizing for the case
// where the original path can in fact be modified in place (even though
// its parameter type is const).
SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath);
SkPath tmpPath;
if (prePathMatrix) {
SkPath* result = pathPtr;
if (!pathIsMutable) {
result = &tmpPath;
pathIsMutable = true;
}
// should I push prePathMatrix on our MV stack temporarily, instead
// of applying it here? See SkDraw.cpp
pathPtr->transform(*prePathMatrix, result);
pathPtr = result;
}
// at this point we're done with prePathMatrix
SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;)
if (paint.getPathEffect() ||
(doFill && paint.getStyle() != SkPaint::kFill_Style)) {
// it is safe to use tmpPath here, even if we already used it for the
// prepathmatrix, since getFillPath can take the same object for its
// input and output safely.
doFill = paint.getFillPath(*pathPtr, &tmpPath);
pathPtr = &tmpPath;
}
if (paint.getMaskFilter()) {
// avoid possibly allocating a new path in transform if we can
SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath;
// transform the path into device space
pathPtr->transform(*draw.fMatrix, devPathPtr);
GrPathFill pathFillType = doFill ?
skToGrFillType(devPathPtr->getFillType()) : kHairLine_GrPathFill;
if (!drawWithGPUMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(),
*draw.fMatrix, *draw.fClip, draw.fBounder,
&grPaint, pathFillType)) {
SkPaint::Style style = doFill ? SkPaint::kFill_Style :
SkPaint::kStroke_Style;
drawWithMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(),
*draw.fMatrix, *draw.fClip, draw.fBounder,
&grPaint, style);
}
return;
}
GrPathFill fill = kHairLine_GrPathFill;
if (doFill) {
switch (pathPtr->getFillType()) {
case SkPath::kWinding_FillType:
fill = kWinding_GrPathFill;
break;
case SkPath::kEvenOdd_FillType:
fill = kEvenOdd_GrPathFill;
break;
case SkPath::kInverseWinding_FillType:
fill = kInverseWinding_GrPathFill;
break;
case SkPath::kInverseEvenOdd_FillType:
fill = kInverseEvenOdd_GrPathFill;
break;
default:
SkDebugf("Unsupported path fill type\n");
return;
}
}
fContext->drawPath(grPaint, *pathPtr, fill);
}
namespace {
inline int get_tile_count(int l, int t, int r, int b, int tileSize) {
int tilesX = (r / tileSize) - (l / tileSize) + 1;
int tilesY = (b / tileSize) - (t / tileSize) + 1;
return tilesX * tilesY;
}
inline int determine_tile_size(const SkBitmap& bitmap,
const SkIRect* srcRectPtr,
int maxTextureSize) {
static const int kSmallTileSize = 1 << 10;
if (maxTextureSize <= kSmallTileSize) {
return maxTextureSize;
}
size_t maxTexTotalTileSize;
size_t smallTotalTileSize;
if (NULL == srcRectPtr) {
int w = bitmap.width();
int h = bitmap.height();
maxTexTotalTileSize = get_tile_count(0, 0, w, h, maxTextureSize);
smallTotalTileSize = get_tile_count(0, 0, w, h, kSmallTileSize);
} else {
maxTexTotalTileSize = get_tile_count(srcRectPtr->fLeft,
srcRectPtr->fTop,
srcRectPtr->fRight,
srcRectPtr->fBottom,
maxTextureSize);
smallTotalTileSize = get_tile_count(srcRectPtr->fLeft,
srcRectPtr->fTop,
srcRectPtr->fRight,
srcRectPtr->fBottom,
kSmallTileSize);
}
maxTexTotalTileSize *= maxTextureSize * maxTextureSize;
smallTotalTileSize *= kSmallTileSize * kSmallTileSize;
if (maxTexTotalTileSize > 2 * smallTotalTileSize) {
return kSmallTileSize;
} else {
return maxTextureSize;
}
}
}
bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap,
const GrSamplerState& sampler,
const SkIRect* srcRectPtr,
int* tileSize) const {
SkASSERT(NULL != tileSize);
// if bitmap is explictly texture backed then just use the texture
if (NULL != bitmap.getTexture()) {
return false;
}
// if it's larger than the max texture size, then we have no choice but
// tiling
const int maxTextureSize = fContext->getMaxTextureSize();
if (bitmap.width() > maxTextureSize ||
bitmap.height() > maxTextureSize) {
*tileSize = determine_tile_size(bitmap, srcRectPtr, maxTextureSize);
return true;
}
// if we are going to have to draw the whole thing, then don't tile
if (NULL == srcRectPtr) {
return false;
}
// if the entire texture is already in our cache then no reason to tile it
if (this->isBitmapInTextureCache(bitmap, sampler)) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap
// as a texture. However, if the texture would be large compared to the
// cache size and we don't require most of it for this draw then tile to
// reduce the amount of upload and cache spill.
