| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "tests/Test.h" |
| |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/gpu/GrBitmapTextureMaker.h" |
| #include "src/gpu/GrClip.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrGpuResource.h" |
| #include "src/gpu/GrImageInfo.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRenderTargetContext.h" |
| #include "src/gpu/GrRenderTargetContextPriv.h" |
| #include "src/gpu/GrResourceProvider.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ops/GrFillRectOp.h" |
| #include "src/gpu/ops/GrMeshDrawOp.h" |
| #include "tests/TestUtils.h" |
| #include <atomic> |
| #include <random> |
| |
| namespace { |
| class TestOp : public GrMeshDrawOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| static GrOp::Owner Make(GrRecordingContext* rContext, |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| return GrOp::Make<TestOp>(rContext, std::move(fp)); |
| } |
| |
| const char* name() const override { return "TestOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fProcessors.visitProxies(func); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } |
| |
| GrProcessorSet::Analysis finalize( |
| const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
| GrClampType clampType) override { |
| static constexpr GrProcessorAnalysisColor kUnknownColor; |
| SkPMColor4f overrideColor; |
| return fProcessors.finalize( |
| kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, |
| &GrUserStencilSettings::kUnused, hasMixedSampledCoverage, caps, clampType, |
| &overrideColor); |
| } |
| |
| private: |
| friend class ::GrOp; // for ctor |
| |
| TestOp(std::unique_ptr<GrFragmentProcessor> fp) |
| : INHERITED(ClassID()), fProcessors(std::move(fp)) { |
| this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo); |
| } |
| |
| GrProgramInfo* programInfo() override { return nullptr; } |
| void onCreateProgramInfo(const GrCaps*, |
| SkArenaAlloc*, |
| const GrSurfaceProxyView* writeView, |
| GrAppliedClip&&, |
| const GrXferProcessor::DstProxyView&, |
| GrXferBarrierFlags renderPassXferBarriers) override {} |
| void onPrePrepareDraws(GrRecordingContext*, |
| const GrSurfaceProxyView* writeView, |
| GrAppliedClip*, |
| const GrXferProcessor::DstProxyView&, |
| GrXferBarrierFlags renderPassXferBarriers) override {} |
| void onPrepareDraws(Target* target) override { return; } |
| void onExecute(GrOpFlushState*, const SkRect&) override { return; } |
| |
| GrProcessorSet fProcessors; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| /** |
| * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts |
| * of resources owned by child FPs. |
| */ |
| class TestFP : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child))); |
| } |
| static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(views)); |
| } |
| |
| const char* name() const override { return "test"; } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { |
| static std::atomic<int32_t> nextKey{0}; |
| b->add32(nextKey++); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this)); |
| } |
| |
| private: |
| TestFP(const SkTArray<GrSurfaceProxyView>& views) |
| : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { |
| for (const GrSurfaceProxyView& view : views) { |
| this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType)); |
| } |
| } |
| |
| TestFP(std::unique_ptr<GrFragmentProcessor> child) |
| : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { |
| this->registerChild(std::move(child)); |
| } |
| |
| explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) { |
| this->cloneAndRegisterAllChildProcessors(that); |
| } |
| |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { |
| class TestGLSLFP : public GrGLSLFragmentProcessor { |
| public: |
| TestGLSLFP() {} |
| void emitCode(EmitArgs& args) override { |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); |
| } |
| |
| private: |
| }; |
| return new TestGLSLFP(); |
| } |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return false; } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| } // namespace |
| |
| DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { |
| auto context = ctxInfo.directContext(); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| |
| static constexpr SkISize kDims = {10, 10}; |
| |
| const GrBackendFormat format = |
| context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, |
| GrRenderable::kNo); |
| GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888); |
| |
| for (bool makeClone : {false, true}) { |
| for (int parentCnt = 0; parentCnt < 2; parentCnt++) { |
| auto renderTargetContext = GrRenderTargetContext::Make( |
| context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1}); |
