| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkPathRef_DEFINED |
| #define SkPathRef_DEFINED |
| |
| #include "SkAtomics.h" |
| #include "SkMatrix.h" |
| #include "SkPoint.h" |
| #include "SkRRect.h" |
| #include "SkRect.h" |
| #include "SkRefCnt.h" |
| #include "SkTDArray.h" |
| #include "SkTemplates.h" |
| #include "SkTo.h" |
| |
| #include <limits> |
| |
| class SkRBuffer; |
| class SkWBuffer; |
| |
| /** |
| * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods |
| * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an |
| * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs |
| * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's |
| * constructor a pointer to a sk_sp<SkPathRef>, which may be updated to point to a new SkPathRef |
| * after the editor's constructor returns. |
| * |
| * The points and verbs are stored in a single allocation. The points are at the begining of the |
| * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points |
| * and verbs both grow into the middle of the allocation until the meet. To access verb i in the |
| * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first |
| * logical verb or the last verb in memory). |
| */ |
| |
| class SK_API SkPathRef final : public SkNVRefCnt<SkPathRef> { |
| public: |
| class Editor { |
| public: |
| Editor(sk_sp<SkPathRef>* pathRef, |
| int incReserveVerbs = 0, |
| int incReservePoints = 0); |
| |
| ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) } |
| |
| /** |
| * Returns the array of points. |
| */ |
| SkPoint* points() { return fPathRef->getPoints(); } |
| const SkPoint* points() const { return fPathRef->points(); } |
| |
| /** |
| * Gets the ith point. Shortcut for this->points() + i |
| */ |
| SkPoint* atPoint(int i) { |
| SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); |
| return this->points() + i; |
| } |
| const SkPoint* atPoint(int i) const { |
| SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); |
| return this->points() + i; |
| } |
| |
| /** |
| * Adds the verb and allocates space for the number of points indicated by the verb. The |
| * return value is a pointer to where the points for the verb should be written. |
| * 'weight' is only used if 'verb' is kConic_Verb |
| */ |
| SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) { |
| SkDEBUGCODE(fPathRef->validate();) |
| return fPathRef->growForVerb(verb, weight); |
| } |
| |
| /** |
| * Allocates space for multiple instances of a particular verb and the |
| * requisite points & weights. |
| * The return pointer points at the first new point (indexed normally [<i>]). |
| * If 'verb' is kConic_Verb, 'weights' will return a pointer to the |
| * space for the conic weights (indexed normally). |
| */ |
| SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, |
| int numVbs, |
| SkScalar** weights = nullptr) { |
| return fPathRef->growForRepeatedVerb(verb, numVbs, weights); |
| } |
| |
| /** |
| * Resets the path ref to a new verb and point count. The new verbs and points are |
| * uninitialized. |
| */ |
| void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) { |
| fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount); |
| } |
| |
| /** |
| * Gets the path ref that is wrapped in the Editor. |
| */ |
| SkPathRef* pathRef() { return fPathRef; } |
| |
| void setIsOval(bool isOval, bool isCCW, unsigned start) { |
| fPathRef->setIsOval(isOval, isCCW, start); |
| } |
| |
| void setIsRRect(bool isRRect, bool isCCW, unsigned start) { |
| fPathRef->setIsRRect(isRRect, isCCW, start); |
| } |
| |
| void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); } |
| |
| private: |
| SkPathRef* fPathRef; |
| }; |
| |
| class SK_API Iter { |
| public: |
| Iter(); |
| Iter(const SkPathRef&); |
| |
| void setPathRef(const SkPathRef&); |
| |
| /** Return the next verb in this iteration of the path. When all |
| segments have been visited, return kDone_Verb. |
| |
| If any point in the path is non-finite, return kDone_Verb immediately. |
| |
| @param pts The points representing the current verb and/or segment |
| This must not be NULL. |
| @return The verb for the current segment |
| */ |
| uint8_t next(SkPoint pts[4]); |
| uint8_t peek() const; |
| |
| SkScalar conicWeight() const { return *fConicWeights; } |
| |
| private: |
| const SkPoint* fPts; |