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = bitmap.getSize();
size_t cacheSize = fContext->getTextureCacheBudget();
if (bmpSize < cacheSize / 2) {
return false;
}
SkFixed fracUsed =
SkFixedMul((srcRectPtr->width() << 16) / bitmap.width(),
(srcRectPtr->height() << 16) / bitmap.height());
if (fracUsed <= SK_FixedHalf) {
*tileSize = determine_tile_size(bitmap, srcRectPtr, maxTextureSize);
return true;
} else {
return false;
}
}
void SkGpuDevice::drawBitmap(const SkDraw& draw,
const SkBitmap& bitmap,
const SkIRect* srcRectPtr,
const SkMatrix& m,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
SkIRect srcRect;
if (NULL == srcRectPtr) {
srcRect.set(0, 0, bitmap.width(), bitmap.height());
} else {
srcRect = *srcRectPtr;
}
if (paint.getMaskFilter()){
// Convert the bitmap to a shader so that the rect can be drawn
// through drawRect, which supports mask filters.
SkBitmap tmp; // subset of bitmap, if necessary
const SkBitmap* bitmapPtr = &bitmap;
if (srcRectPtr) {
if (!bitmap.extractSubset(&tmp, srcRect)) {
return; // extraction failed
}
bitmapPtr = &tmp;
srcRect.set(0,0, srcRect.width(), srcRect.height());
}
SkPaint paintWithTexture(paint);
paintWithTexture.setShader(SkShader::CreateBitmapShader( *bitmapPtr,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref();
SkRect ScalarRect;
ScalarRect.set(srcRect);
// Transform 'm' needs to be concatenated to the draw matrix,
// rather than transforming the primitive directly, so that 'm' will
// also affect the behavior of the mask filter.
SkMatrix drawMatrix;
drawMatrix.setConcat(*draw.fMatrix, m);
SkDraw transformedDraw(draw);
transformedDraw.fMatrix = &drawMatrix;
this->drawRect(transformedDraw, ScalarRect, paintWithTexture);
return;
}
GrPaint grPaint;
if (!skPaint2GrPaintNoShader(paint, true, false, &grPaint)) {
return;
}
GrSamplerState* sampler = grPaint.textureSampler(kBitmapTextureIdx);
if (paint.isFilterBitmap()) {
sampler->setFilter(GrSamplerState::kBilinear_Filter);
} else {
sampler->setFilter(GrSamplerState::kNearest_Filter);
}
int tileSize;
if (!this->shouldTileBitmap(bitmap, *sampler, srcRectPtr, &tileSize)) {
// take the simple case
this->internalDrawBitmap(draw, bitmap, srcRect, m, &grPaint);
return;
}
// undo the translate done by SkCanvas
int DX = SkMax32(0, srcRect.fLeft);
int DY = SkMax32(0, srcRect.fTop);
// compute clip bounds in local coordinates
SkIRect clipRect;
{
SkRect r;
r.set(draw.fClip->getBounds());
SkMatrix matrix, inverse;
matrix.setConcat(*draw.fMatrix, m);
if (!matrix.invert(&inverse)) {
return;
}
inverse.mapRect(&r);
r.roundOut(&clipRect);
// apply the canvas' translate to our local clip
clipRect.offset(DX, DY);
}
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkIRect tileR;
tileR.set(x * tileSize, y * tileSize,
(x + 1) * tileSize, (y + 1) * tileSize);
if (!SkIRect::Intersects(tileR, clipRect)) {
continue;
}
SkIRect srcR = tileR;
if (!srcR.intersect(srcRect)) {
continue;
}
SkBitmap tmpB;
if (bitmap.extractSubset(&tmpB, tileR)) {
// now offset it to make it "local" to our tmp bitmap
srcR.offset(-tileR.fLeft, -tileR.fTop);
SkMatrix tmpM(m);
{
int dx = tileR.fLeft - DX + SkMax32(0, srcR.fLeft);
int dy = tileR.fTop - DY + SkMax32(0, srcR.fTop);