| { |
| sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy( |
| format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact, |
| SkBudgeted::kYes, GrProtected::kNo); |
| |
| { |
| SkTArray<GrSurfaceProxyView> views; |
| views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle}); |
| auto fp = TestFP::Make(std::move(views)); |
| for (int i = 0; i < parentCnt; ++i) { |
| fp = TestFP::Make(std::move(fp)); |
| } |
| std::unique_ptr<GrFragmentProcessor> clone; |
| if (makeClone) { |
| clone = fp->clone(); |
| } |
| GrOp::Owner op = TestOp::Make(context, std::move(fp)); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| if (clone) { |
| op = TestOp::Make(context, std::move(clone)); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| } |
| |
| // If the fp is cloned the number of refs should increase by one (for the clone) |
| int expectedProxyRefs = makeClone ? 3 : 2; |
| |
| CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1); |
| |
| context->flushAndSubmit(); |
| |
| // just one from the 'proxy' sk_sp |
| CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1); |
| } |
| } |
| } |
| } |
| |
| #include "tools/flags/CommandLineFlags.h" |
| static DEFINE_bool(randomProcessorTest, false, |
| "Use non-deterministic seed for random processor tests?"); |
| static DEFINE_int(processorSeed, 0, |
| "Use specific seed for processor tests. Overridden by --randomProcessorTest."); |
| |
| #if GR_TEST_UTILS |
| |
| static GrColor input_texel_color(int i, int j, SkScalar delta) { |
| // Delta must be less than 0.5 to prevent over/underflow issues with the input color |
| SkASSERT(delta <= 0.5); |
| |
| SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF), |
| (uint8_t)(j & 0xFF), |
| (uint8_t)((i + j) & 0xFF), |
| (uint8_t)((2 * j - i) & 0xFF)); |
| SkColor4f color4f = SkColor4f::FromColor(color); |
| // We only apply delta to the r,g, and b channels. This is because we're using this |
| // to test the canTweakAlphaForCoverage() optimization. A processor is allowed |
| // to use the input color's alpha in its calculation and report this optimization. |
| for (int i = 0; i < 3; i++) { |
| if (color4f[i] > 0.5) { |
| color4f[i] -= delta; |
| } else { |
| color4f[i] += delta; |
| } |
| } |
| return color4f.premul().toBytes_RGBA(); |
| } |
| |
| void test_draw_op(GrRecordingContext* rContext, |
| GrRenderTargetContext* rtc, |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| GrPaint paint; |
| paint.setColorFragmentProcessor(std::move(fp)); |
| paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(), |
| SkRect::MakeWH(rtc->width(), rtc->height())); |
| rtc->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| |
| // The output buffer must be the same size as the render-target context. |
| void render_fp(GrDirectContext* dContext, |
| GrRenderTargetContext* rtc, |
| std::unique_ptr<GrFragmentProcessor> fp, |
| GrColor* outBuffer) { |
| test_draw_op(dContext, rtc, std::move(fp)); |
| std::fill_n(outBuffer, rtc->width() * rtc->height(), 0); |
| rtc->readPixels(dContext, SkImageInfo::Make(rtc->width(), rtc->height(), kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType), |
| outBuffer, /*rowBytes=*/0, /*srcPt=*/{0, 0}); |
| } |
| |
| // This class is responsible for reproducibly generating a random fragment processor. |
| // An identical randomly-designed FP can be generated as many times as needed. |
| class TestFPGenerator { |
| public: |
| TestFPGenerator() = delete; |
| TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider) |
| : fContext(context) |
| , fResourceProvider(resourceProvider) |
| , fInitialSeed(synthesizeInitialSeed()) |
| , fRandomSeed(fInitialSeed) {} |
| |
| uint32_t initialSeed() { return fInitialSeed; } |
| |
| bool init() { |
| // Initializes the two test texture proxies that are available to the FP test factories. |
| SkRandom random{fRandomSeed}; |
| static constexpr int kTestTextureSize = 256; |
| |
| { |
| // Put premul data into the RGBA texture that the test FPs can optionally use. |
| GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize]; |
| for (int y = 0; y < kTestTextureSize; ++y) { |
| for (int x = 0; x < kTestTextureSize; ++x) { |
| rgbaData[kTestTextureSize * y + x] = input_texel_color( |
| random.nextULessThan(256), random.nextULessThan(256), 0.0f); |
| } |
| } |
| |
| SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, |
| kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| SkBitmap bitmap; |
| bitmap.installPixels( |
| ii, rgbaData, ii.minRowBytes(), |
| [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr); |
| bitmap.setImmutable(); |
| GrBitmapTextureMaker maker(fContext, bitmap, |
| GrImageTexGenPolicy::kNew_Uncached_Budgeted); |