| const uint8_t* fVerbs; |
| const uint8_t* fVerbStop; |
| const SkScalar* fConicWeights; |
| }; |
| |
| public: |
| /** |
| * Gets a path ref with no verbs or points. |
| */ |
| static SkPathRef* CreateEmpty(); |
| |
| /** |
| * Returns true if all of the points in this path are finite, meaning there |
| * are no infinities and no NaNs. |
| */ |
| bool isFinite() const { |
| if (fBoundsIsDirty) { |
| this->computeBounds(); |
| } |
| return SkToBool(fIsFinite); |
| } |
| |
| /** |
| * Returns a mask, where each bit corresponding to a SegmentMask is |
| * set if the path contains 1 or more segments of that type. |
| * Returns 0 for an empty path (no segments). |
| */ |
| uint32_t getSegmentMasks() const { return fSegmentMask; } |
| |
| /** Returns true if the path is an oval. |
| * |
| * @param rect returns the bounding rect of this oval. It's a circle |
| * if the height and width are the same. |
| * @param isCCW is the oval CCW (or CW if false). |
| * @param start indicates where the contour starts on the oval (see |
| * SkPath::addOval for intepretation of the index). |
| * |
| * @return true if this path is an oval. |
| * Tracking whether a path is an oval is considered an |
| * optimization for performance and so some paths that are in |
| * fact ovals can report false. |
| */ |
| bool isOval(SkRect* rect, bool* isCCW, unsigned* start) const { |
| if (fIsOval) { |
| if (rect) { |
| *rect = this->getBounds(); |
| } |
| if (isCCW) { |
| *isCCW = SkToBool(fRRectOrOvalIsCCW); |
| } |
| if (start) { |
| *start = fRRectOrOvalStartIdx; |
| } |
| } |
| |
| return SkToBool(fIsOval); |
| } |
| |
| bool isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const { |
| if (fIsRRect) { |
| if (rrect) { |
| *rrect = this->getRRect(); |
| } |
| if (isCCW) { |
| *isCCW = SkToBool(fRRectOrOvalIsCCW); |
| } |
| if (start) { |
| *start = fRRectOrOvalStartIdx; |
| } |
| } |
| return SkToBool(fIsRRect); |
| } |
| |
| |
| bool hasComputedBounds() const { |
| return !fBoundsIsDirty; |
| } |
| |
| /** Returns the bounds of the path's points. If the path contains 0 or 1 |
| points, the bounds is set to (0,0,0,0), and isEmpty() will return true. |
| Note: this bounds may be larger than the actual shape, since curves |
| do not extend as far as their control points. |
| */ |
| const SkRect& getBounds() const { |
| if (fBoundsIsDirty) { |
| this->computeBounds(); |
| } |
| return fBounds; |
| } |
| |
| SkRRect getRRect() const; |
| |
| /** |
| * Transforms a path ref by a matrix, allocating a new one only if necessary. |
| */ |
| static void CreateTransformedCopy(sk_sp<SkPathRef>* dst, |
| const SkPathRef& src, |
| const SkMatrix& matrix); |
| |
| static SkPathRef* CreateFromBuffer(SkRBuffer* buffer); |
| |
| /** |
| * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be |
| * repopulated with approximately the same number of verbs and points. A new path ref is created |
| * only if necessary. |
| */ |
| static void Rewind(sk_sp<SkPathRef>* pathRef); |
| |
| ~SkPathRef(); |
| int countPoints() const { return fPointCnt; } |
| int countVerbs() const { return fVerbCnt; } |
| int countWeights() const { return fConicWeights.count(); } |
| |
| /** |
| * Returns a pointer one beyond the first logical verb (last verb in memory order). |
| */ |
| const uint8_t* verbs() const { return fVerbs; } |
| |
| /** |
| * Returns a const pointer to the first verb in memory (which is the last logical verb). |
| */ |
| const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; } |
| |
| /** |
| * Returns a const pointer to the first point. |
| */ |
| const SkPoint* points() const { return fPoints; } |
| |
| /** |
| * Shortcut for this->points() + this->countPoints() |
| */ |
| const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); } |
| |
| const SkScalar* conicWeights() const { return fConicWeights.begin(); } |
| const SkScalar* conicWeightsEnd() const { return fConicWeights.end(); } |
| |
| /** |
| * Convenience methods for getting to a verb or point by index. |
| */ |
| uint8_t atVerb(int index) const { |
| SkASSERT((unsigned) index < (unsigned) fVerbCnt); |
| return this->verbs()[~index]; |
| } |
| const SkPoint& atPoint(int index) const { |
| SkASSERT((unsigned) index < (unsigned) fPointCnt); |
| return this->points()[index]; |
| } |
| |