tmpM.preTranslate(SkIntToScalar(dx), SkIntToScalar(dy));
}
this->internalDrawBitmap(draw, tmpB, srcR, tmpM, &grPaint);
}
}
}
}
namespace {
bool hasAlignedSamples(const SkRect& srcRect, const SkRect& transformedRect) {
// detect pixel disalignment
if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) -
transformedRect.left()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) -
transformedRect.top()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.width() - srcRect.width()) <
COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.height() - srcRect.height()) <
COLOR_BLEED_TOLERANCE) {
return true;
}
return false;
}
bool mayColorBleed(const SkRect& srcRect, const SkRect& transformedRect,
const SkMatrix& m) {
// Only gets called if hasAlignedSamples returned false.
// So we can assume that sampling is axis aligned but not texel aligned.
GrAssert(!hasAlignedSamples(srcRect, transformedRect));
SkRect innerSrcRect(srcRect), innerTransformedRect,
outerTransformedRect(transformedRect);
innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
m.mapRect(&innerTransformedRect, innerSrcRect);
// The gap between outerTransformedRect and innerTransformedRect
// represents the projection of the source border area, which is
// problematic for color bleeding. We must check whether any
// destination pixels sample the border area.
outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
SkIRect outer, inner;
outerTransformedRect.round(&outer);
innerTransformedRect.round(&inner);
// If the inner and outer rects round to the same result, it means the
// border does not overlap any pixel centers. Yay!
return inner != outer;
}
} // unnamed namespace
/*
* This is called by drawBitmap(), which has to handle images that may be too
* large to be represented by a single texture.
*
* internalDrawBitmap assumes that the specified bitmap will fit in a texture
* and that non-texture portion of the GrPaint has already been setup.
*/
void SkGpuDevice::internalDrawBitmap(const SkDraw& draw,
const SkBitmap& bitmap,
const SkIRect& srcRect,
const SkMatrix& m,
GrPaint* grPaint) {
SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() &&
bitmap.height() <= fContext->getMaxTextureSize());
SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
SkDebugf("nothing to draw\n");
return;
}
GrSamplerState* sampler = grPaint->textureSampler(kBitmapTextureIdx);
sampler->setWrapX(GrSamplerState::kClamp_WrapMode);
sampler->setWrapY(GrSamplerState::kClamp_WrapMode);
sampler->matrix()->reset();
GrTexture* texture;
SkAutoCachedTexture act(this, bitmap, sampler, &texture);
if (NULL == texture) {
return;
}
grPaint->setTexture(kBitmapTextureIdx, texture);
GrRect dstRect = SkRect::MakeWH(GrIntToScalar(srcRect.width()),
GrIntToScalar(srcRect.height()));
GrRect paintRect;
float wInv = 1.f / bitmap.width();
float hInv = 1.f / bitmap.height();
paintRect.setLTRB(SkFloatToScalar(srcRect.fLeft * wInv),
SkFloatToScalar(srcRect.fTop * hInv),
SkFloatToScalar(srcRect.fRight * wInv),
SkFloatToScalar(srcRect.fBottom * hInv));
bool needsTextureDomain = false;
if (GrSamplerState::kBilinear_Filter == sampler->getFilter())
{
// Need texture domain if drawing a sub rect.
