| #Topic Path
|
| #Alias Paths
|
|
|
| Path contains Lines and Curves which can be stroked or filled. Contour is
|
| composed of a series of connected Lines and Curves. Path may contain zero,
|
| one, or more Contours.
|
| Each Line and Curve are described by Verb, Points, and optional Weight.
|
|
|
| Each pair of connected Lines and Curves share common Point; for instance, Path
|
| containing two connected Lines are described the Verb sequence:
|
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb; and a Point sequence
|
| with three entries, sharing
|
| the middle entry as the end of the first Line and the start of the second Line.
|
|
|
| Path components Arc, Rect, Round_Rect, Circle, and Oval are composed of
|
| Lines and Curves with as many Verbs and Points required
|
| for an exact description. Once added to Path, these components may lose their
|
| identity; although Path can be inspected to determine if it decribes a single
|
| Rect, Oval, Round_Rect, and so on.
|
|
|
| #Example
|
| #Height 192
|
| #Description
|
| Path contains three Contours: Line, Circle, and Quad. Line is stroked but
|
| not filled. Circle is stroked and filled; Circle stroke forms a loop. Quad
|
| is stroked and filled, but since it is not closed, Quad does not stroke a loop.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkPath path;
|
| path.moveTo(124, 108);
|
| path.lineTo(172, 24);
|
| path.addCircle(50, 50, 30);
|
| path.moveTo(36, 148);
|
| path.quadTo(66, 188, 120, 136);
|
| canvas->drawPath(path, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setColor(SK_ColorBLUE);
|
| paint.setStrokeWidth(3);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| Path contains a Fill_Type which determines whether overlapping Contours
|
| form fills or holes. Fill_Type also determines whether area inside or outside
|
| Lines and Curves is filled.
|
|
|
| #Example
|
| #Height 192
|
| #Description
|
| Path is drawn filled, then stroked, then stroked and filled.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkPath path;
|
| path.moveTo(36, 48);
|
| path.quadTo(66, 88, 120, 36);
|
| canvas->drawPath(path, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setColor(SK_ColorBLUE);
|
| paint.setStrokeWidth(8);
|
| canvas->translate(0, 50);
|
| canvas->drawPath(path, paint);
|
| paint.setStyle(SkPaint::kStrokeAndFill_Style);
|
| paint.setColor(SK_ColorRED);
|
| canvas->translate(0, 50);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| Path contents are never shared. Copying Path by value effectively creates
|
| a new Path independent of the original. Internally, the copy does not duplicate
|
| its contents until it is edited, to reduce memory use and improve performance.
|
|
|
| #Subtopic Subtopics |
| #ToDo not all methods are in topics ## |
| #ToDo subtopics are not in topics ## |
| #Table |
| #Legend |
| # topics # description ## |
| #Legend ## |
| #Table ## |
| # Contour # A loop of lines and curves. ## |
| # Convexity # Whether Path contains simple loop. ## |
| # Last_Point # Final Point in Contour. ## |
| # Point_Array # All Points in Path. ## |
| # Verb # How Points and Contours are defined. ## |
| # Verb_Array # All Verbs in Path. ## |
| # Verb # How Points and Contours are defined. ## |
| # Weight # Strength of control Point in Conic. ## |
| #Subtopic ## |
|
|
|
|
| #Subtopic Contour |
| #Alias Contours |
| Contour contains one or more Verbs, and as many Points as |
| are required to satisfy Verb_Array. First Verb in Path is always |
| SkPath::kMove_Verb; each SkPath::kMove_Verb that follows starts a new Contour. |
| |
| #Example |
| #Description
|
| Each SkPath::moveTo starts a new Contour, and content after SkPath::close()
|
| also starts a new Contour. Since SkPath::conicTo wasn't preceded by
|
| SkPath::moveTo, the first Point of the third Contour starts at the last Point
|
| of the second Contour.