| GrSurfaceProxyView view = maker.view(GrMipmapped::kNo); |
| if (!view.proxy() || !view.proxy()->instantiate(fResourceProvider)) { |
| SkDebugf("Unable to instantiate RGBA8888 test texture."); |
| return false; |
| } |
| fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888, |
| kPremul_SkAlphaType}; |
| } |
| |
| { |
| // Put random values into the alpha texture that the test FPs can optionally use. |
| uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize]; |
| for (int y = 0; y < kTestTextureSize; ++y) { |
| for (int x = 0; x < kTestTextureSize; ++x) { |
| alphaData[kTestTextureSize * y + x] = random.nextULessThan(256); |
| } |
| } |
| |
| SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, |
| kAlpha_8_SkColorType, kPremul_SkAlphaType); |
| SkBitmap bitmap; |
| bitmap.installPixels( |
| ii, alphaData, ii.minRowBytes(), |
| [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr); |
| bitmap.setImmutable(); |
| GrBitmapTextureMaker maker(fContext, bitmap, |
| GrImageTexGenPolicy::kNew_Uncached_Budgeted); |
| GrSurfaceProxyView view = maker.view(GrMipmapped::kNo); |
| if (!view.proxy() || !view.proxy()->instantiate(fResourceProvider)) { |
| SkDebugf("Unable to instantiate A8 test texture."); |
| return false; |
| } |
| fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8, |
| kPremul_SkAlphaType}; |
| } |
| |
| return true; |
| } |
| |
| void reroll() { |
| // Feed our current random seed into SkRandom to generate a new seed. |
| SkRandom random{fRandomSeed}; |
| fRandomSeed = random.nextU(); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth, |
| std::unique_ptr<GrFragmentProcessor> inputFP) { |
| // This will generate the exact same randomized FP (of each requested type) each time |
| // it's called. Call `reroll` to get a different FP. |
| SkRandom random{fRandomSeed}; |
| GrProcessorTestData testData{&random, fContext, randomTreeDepth, |
| SK_ARRAY_COUNT(fTestViews), fTestViews, |
| std::move(inputFP)}; |
| return GrFragmentProcessorTestFactory::MakeIdx(type, &testData); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth, |
| GrSurfaceProxyView view, |
| SkAlphaType alpha = kPremul_SkAlphaType) { |
| return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha)); |
| } |
| |
| private: |
| static uint32_t synthesizeInitialSeed() { |
| if (FLAGS_randomProcessorTest) { |
| std::random_device rd; |
| return rd(); |
| } else { |
| return FLAGS_processorSeed; |
| } |
| } |
| |
| GrDirectContext* fContext; // owned by caller |
| GrResourceProvider* fResourceProvider; // owned by caller |
| const uint32_t fInitialSeed; |
| uint32_t fRandomSeed; |
| GrProcessorTestData::ViewInfo fTestViews[2]; |
| }; |
| |
| // Creates an array of color values from input_texel_color(), to be used as an input texture. |
| std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) { |
| std::vector<GrColor> pixel(width * height); |
| for (int y = 0; y < width; ++y) { |
| for (int x = 0; x < height; ++x) { |
| pixel[width * y + x] = input_texel_color(x, y, delta); |
| } |
| } |
| |
| return pixel; |
| } |
| |
| // Creates a texture of premul colors used as the output of the fragment processor that precedes |
| // the fragment processor under test. An array of W*H colors are passed in as the texture data. |
| GrSurfaceProxyView make_input_texture(GrRecordingContext* context, |
| int width, int height, GrColor* pixel) { |
| SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| SkBitmap bitmap; |
| bitmap.installPixels(ii, pixel, ii.minRowBytes()); |
| bitmap.setImmutable(); |
| GrBitmapTextureMaker maker(context, bitmap, GrImageTexGenPolicy::kNew_Uncached_Budgeted); |
| return maker.view(GrMipmapped::kNo); |
| } |
| |
| // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture |
| // actually contains unpremul data. Also, even though we made the result data by rendering into |
| // a "unpremul" GrRenderTargetContext, our input texture is unpremul and outside of the random |
| // effect configuration, we didn't do anything to ensure the output is actually premul. We just |
| // don't currently allow kUnpremul GrRenderTargetContexts. |
| static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType; |
| |
| bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) { |
| SkImageInfo info = |
| SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType); |
| SkBitmap bmp; |
| bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor)); |
| return BipmapToBase64DataURI(bmp, dst); |
| } |
| |
| bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) { |
| SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType, |
| kLogAlphaType); |
| |
| auto sContext = GrSurfaceContext::Make(dContext, std::move(src), GrColorType::kRGBA_8888, |