| bool operator== (const SkPathRef& ref) const; |
| |
| /** |
| * Writes the path points and verbs to a buffer. |
| */ |
| void writeToBuffer(SkWBuffer* buffer) const; |
| |
| /** |
| * Gets the number of bytes that would be written in writeBuffer() |
| */ |
| uint32_t writeSize() const; |
| |
| void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const; |
| |
| /** |
| * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the |
| * same ID then they have the same verbs and points. However, two path refs may have the same |
| * contents but different genIDs. |
| */ |
| uint32_t genID() const; |
| |
| struct GenIDChangeListener : SkRefCnt { |
| virtual ~GenIDChangeListener() {} |
| virtual void onChange() = 0; |
| }; |
| |
| void addGenIDChangeListener(sk_sp<GenIDChangeListener>); |
| |
| bool isValid() const; |
| SkDEBUGCODE(void validate() const { SkASSERT(this->isValid()); } ) |
| |
| private: |
| enum SerializationOffsets { |
| kLegacyRRectOrOvalStartIdx_SerializationShift = 28, // requires 3 bits, ignored. |
| kLegacyRRectOrOvalIsCCW_SerializationShift = 27, // requires 1 bit, ignored. |
| kLegacyIsRRect_SerializationShift = 26, // requires 1 bit, ignored. |
| kIsFinite_SerializationShift = 25, // requires 1 bit |
| kLegacyIsOval_SerializationShift = 24, // requires 1 bit, ignored. |
| kSegmentMask_SerializationShift = 0 // requires 4 bits (deprecated) |
| }; |
| |
| SkPathRef() { |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fPointCnt = 0; |
| fVerbCnt = 0; |
| fVerbs = nullptr; |
| fPoints = nullptr; |
| fFreeSpace = 0; |
| fGenerationID = kEmptyGenID; |
| fSegmentMask = 0; |
| fIsOval = false; |
| fIsRRect = false; |
| // The next two values don't matter unless fIsOval or fIsRRect are true. |
| fRRectOrOvalIsCCW = false; |
| fRRectOrOvalStartIdx = 0xAC; |
| SkDEBUGCODE(fEditorsAttached = 0;) |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints); |
| |
| // Doesn't read fSegmentMask, but (re)computes it from the verbs array |
| unsigned computeSegmentMask() const; |
| |
| // Return true if the computed bounds are finite. |
| static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) { |
| return bounds->setBoundsCheck(ref.points(), ref.countPoints()); |
| } |
| |
| // called, if dirty, by getBounds() |
| void computeBounds() const { |
| SkDEBUGCODE(this->validate();) |
| // TODO(mtklein): remove fBoundsIsDirty and fIsFinite, |
| // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite. |
| SkASSERT(fBoundsIsDirty); |
| |
| fIsFinite = ComputePtBounds(&fBounds, *this); |
| fBoundsIsDirty = false; |
| } |
| |
| void setBounds(const SkRect& rect) { |
| SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom); |
| fBounds = rect; |
| fBoundsIsDirty = false; |
| fIsFinite = fBounds.isFinite(); |
| } |
| |
| /** Makes additional room but does not change the counts or change the genID */ |
| void incReserve(int additionalVerbs, int additionalPoints) { |
| SkDEBUGCODE(this->validate();) |
| size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint); |
| this->makeSpace(space); |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also |
| * allocates space for reserveVerb additional verbs and reservePoints additional points.*/ |
| void resetToSize(int verbCount, int pointCount, int conicCount, |
| int reserveVerbs = 0, int reservePoints = 0) { |
| SkDEBUGCODE(this->validate();) |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fGenerationID = 0; |
| |
| fSegmentMask = 0; |
| fIsOval = false; |
| fIsRRect = false; |
| |
| size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount; |
| size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints; |
| size_t minSize = newSize + newReserve; |
| |
| ptrdiff_t sizeDelta = this->currSize() - minSize; |
| |
| if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) { |
| sk_free(fPoints); |
| fPoints = nullptr; |
| fVerbs = nullptr; |
| fFreeSpace = 0; |
| fVerbCnt = 0; |
| fPointCnt = 0; |
| this->makeSpace(minSize); |
| fVerbCnt = verbCount; |
| fPointCnt = pointCount; |
| fFreeSpace -= newSize; |
| } else { |
| fPointCnt = pointCount; |
| fVerbCnt = verbCount; |
| fFreeSpace = this->currSize() - minSize; |
| } |
| fConicWeights.setCount(conicCount); |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** |
| * Increases the verb count by numVbs and point count by the required amount. |