|
| ##
|
| #Height 192
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| canvas->drawString("1st contour", 150, 100, paint);
|
| canvas->drawString("2nd contour", 130, 160, paint);
|
| canvas->drawString("3rd contour", 40, 30, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(124, 108);
|
| path.lineTo(172, 24);
|
| path.moveTo(36, 148);
|
| path.quadTo(66, 188, 120, 136);
|
| path.close();
|
| path.conicTo(70, 20, 110, 40, 0.6f);
|
| canvas->drawPath(path, paint);
|
| ## |
| |
| If final Verb in Contour is SkPath::kClose_Verb, Line connects Last_Point in |
| Contour with first Point. A closed Contour, stroked, draws |
| Paint_Stroke_Join at Last_Point and first Point. Without SkPath::kClose_Verb |
| as final Verb, Last_Point and first Point are not connected; Contour |
| remains open. An open Contour, stroked, draws Paint_Stroke_Cap at |
| Last_Point and first Point. |
| |
| #Example |
| #Height 160
|
| #Description
|
| Path is drawn stroked, with an open Contour and a closed Contour.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(8);
|
| SkPath path;
|
| path.moveTo(36, 48);
|
| path.quadTo(66, 88, 120, 36);
|
| canvas->drawPath(path, paint);
|
| path.close();
|
| canvas->translate(0, 50);
|
| canvas->drawPath(path, paint);
|
| }
|
| ## |
| |
| #Subtopic Zero_Length |
| #Alias Zero_Length_Contour |
| Contour length is distance traveled from first Point to Last_Point, |
| plus, if Contour is closed, distance from Last_Point to first Point. |
| Even if Contour length is zero, stroked Lines are drawn if Paint_Stroke_Cap |
| makes them visible. |
| |
| #Example |
| #Height 64
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(8);
|
| paint.setStrokeCap(SkPaint::kRound_Cap);
|
| SkPath path;
|
| path.moveTo(36, 48);
|
| path.lineTo(36, 48);
|
| canvas->drawPath(path, paint);
|
| path.reset();
|
| paint.setStrokeCap(SkPaint::kSquare_Cap);
|
| path.moveTo(56, 48);
|
| path.close();
|
| canvas->drawPath(path, paint); |
| ## |
| |
| #Subtopic Zero_Length ## |
| |
| #Subtopic Contour ## |
|
|
| # ------------------------------------------------------------------------------
|
| |
| #Class SkPath
|
|
|
| #Topic Overview
|
|
|
| #Subtopic Constants |
| #ToDo incomplete ## |
| #Table |
| #Legend |
| # constants # description ## |
| #Legend ## |
| # AddPathMode # Sets addPath options. ## |
| # ArcSize # Sets arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep, SkScalar x, SkScalar y) options. ## |
| # Convexity # Returns if Path is convex or concave. ## |
| # Direction # Sets Contour clockwise or counterclockwise. ## |
| # FillType # Sets winding rule and inverse fill. ## |
| # SegmentMask |
| # Verb # Controls how Path Points are interpreted. ## |
| #Table ## |
| #Subtopic ## |
|
|
| #Subtopic Classes_and_Structs |
| #Table |
| #Legend |
| # class or struct # description ## |
| #Legend ## |
| # Iter # Iterates through lines and curves, skipping degenerates. ## |
| # RawIter # Iterates through lines and curves, including degenerates. ## |
| #Table ## |
| #Subtopic ## |
|
|
| #Subtopic Constructors |
| #Table |
| #Legend |
| # # description ## |
| #Legend ## |
| # SkPath() # Constructs with default values. ## |
| # SkPath(const SkPath& path) # Makes a shallow copy. ## |
| # ~SkPath() # Decreases Reference_Count of owned objects. ## |
| #Table ## |
| #Subtopic ## |
| |
| #Subtopic Operators |
| #Table |
| #Legend |
| # operator # description ## |
| #Legend ## |
| # operator=(const SkPath& path) # Makes a shallow copy. ## |
| # operator==(const SkPath& a, const SkPath& b) # Compares paths for equality. ## |
| # operator!=(const SkPath& a, const SkPath& b) # Compares paths for inequality. ## |
| #Table ## |
| #Subtopic ## |
|
|
| #Subtopic Member_Functions
|
| #Table
|
| #Legend
|
| # function # description ##
|
| #Legend ##
|
| # ConvertConicToQuads # Approximates Conic with Quad array. ##
|
| # ConvertToNonInverseFillType # Returns Fill_Type representing inside geometry. ##
|
| # IsCubicDegenerate # Returns if Cubic is very small. ##