| kLogAlphaType, nullptr); |
| SkBitmap bm; |
| SkAssertResult(bm.tryAllocPixels(ii)); |
| SkAssertResult(sContext->readPixels(dContext, ii, bm.getPixels(), bm.rowBytes(), {0, 0})); |
| return BipmapToBase64DataURI(bm, dst); |
| } |
| |
| bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { |
| // With the loss of precision of rendering into 32-bit color, then estimating the FP's output |
| // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 |
| // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little |
| // too unforgiving). |
| static constexpr SkScalar kTolerance = 0.01f; |
| for (int i = 0; i < 4; i++) { |
| if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Given three input colors (color preceding the FP being tested) provided to the FP at the same |
| // local coord and the three corresponding FP outputs, this ensures that either: |
| // out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a |
| // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't |
| // change), OR: |
| // out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2] |
| // (per-channel modulation instead of modulation by just the alpha channel) |
| // It does this by estimating the pre-modulated fp color from one of the input/output pairs and |
| // confirms the conditions hold for the other two pairs. |
| // It is required that the three input colors have the same alpha as fp is allowed to be a function |
| // of the input alpha (but not r, g, or b). |
| bool legal_modulation(const GrColor in[3], const GrColor out[3]) { |
| // Convert to floating point, which is the number space the FP operates in (more or less) |
| SkPMColor4f inf[3], outf[3]; |
| for (int i = 0; i < 3; ++i) { |
| inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]); |
| outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]); |
| } |
| // This test is only valid if all the input alphas are the same. |
| SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA); |
| |
| // Reconstruct the output of the FP before the shader modulated its color with the input value. |
| // When the original input is very small, it may cause the final output color to round |
| // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that |
| // will then have a guaranteed larger channel value (since the offset will be added to it). |
| SkPMColor4f fpPreColorModulation = {0,0,0,0}; |
| SkPMColor4f fpPreAlphaModulation = {0,0,0,0}; |
| for (int i = 0; i < 4; i++) { |
| // Use the most stepped up frame |
| int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1; |
| maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2; |
| const SkPMColor4f& in = inf[maxInIdx]; |
| const SkPMColor4f& out = outf[maxInIdx]; |
| if (in[i] > 0) { |
| fpPreColorModulation[i] = out[i] / in[i]; |
| } |
| if (in[3] > 0) { |
| fpPreAlphaModulation[i] = out[i] / in[3]; |
| } |
| } |
| |
| // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each |
| // of the transformed input colors. |
| SkPMColor4f expectedForAlphaModulation[3]; |
| SkPMColor4f expectedForColorModulation[3]; |
| for (int i = 0; i < 3; ++i) { |
| expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA; |
| expectedForColorModulation[i] = fpPreColorModulation * inf[i]; |
| // If the input alpha is 0 then the other channels should also be zero |
| // since the color is assumed to be premul. Modulating zeros by anything |
| // should produce zeros. |
| if (inf[i].fA == 0) { |
| SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0); |
| expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0}; |
| } |
| } |
| |
| bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) && |
| fuzzy_color_equals(outf[1], expectedForColorModulation[1]) && |
| fuzzy_color_equals(outf[2], expectedForColorModulation[2]); |
| |
| bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) && |
| fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) && |
| fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]); |
| |
| // This can be enabled to print the values that caused this check to fail. |
| if (0 && !isLegalColorModulation && !isLegalAlphaModulation) { |
| SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", |
| fpPreColorModulation[0], |
| fpPreColorModulation[1], |
| fpPreColorModulation[2], |
| fpPreColorModulation[3]); |
| for (int i = 0; i < 3; ++i) { |
| SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " |
| "(%.03f, %.03f, %.03f, %.03f) | " |
| "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", |
| inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, |
| outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, |
| expectedForColorModulation[i].fR, expectedForColorModulation[i].fG, |