| * The new points are uninitialized. All the new verbs are set to the specified |
| * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the |
| * uninitialized conic weights. |
| */ |
| SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights); |
| |
| /** |
| * Increases the verb count 1, records the new verb, and creates room for the requisite number |
| * of additional points. A pointer to the first point is returned. Any new points are |
| * uninitialized. |
| */ |
| SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight); |
| |
| /** |
| * Ensures that the free space available in the path ref is >= size. The verb and point counts |
| * are not changed. |
| */ |
| void makeSpace(size_t size) { |
| SkDEBUGCODE(this->validate();) |
| if (size <= fFreeSpace) { |
| return; |
| } |
| size_t growSize = size - fFreeSpace; |
| size_t oldSize = this->currSize(); |
| // round to next multiple of 8 bytes |
| growSize = (growSize + 7) & ~static_cast<size_t>(7); |
| // we always at least double the allocation |
| if (growSize < oldSize) { |
| growSize = oldSize; |
| } |
| if (growSize < kMinSize) { |
| growSize = kMinSize; |
| } |
| constexpr size_t maxSize = std::numeric_limits<size_t>::max(); |
| size_t newSize; |
| if (growSize <= maxSize - oldSize) { |
| newSize = oldSize + growSize; |
| } else { |
| SK_ABORT("Path too big."); |
| } |
| // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO: |
| // encapsulate this. |
| fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize)); |
| size_t oldVerbSize = fVerbCnt * sizeof(uint8_t); |
| void* newVerbsDst = SkTAddOffset<void>(fPoints, newSize - oldVerbSize); |
| void* oldVerbsSrc = SkTAddOffset<void>(fPoints, oldSize - oldVerbSize); |
| memmove(newVerbsDst, oldVerbsSrc, oldVerbSize); |
| fVerbs = SkTAddOffset<uint8_t>(fPoints, newSize); |
| fFreeSpace += growSize; |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** |
| * Private, non-const-ptr version of the public function verbsMemBegin(). |
| */ |
| uint8_t* verbsMemWritable() { |
| SkDEBUGCODE(this->validate();) |
| return fVerbs - fVerbCnt; |
| } |
| |
| /** |
| * Gets the total amount of space allocated for verbs, points, and reserve. |
| */ |
| size_t currSize() const { |
| return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints); |
| } |
| |
| /** |
| * Called the first time someone calls CreateEmpty to actually create the singleton. |
| */ |
| friend SkPathRef* sk_create_empty_pathref(); |
| |
| void setIsOval(bool isOval, bool isCCW, unsigned start) { |
| fIsOval = isOval; |
| fRRectOrOvalIsCCW = isCCW; |
| fRRectOrOvalStartIdx = SkToU8(start); |
| } |
| |
| void setIsRRect(bool isRRect, bool isCCW, unsigned start) { |
| fIsRRect = isRRect; |
| fRRectOrOvalIsCCW = isCCW; |
| fRRectOrOvalStartIdx = SkToU8(start); |
| } |
| |
| // called only by the editor. Note that this is not a const function. |
| SkPoint* getPoints() { |
| SkDEBUGCODE(this->validate();) |
| fIsOval = false; |
| fIsRRect = false; |
| return fPoints; |
| } |
| |
| const SkPoint* getPoints() const { |
| SkDEBUGCODE(this->validate();) |
| return fPoints; |
| } |
| |
| void callGenIDChangeListeners(); |
| |
| enum { |
| kMinSize = 256, |
| }; |
| |
| mutable SkRect fBounds; |
| |
| SkPoint* fPoints; // points to begining of the allocation |
| uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards) |
| int fVerbCnt; |
| int fPointCnt; |
| size_t fFreeSpace; // redundant but saves computation |
| SkTDArray<SkScalar> fConicWeights; |
| |
| enum { |
| kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs. |
| }; |
| mutable uint32_t fGenerationID; |
| SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time. |
| |
| SkTDArray<GenIDChangeListener*> fGenIDChangeListeners; // pointers are reffed |
| |
| mutable uint8_t fBoundsIsDirty; |
| mutable bool fIsFinite; // only meaningful if bounds are valid |
| |
| bool fIsOval; |
| bool fIsRRect; |
| // Both the circle and rrect special cases have a notion of direction and starting point |
| // The next two variables store that information for either. |
| bool fRRectOrOvalIsCCW; |
| uint8_t fRRectOrOvalStartIdx; |
| uint8_t fSegmentMask; |
| |
| friend class PathRefTest_Private; |
| friend class ForceIsRRect_Private; // unit test isRRect |
| }; |
| |
| #endif |