needsTextureDomain = srcRect.width() < bitmap.width() ||
srcRect.height() < bitmap.height();
if (m.rectStaysRect() && draw.fMatrix->rectStaysRect()) {
// sampling is axis-aligned
GrRect floatSrcRect, transformedRect;
floatSrcRect.set(srcRect);
SkMatrix srcToDeviceMatrix(m);
srcToDeviceMatrix.postConcat(*draw.fMatrix);
srcToDeviceMatrix.mapRect(&transformedRect, floatSrcRect);
if (hasAlignedSamples(floatSrcRect, transformedRect)) {
// Samples are texel-aligned, so filtering is futile
sampler->setFilter(GrSamplerState::kNearest_Filter);
needsTextureDomain = false;
} else {
needsTextureDomain = needsTextureDomain &&
mayColorBleed(floatSrcRect, transformedRect, m);
}
}
}
GrRect textureDomain = GrRect::MakeEmpty();
if (needsTextureDomain) {
// Use a constrained texture domain to avoid color bleeding
GrScalar left, top, right, bottom;
if (srcRect.width() > 1) {
GrScalar border = GR_ScalarHalf / bitmap.width();
left = paintRect.left() + border;
right = paintRect.right() - border;
} else {
left = right = GrScalarHalf(paintRect.left() + paintRect.right());
}
if (srcRect.height() > 1) {
GrScalar border = GR_ScalarHalf / bitmap.height();
top = paintRect.top() + border;
bottom = paintRect.bottom() - border;
} else {
top = bottom = GrScalarHalf(paintRect.top() + paintRect.bottom());
}
textureDomain.setLTRB(left, top, right, bottom);
}
sampler->setTextureDomain(textureDomain);
fContext->drawRectToRect(*grPaint, dstRect, paintRect, &m);
}
static GrTexture* filter_texture(GrContext* context, GrTexture* texture,
SkImageFilter* filter, const GrRect& rect) {
GrAssert(filter);
SkSize blurSize;
SkISize radius;
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit,
desc.fWidth = SkScalarCeilToInt(rect.width());
desc.fHeight = SkScalarCeilToInt(rect.height());
desc.fConfig = kRGBA_8888_PM_GrPixelConfig;
if (filter->asABlur(&blurSize)) {
GrAutoScratchTexture temp1, temp2;
texture = context->gaussianBlur(texture, &temp1, &temp2, rect,
blurSize.width(),
blurSize.height());
texture->ref();
} else if (filter->asADilate(&radius)) {
GrAutoScratchTexture temp1(context, desc), temp2(context, desc);
texture = context->applyMorphology(texture, rect,
temp1.texture(), temp2.texture(),
GrContext::kDilate_MorphologyType,
radius);
texture->ref();
} else if (filter->asAnErode(&radius)) {
GrAutoScratchTexture temp1(context, desc), temp2(context, desc);
texture = context->applyMorphology(texture, rect,
temp1.texture(), temp2.texture(),
GrContext::kErode_MorphologyType,
radius);
texture->ref();
}
return texture;
}
void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
int left, int top, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
return;
}
int w = bitmap.width();
int h = bitmap.height();
GrPaint grPaint;
if(!skPaint2GrPaintNoShader(paint, true, false, &grPaint)) {
return;
}
GrAutoMatrix avm(fContext, GrMatrix::I());
GrSamplerState* sampler = grPaint.textureSampler(kBitmapTextureIdx);
GrTexture* texture;
sampler->reset();
SkAutoCachedTexture act(this, bitmap, sampler, &texture);
grPaint.setTexture(kBitmapTextureIdx, texture);
SkImageFilter* filter = paint.getImageFilter();
if (NULL != filter) {
GrTexture* filteredTexture = filter_texture(fContext, texture, filter,
GrRect::MakeWH(SkIntToScalar(w), SkIntToScalar(h)));
if (filteredTexture) {
grPaint.setTexture(kBitmapTextureIdx, filteredTexture);
texture = filteredTexture;