| expectedForColorModulation[i].fB, expectedForColorModulation[i].fA, |
| fuzzy_color_equals(outf[i], expectedForColorModulation[i])); |
| } |
| SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", |
| fpPreAlphaModulation[0], |
| fpPreAlphaModulation[1], |
| fpPreAlphaModulation[2], |
| fpPreAlphaModulation[3]); |
| for (int i = 0; i < 3; ++i) { |
| SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " |
| "(%.03f, %.03f, %.03f, %.03f) | " |
| "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", |
| inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, |
| outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, |
| expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG, |
| expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA, |
| fuzzy_color_equals(outf[i], expectedForAlphaModulation[i])); |
| } |
| } |
| return isLegalColorModulation || isLegalAlphaModulation; |
| } |
| |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { |
| GrDirectContext* context = ctxInfo.directContext(); |
| GrResourceProvider* resourceProvider = context->priv().resourceProvider(); |
| using FPFactory = GrFragmentProcessorTestFactory; |
| |
| TestFPGenerator fpGenerator{context, resourceProvider}; |
| if (!fpGenerator.init()) { |
| ERRORF(reporter, "Could not initialize TestFPGenerator"); |
| return; |
| } |
| |
| // Make the destination context for the test. |
| static constexpr int kRenderSize = 256; |
| auto rtc = GrRenderTargetContext::Make( |
| context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, |
| {kRenderSize, kRenderSize}); |
| |
| // Coverage optimization uses three frames with a linearly transformed input texture. The first |
| // frame has no offset, second frames add .2 and .4, which should then be present as a fixed |
| // difference between the frame outputs if the FP is properly following the modulation |
| // requirements of the coverage optimization. |
| static constexpr SkScalar kInputDelta = 0.2f; |
| std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f); |
| std::vector<GrColor> inputPixels2 = |
| make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta); |
| std::vector<GrColor> inputPixels3 = |
| make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta); |
| GrSurfaceProxyView inputTexture1 = |
| make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data()); |
| GrSurfaceProxyView inputTexture2 = |
| make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data()); |
| GrSurfaceProxyView inputTexture3 = |
| make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data()); |
| |
| // Encoded images are very verbose and this tests many potential images, so only export the |
| // first failure (subsequent failures have a reasonable chance of being related). |
| bool loggedFirstFailure = false; |
| bool loggedFirstWarning = false; |
| |
| // Storage for the three frames required for coverage compatibility optimization testing. |
| // Each frame uses the correspondingly numbered inputTextureX. |
| std::vector<GrColor> readData1(kRenderSize * kRenderSize); |
| std::vector<GrColor> readData2(kRenderSize * kRenderSize); |
| std::vector<GrColor> readData3(kRenderSize * kRenderSize); |
| |
| // Because processor factories configure themselves in random ways, this is not exhaustive. |
| for (int i = 0; i < FPFactory::Count(); ++i) { |
| int optimizedForOpaqueInput = 0; |
| int optimizedForCoverageAsAlpha = 0; |
| int optimizedForConstantOutputForInput = 0; |
| |
| #ifdef __MSVC_RUNTIME_CHECKS |
| // This test is infuriatingly slow with MSVC runtime checks enabled |
| static constexpr int kMinimumTrials = 1; |
| static constexpr int kMaximumTrials = 1; |
| static constexpr int kExpectedSuccesses = 1; |
| #else |
| // We start by testing each fragment-processor 100 times, watching the optimization bits |
| // that appear. If we see an optimization bit appear in those first 100 trials, we keep |
| // running tests until we see at least five successful trials that have this optimization |
| // bit enabled. If we never see a particular optimization bit after 100 trials, we assume |
| // that this FP doesn't support that optimization at all. |
| static constexpr int kMinimumTrials = 100; |
| static constexpr int kMaximumTrials = 2000; |
| static constexpr int kExpectedSuccesses = 5; |
| #endif |
| |
| for (int trial = 0;; ++trial) { |
| // Create a randomly-configured FP. |
| fpGenerator.reroll(); |
| std::unique_ptr<GrFragmentProcessor> fp = |
| fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1); |
| |
| // If we have iterated enough times and seen a sufficient number of successes on each |
| // optimization bit that can be returned, stop running trials. |