filteredTexture->unref();
}
}
fContext->drawRectToRect(grPaint,
GrRect::MakeXYWH(GrIntToScalar(left),
GrIntToScalar(top),
GrIntToScalar(w),
GrIntToScalar(h)),
GrRect::MakeWH(GR_Scalar1 * w / texture->width(),
GR_Scalar1 * h / texture->height()));
}
void SkGpuDevice::drawDevice(const SkDraw& draw, SkDevice* device,
int x, int y, const SkPaint& paint) {
// clear of the source device must occur before CHECK_SHOULD_DRAW
SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
if (dev->fNeedClear) {
// TODO: could check here whether we really need to draw at all
dev->clear(0x0);
}
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
if (!dev->bindDeviceAsTexture(&grPaint) ||
!skPaint2GrPaintNoShader(paint, true, false, &grPaint)) {
return;
}
GrTexture* devTex = grPaint.getTexture(0);
SkASSERT(NULL != devTex);
SkImageFilter* filter = paint.getImageFilter();
if (NULL != filter) {
GrRect rect = GrRect::MakeWH(SkIntToScalar(devTex->width()),
SkIntToScalar(devTex->height()));
GrTexture* filteredTexture = filter_texture(fContext, devTex, filter,
rect);
if (filteredTexture) {
grPaint.setTexture(kBitmapTextureIdx, filteredTexture);
devTex = filteredTexture;
filteredTexture->unref();
}
}
const SkBitmap& bm = dev->accessBitmap(false);
int w = bm.width();
int h = bm.height();
GrAutoMatrix avm(fContext, GrMatrix::I());
grPaint.textureSampler(kBitmapTextureIdx)->reset();
GrRect dstRect = GrRect::MakeXYWH(GrIntToScalar(x),
GrIntToScalar(y),
GrIntToScalar(w),
GrIntToScalar(h));
// The device being drawn may not fill up its texture (saveLayer uses
// the approximate ).
GrRect srcRect = GrRect::MakeWH(GR_Scalar1 * w / devTex->width(),
GR_Scalar1 * h / devTex->height());
fContext->drawRectToRect(grPaint, dstRect, srcRect);
}
bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) {
SkSize size;
SkISize radius;
if (!filter->asABlur(&size) && !filter->asADilate(&radius) && !filter->asAnErode(&radius)) {
return false;
}
return true;
}
bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src,
const SkMatrix& ctm,
SkBitmap* result, SkIPoint* offset) {
// want explicitly our impl, so guard against a subclass of us overriding it
if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
return false;
}
SkAutoLockPixels alp(src, !src.getTexture());
if (!src.getTexture() && !src.readyToDraw()) {
return false;
}
GrPaint paint;
paint.reset();
GrSamplerState* sampler = paint.textureSampler(kBitmapTextureIdx);
GrTexture* texture;
SkAutoCachedTexture act(this, src, sampler, &texture);
result->setConfig(src.config(), src.width(), src.height());
GrRect rect = GrRect::MakeWH(SkIntToScalar(src.width()),
SkIntToScalar(src.height()));
GrTexture* resultTexture = filter_texture(fContext, texture, filter, rect);
if (resultTexture) {
result->setPixelRef(new SkGrTexturePixelRef(resultTexture))->unref();
resultTexture->unref();
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// must be in SkCanvas::VertexMode order
static const GrPrimitiveType gVertexMode2PrimitiveType[] = {
kTriangles_GrPrimitiveType,
kTriangleStrip_GrPrimitiveType,
kTriangleFan_GrPrimitiveType,
};
void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
int vertexCount, const SkPoint vertices[],
const SkPoint texs[], const SkColor colors[],
SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
SkAutoCachedTexture act;
// we ignore the shader if texs is null.
if (NULL == texs) {
if (!skPaint2GrPaintNoShader(paint,
false,
NULL == colors,
&grPaint)) {
return;
}
} else {
if (!skPaint2GrPaintShader(this,
paint,
NULL == colors,
&act,
&grPaint)) {
return;
}
}
if (NULL != xmode && NULL != texs && NULL != colors) {
if (!SkXfermode::IsMode(xmode, SkXfermode::kMultiply_Mode)) {
SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
#if 0
return
#endif
}
}
SkAutoSTMalloc<128, GrColor> convertedColors(0);
if (NULL != colors) {
// need to convert byte order and from non-PM to PM
convertedColors.reset(vertexCount);
for (int i = 0; i < vertexCount; ++i) {
convertedColors[i] = SkGr::SkColor2GrColor(colors[i]);
}
colors = convertedColors.get();
}
fContext->drawVertices(grPaint,
gVertexMode2PrimitiveType[vmode],
vertexCount,
(GrPoint*) vertices,
(GrPoint*) texs,
colors,
indices,
indexCount);
}
///////////////////////////////////////////////////////////////////////////////
static void GlyphCacheAuxProc(void* data) {
delete (GrFontScaler*)data;
}
static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) {
void* auxData;
GrFontScaler* scaler = NULL;
if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) {
scaler = (GrFontScaler*)auxData;
}
if (NULL == scaler) {
scaler = new SkGrFontScaler(cache);
cache->setAuxProc(GlyphCacheAuxProc, scaler);
}
return scaler;
}
static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state,
SkFixed fx, SkFixed fy,
const SkGlyph& glyph) {
SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0);
GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs);
if (NULL == procs->fFontScaler) {
procs->fFontScaler = get_gr_font_scaler(state.fCache);
}
procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed()),
SkFixedFloorToFixed(fx),
SkFixedFloorToFixed(fy),
procs->fFontScaler);
}
SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) {
// deferred allocation
if (NULL == fDrawProcs) {
fDrawProcs = new GrSkDrawProcs;
fDrawProcs->fD1GProc = SkGPU_Draw1Glyph;
fDrawProcs->fContext = fContext;
}
// init our (and GL's) state
fDrawProcs->fTextContext = context;
fDrawProcs->fFontScaler = NULL;
return fDrawProcs;
}
void SkGpuDevice::drawText(const SkDraw& draw, const void* text,
size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
if (draw.fMatrix->hasPerspective()) {
// this guy will just call our drawPath()
draw.drawText((const char*)text, byteLength, x, y, paint);
} else {
SkDraw myDraw(draw);
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
GrTextContext::AutoFinish txtCtxAF(this->getTextContext(), fContext,
grPaint, draw.fExtMatrix);
myDraw.fProcs = this->initDrawForText(txtCtxAF.getTextContext());
this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint);
}
}
void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text,
size_t byteLength, const SkScalar pos[],
SkScalar constY, int scalarsPerPos,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
if (draw.fMatrix->hasPerspective()) {
// this guy will just call our drawPath()
draw.drawPosText((const char*)text, byteLength, pos, constY,
scalarsPerPos, paint);
} else {
SkDraw myDraw(draw);
GrPaint grPaint;
SkAutoCachedTexture act;
if (!skPaint2GrPaintShader(this,
paint,
true,
&act,
&grPaint)) {
return;
}
GrTextContext::AutoFinish txtCtxAF(this->getTextContext(), fContext,
grPaint, draw.fExtMatrix);
myDraw.fProcs = this->initDrawForText(txtCtxAF.getTextContext());
this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY,
scalarsPerPos, paint);
}
}
void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text,
size_t len, const SkPath& path,
const SkMatrix* m, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
SkASSERT(draw.fDevice == this);
draw.drawTextOnPath((const char*)text, len, path, m, paint);
}
///////////////////////////////////////////////////////////////////////////////
bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) {
if (!paint.isLCDRenderText()) {
// we're cool with the paint as is
return false;
}
if (paint.getShader() ||
paint.getXfermode() || // unless its srcover
paint.getMaskFilter() ||
paint.getRasterizer() ||
paint.getColorFilter() ||
paint.getPathEffect() ||
paint.isFakeBoldText() ||
paint.getStyle() != SkPaint::kFill_Style) {
// turn off lcd
flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag;
flags->fHinting = paint.getHinting();
return true;
}
// we're cool with the paint as is
return false;
}
void SkGpuDevice::flush() {
DO_DEFERRED_CLEAR;
fContext->resolveRenderTarget(fRenderTarget);
}
///////////////////////////////////////////////////////////////////////////////
SkGpuDevice::TexCache SkGpuDevice::lockCachedTexture(
const SkBitmap& bitmap,
const GrSamplerState* sampler) {
GrContext::TextureCacheEntry entry;
GrContext* ctx = this->context();
if (!bitmap.isVolatile()) {
uint64_t key = bitmap.getGenerationID();
key |= ((uint64_t) bitmap.pixelRefOffset()) << 32;
GrTextureDesc desc;
desc.fWidth = bitmap.width();
desc.fHeight = bitmap.height();
desc.fConfig = SkGr::BitmapConfig2PixelConfig(bitmap.config());
desc.fClientCacheID = key;
entry = ctx->findAndLockTexture(desc, sampler);
if (NULL == entry.texture()) {
entry = sk_gr_create_bitmap_texture(ctx, key, sampler,
bitmap);
}
} else {
entry = sk_gr_create_bitmap_texture(ctx, kUncached_CacheID,
sampler, bitmap);
}
if (NULL == entry.texture()) {
GrPrintf("---- failed to create texture for cache [%d %d]\n",
bitmap.width(), bitmap.height());
}
return entry;
}
void SkGpuDevice::unlockCachedTexture(TexCache cache) {
this->context()->unlockTexture(cache);
}
bool SkGpuDevice::isBitmapInTextureCache(const SkBitmap& bitmap,
const GrSamplerState& sampler) const {
uint64_t key = bitmap.getGenerationID();
key |= ((uint64_t) bitmap.pixelRefOffset()) << 32;
GrTextureDesc desc;
desc.fWidth = bitmap.width();
desc.fHeight = bitmap.height();
desc.fConfig = SkGr::BitmapConfig2PixelConfig(bitmap.config());
desc.fClientCacheID = key;
return this->context()->isTextureInCache(desc, &sampler);
}
SkDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config,
int width, int height,
bool isOpaque,
Usage usage) {
GrTextureDesc desc;
desc.fConfig = fRenderTarget->config();
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fSampleCnt = fRenderTarget->numSamples();
GrContext::TextureCacheEntry cacheEntry;
GrTexture* texture;
SkAutoTUnref<GrTexture> tunref;
// Skia's convention is to only clear a device if it is non-opaque.
bool needClear = !isOpaque;
#if CACHE_COMPATIBLE_DEVICE_TEXTURES
// layers are never draw in repeat modes, so we can request an approx
// match and ignore any padding.
GrContext::ScratchTexMatch matchType = (kSaveLayer_Usage == usage) ?
GrContext::kApprox_ScratchTexMatch :
GrContext::kExact_ScratchTexMatch;
cacheEntry = fContext->lockScratchTexture(desc, matchType);
texture = cacheEntry.texture();
#else
tunref.reset(fContext->createUncachedTexture(desc, NULL, 0));
texture = tunref.get();
#endif
if (texture) {
return SkNEW_ARGS(SkGpuDevice,(fContext,
texture,
cacheEntry,
needClear));
} else {
GrPrintf("---- failed to create compatible device texture [%d %d]\n",
width, height);
return NULL;
}
}
SkGpuDevice::SkGpuDevice(GrContext* context,
GrTexture* texture,
TexCache cacheEntry,
bool needClear)
: SkDevice(make_bitmap(context, texture->asRenderTarget())) {
GrAssert(texture && texture->asRenderTarget());
GrAssert(NULL == cacheEntry.texture() || texture == cacheEntry.texture());
this->initFromRenderTarget(context, texture->asRenderTarget());
fCache = cacheEntry;
fNeedClear = needClear;
}
GrTextContext* SkGpuDevice::getTextContext() {
if (NULL == fTextContext) {
fTextContext = new GrDefaultTextContext();
}
return fTextContext;
}