| if (trial >= kMinimumTrials) { |
| bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 && |
| optimizedForOpaqueInput < kExpectedSuccesses) || |
| (optimizedForCoverageAsAlpha > 0 && |
| optimizedForCoverageAsAlpha < kExpectedSuccesses) || |
| (optimizedForConstantOutputForInput > 0 && |
| optimizedForConstantOutputForInput < kExpectedSuccesses); |
| if (!moreTrialsNeeded) break; |
| |
| if (trial >= kMaximumTrials) { |
| SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. " |
| "Seed: 0x%08x, processor:\n%s", |
| kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str()); |
| break; |
| } |
| } |
| |
| // Skip further testing if this trial has no optimization bits enabled. |
| if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && |
| !fp->compatibleWithCoverageAsAlpha()) { |
| continue; |
| } |
| |
| // We can make identical copies of the test FP in order to test coverage-as-alpha. |
| if (fp->compatibleWithCoverageAsAlpha()) { |
| // Create and render two identical versions of this FP, but using different input |
| // textures, to check coverage optimization. We don't need to do this step for |
| // constant-output or preserving-opacity tests. |
| render_fp(context, rtc.get(), |
| fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2), |
| readData2.data()); |
| render_fp(context, rtc.get(), |
| fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3), |
| readData3.data()); |
| ++optimizedForCoverageAsAlpha; |
| } |
| |
| if (fp->hasConstantOutputForConstantInput()) { |
| ++optimizedForConstantOutputForInput; |
| } |
| |
| if (fp->preservesOpaqueInput()) { |
| ++optimizedForOpaqueInput; |
| } |
| |
| // Draw base frame last so that rtc holds the original FP behavior if we need to dump |
| // the image to the log. |
| render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1), |
| readData1.data()); |
| |
| // This test has a history of being flaky on a number of devices. If an FP is logically |
| // violating the optimizations, it's reasonable to expect it to violate requirements on |
| // a large number of pixels in the image. Sporadic pixel violations are more indicative |
| // of device errors and represents a separate problem. |
| #if defined(SK_BUILD_FOR_SKQP) |
| static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP |
| #else |
| static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image |
| #endif |
| |
| // Collect first optimization failure message, to be output later as a warning or an |
| // error depending on whether the rendering "passed" or failed. |
| int failedPixelCount = 0; |
| SkString coverageMessage; |
| SkString opaqueMessage; |
| SkString constMessage; |
| for (int y = 0; y < kRenderSize; ++y) { |
| for (int x = 0; x < kRenderSize; ++x) { |
| bool passing = true; |
| GrColor input = inputPixels1[y * kRenderSize + x]; |
| GrColor output = readData1[y * kRenderSize + x]; |
| |
| if (fp->compatibleWithCoverageAsAlpha()) { |
| GrColor ins[3]; |
| ins[0] = input; |
| ins[1] = inputPixels2[y * kRenderSize + x]; |
| ins[2] = inputPixels3[y * kRenderSize + x]; |
| |
| GrColor outs[3]; |
| outs[0] = output; |
| outs[1] = readData2[y * kRenderSize + x]; |
| outs[2] = readData3[y * kRenderSize + x]; |
| |
| if (!legal_modulation(ins, outs)) { |
| passing = false; |
| if (coverageMessage.isEmpty()) { |
| coverageMessage.printf( |
| "\"Modulating\" processor did not match alpha-modulation " |
| "nor color-modulation rules.\n" |
| "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", |
| input, output, x, y); |
| } |
| } |
| } |
| |
| SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); |
| SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); |
| SkPMColor4f expected4f; |
| if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { |
| float rDiff = fabsf(output4f.fR - expected4f.fR); |
| float gDiff = fabsf(output4f.fG - expected4f.fG); |
| float bDiff = fabsf(output4f.fB - expected4f.fB); |
| float aDiff = fabsf(output4f.fA - expected4f.fA); |
| static constexpr float kTol = 4 / 255.f; |
| if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { |
| if (constMessage.isEmpty()) { |
| passing = false; |
| |
| constMessage.printf( |
| "Processor claimed output for const input doesn't match " |
| "actual output.\n" |
| "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), " |
| "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).", |
| std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))), |
| kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA, |
| output4f.fR, output4f.fG, output4f.fB, output4f.fA, |
| expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); |
| } |
| } |
| } |
| if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { |
| passing = false; |
| |
| if (opaqueMessage.isEmpty()) { |
| opaqueMessage.printf( |
| "Processor claimed opaqueness is preserved but " |
| "it is not. Input: 0x%08x, Output: 0x%08x.", |
| input, output); |
| } |
| } |
| |
| if (!passing) { |
| // Regardless of how many optimizations the pixel violates, count it as a |
| // single bad pixel. |
| failedPixelCount++; |
| } |
| } |
| } |
| |
| // Finished analyzing the entire image, see if the number of pixel failures meets the |
| // threshold for an FP violating the optimization requirements. |
| if (failedPixelCount > kMaxAcceptableFailedPixels) { |
| ERRORF(reporter, |
| "Processor violated %d of %d pixels, seed: 0x%08x.\n" |
| "Processor:\n%s\nFirst failing pixel details are below:", |
| failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(), |
| fp->dumpTreeInfo().c_str()); |
| |
| // Print first failing pixel's details. |
| if (!coverageMessage.isEmpty()) { |
| ERRORF(reporter, coverageMessage.c_str()); |
| } |
| if (!constMessage.isEmpty()) { |
| ERRORF(reporter, constMessage.c_str()); |
| } |
| if (!opaqueMessage.isEmpty()) { |
| ERRORF(reporter, opaqueMessage.c_str()); |
| } |
| |
| if (!loggedFirstFailure) { |
| // Print with ERRORF to make sure the encoded image is output |
| SkString input; |
| log_texture_view(context, inputTexture1, &input); |
| SkString output; |
| log_pixels(readData1.data(), kRenderSize, &output); |
| ERRORF(reporter, "Input image: %s\n\n" |
| "===========================================================\n\n" |
| "Output image: %s\n", input.c_str(), output.c_str()); |
| loggedFirstFailure = true; |
| } |
| } else if (failedPixelCount > 0) { |
| // Don't trigger an error, but don't just hide the failures either. |
| INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " |
| "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, |
| fpGenerator.initialSeed(), fp->dumpInfo().c_str()); |
| if (!coverageMessage.isEmpty()) { |
| INFOF(reporter, coverageMessage.c_str()); |
| } |
| if (!constMessage.isEmpty()) { |
| INFOF(reporter, constMessage.c_str()); |
| } |
| if (!opaqueMessage.isEmpty()) { |
| INFOF(reporter, opaqueMessage.c_str()); |
| } |
| if (!loggedFirstWarning) { |
| SkString input; |
| log_texture_view(context, inputTexture1, &input); |
| SkString output; |
| log_pixels(readData1.data(), kRenderSize, &output); |
| INFOF(reporter, "Input image: %s\n\n" |
| "===========================================================\n\n" |
| "Output image: %s\n", input.c_str(), output.c_str()); |
| loggedFirstWarning = true; |
| } |
| } |
| } |
| } |
| } |
| |
| static void assert_processor_equality(skiatest::Reporter* reporter, |
| const GrFragmentProcessor& fp, |
| const GrFragmentProcessor& clone) { |
| REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() == |
| clone.compatibleWithCoverageAsAlpha(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.isEqual(clone), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() == |
| clone.hasConstantOutputForConstantInput(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(), |
| "\n%s", fp.dumpTreeInfo().c_str()); |
| } |
| |
| static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize, |
| const char* processorType, |
| const GrColor readData1[], const GrColor readData2[]) { |
| // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone |
| // is logically wrong, it's reasonable to expect it produce a large number of pixel differences |
| // in the image. Sporadic pixel violations are more indicative device errors and represents a |
| // separate problem. |
| #if defined(SK_BUILD_FOR_SKQP) |
| const int maxAcceptableFailedPixels = 0; // Strict when running as SKQP |
| #else |
| const int maxAcceptableFailedPixels = 2 * renderSize; // ~0.002% of the pixels (size 1024*1024) |
| #endif |
| |
| int failedPixelCount = 0; |
| int firstWrongX = 0; |
| int firstWrongY = 0; |
| int idx = 0; |
| for (int y = 0; y < renderSize; ++y) { |
| for (int x = 0; x < renderSize; ++x, ++idx) { |
| if (readData1[idx] != readData2[idx]) { |
| if (!failedPixelCount) { |
| firstWrongX = x; |
| firstWrongY = y; |
| } |
| ++failedPixelCount; |
| } |
| if (failedPixelCount > maxAcceptableFailedPixels) { |
| idx = firstWrongY * renderSize + firstWrongX; |
| ERRORF(reporter, |
| "%s produced different output at (%d, %d). " |
| "Input color: 0x%08x, Original Output Color: 0x%08x, " |
| "Clone Output Color: 0x%08x.", |
| processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f), |
| readData1[idx], readData2[idx]); |
| |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static void log_clone_failure(skiatest::Reporter* reporter, int renderSize, |
| GrDirectContext* context, const GrSurfaceProxyView& inputTexture, |
| GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) { |
| // Write the images out as data URLs for inspection. |
| SkString inputURL, origURL, cloneURL, regenURL; |
| if (log_texture_view(context, inputTexture, &inputURL) && |
| log_pixels(pixelsFP, renderSize, &origURL) && |
| log_pixels(pixelsClone, renderSize, &cloneURL) && |
| log_pixels(pixelsRegen, renderSize, ®enURL)) { |
| ERRORF(reporter, |
| "\nInput image:\n%s\n\n" |
| "===========================================================" |
| "\n\n" |
| "Orig output image:\n%s\n" |
| "===========================================================" |
| "\n\n" |
| "Clone output image:\n%s\n" |
| "===========================================================" |
| "\n\n" |
| "Regen output image:\n%s\n", |
| inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str()); |
| } |
| } |
| |
| // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its |
| // progenitor. |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { |
| GrDirectContext* context = ctxInfo.directContext(); |
| GrResourceProvider* resourceProvider = context->priv().resourceProvider(); |
| |
| TestFPGenerator fpGenerator{context, resourceProvider}; |
| if (!fpGenerator.init()) { |
| ERRORF(reporter, "Could not initialize TestFPGenerator"); |
| return; |
| } |
| |
| // Make the destination context for the test. |
| static constexpr int kRenderSize = 1024; |
| auto rtc = GrRenderTargetContext::Make( |
| context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, |
| {kRenderSize, kRenderSize}); |
| |
| std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f); |
| GrSurfaceProxyView inputTexture = |
| make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data()); |
| |
| // On failure we write out images, but just write the first failing set as the print is very |
| // large. |
| bool loggedFirstFailure = false; |
| |
| // Storage for the original frame's readback and the readback of its clone. |
| std::vector<GrColor> readDataFP(kRenderSize * kRenderSize); |
| std::vector<GrColor> readDataClone(kRenderSize * kRenderSize); |
| std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize); |
| |
| // Because processor factories configure themselves in random ways, this is not exhaustive. |
| for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { |
| static constexpr int kTimesToInvokeFactory = 10; |
| for (int j = 0; j < kTimesToInvokeFactory; ++j) { |
| fpGenerator.reroll(); |
| std::unique_ptr<GrFragmentProcessor> fp = |
| fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); |
| std::unique_ptr<GrFragmentProcessor> regen = |
| fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); |
| std::unique_ptr<GrFragmentProcessor> clone = fp->clone(); |
| if (!clone) { |
| ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str()); |
| continue; |
| } |
| assert_processor_equality(reporter, *fp, *clone); |
| |
| // Draw with original and read back the results. |
| render_fp(context, rtc.get(), std::move(fp), readDataFP.data()); |
| |
| // Draw with clone and read back the results. |
| render_fp(context, rtc.get(), std::move(clone), readDataClone.data()); |
| |
| // Check that the results are the same. |
| if (!verify_identical_render(reporter, kRenderSize, "Processor clone", |
| readDataFP.data(), readDataClone.data())) { |
| // Dump a description from the regenerated processor (since the original FP has |
| // already been consumed). |
| ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str()); |
| |
| // Render and readback output from the regenerated FP. If this also mismatches, the |
| // FP itself doesn't generate consistent output. This could happen if: |
| // - the FP's TestCreate() does not always generate the same FP from a given seed |
| // - the FP's Make() does not always generate the same FP when given the same inputs |
| // - the FP itself generates inconsistent pixels (shader UB?) |
| // - the driver has a bug |
| render_fp(context, rtc.get(), std::move(regen), readDataRegen.data()); |
| |
| if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor", |
| readDataFP.data(), readDataRegen.data())) { |
| ERRORF(reporter, "Output from regen did not match original!\n"); |
| } else { |
| ERRORF(reporter, "Regenerated processor output matches original results.\n"); |
| } |
| |
| // If this is the first time we've encountered a cloning failure, log the generated |
| // images to the reporter as data URLs. |
| if (!loggedFirstFailure) { |
| log_clone_failure(reporter, kRenderSize, context, inputTexture, |
| readDataFP.data(), readDataClone.data(), |
| readDataRegen.data()); |
| loggedFirstFailure = true; |
| } |
| } |
| } |
| } |
| } |
| |
| #endif // GR_TEST_UTILS |