|
| # IsInverseFillType # Returns if Fill_Type represents outside geometry. ##
|
| # IsLineDegenerate # Returns if Line is very small. ##
|
| # IsQuadDegenerate # Returns if Quad is very small. ##
|
| # addArc # Adds one Contour containing Arc. ##
|
| # addCircle # Adds one Contour containing Circle. ##
|
| # addOval # Adds one Contour containing Oval. ##
|
| # addPath # Adds contents of Path. ##
|
| # addPoly # Adds one Contour containing connected lines. ##
|
| # addRRect # Adds one Contour containing Round_Rect. ##
|
| # addRect # Adds one Contour containing Rect. ##
|
| # addRoundRect # Adds one Contour containing Round_Rect with common corner radii. ##
|
| # arcTo # Appends Arc. ##
|
| # close() # Makes last Contour a loop. ##
|
| # computeTightBounds # Returns extent of geometry. ##
|
| # conicTo # Appends Conic. ##
|
| # conservativelyContainsRect # Returns true if Rect may be inside. ##
|
| # contains() # Returns if Point is in fill area. ##
|
| # countPoints # Returns Point_Array length. ##
|
| # countVerbs # Returns Verb_Array length. ##
|
| # cubicTo # Appends Cubic. ##
|
| # dump() # Sends text representation using floats to stdout. ##
|
| # dumpHex # Sends text representation using hexadecimal to stdout. ##
|
| # experimentalValidateRef # Experimental; debugging only. ##
|
| # getBounds # Returns maximum and minimum of Point_Array. ##
|
| # getConvexity # Returns geometry convexity, computing if necessary. ##
|
| # getConvexityOrUnknown # Returns geometry convexity if known. ##
|
| # getFillType # Returns Fill_Type: winding, even-odd, inverse. ##
|
| # getGenerationID # Returns unique ID. ##
|
| # getLastPt # Returns Last_Point. ##
|
| # getPoint # Returns entry from Point_Array. ##
|
| # getPoints # Returns Point_Array. ##
|
| # getSegmentMasks # Returns types in Verb_Array. ##
|
| # getVerbs # Returns Verb_Array. ##
|
| # incReserve # Hint to reserve space for additional data. ##
|
| # interpolate() # Interpolates between Path pair. ##
|
| # isConvex # Returns if geometry is convex. ##
|
| # isEmpty # Returns if verb count is zero. ##
|
| # isFinite # Returns if all Point values are finite. ##
|
| # isInterpolatable # Returns if pair contains equal counts of Verb_Array and Weights. ##
|
| # isInverseFillType # Returns if Fill_Type fills outside geometry. ##
|
| # isLastContourClosed # Returns if final Contour forms a loop. ##
|
| # isLine # Returns if describes Line. ##
|
| # isNestedFillRects # Returns if describes Rect pair, one inside the other. ##
|
| # isOval # Returns if describes Oval. ##
|
| # isRRect # Returns if describes Round_Rect. ##
|
| # isRect # Returns if describes Rect. ##
|
| # isVolatile # Returns if Device should not cache. ##
|
| # lineTo # Appends Line. ##
|
| # moveTo # Starts Contour. ##
|
| # offset() # Translates Point_Array. ##
|
| # quadTo # Appends Quad. ##
|
| # rArcTo # Appends Arc relative to Last_Point. ##
|
| # rConicTo # Appends Conic relative to Last_Point. ##
|
| # rCubicTo # Appends Cubic relative to Last_Point. ##
|
| # rLineTo # Appends Line relative to Last_Point. ##
|
| # rMoveTo # Starts Contour relative to Last_Point. ##
|
| # rQuadTo # Appends Quad relative to Last_Point. ##
|
| # readFromMemory # Initialize from buffer. ##
|
| # reset() # Removes Verb_Array, Point_Array, and Weights; frees memory. ##
|
| # reverseAddPath # Adds contents of Path back to front. ##
|
| # rewind() # Removes Verb_Array, Point_Array, and Weights; leaves memory allocated. ##
|
| # setConvexity # Sets if geometry is convex to avoid future computation. ##
|
| # setFillType # Sets Fill_Type: winding, even-odd, inverse. ##
|
| # setIsConvex # Deprecated. ##
|
| # setIsVolatile # Sets if Device should not cache. ##
|
| # setLastPt # Replaces Last_Point. ##
|
| # swap() # Exchanges Path pair. ##
|
| # toggleInverseFillType # Toggles Fill_Type between inside and outside geometry. ##
|
| # transform() # Applies Matrix to Point_Array and Weights. ##
|
| # unique() # Returns if data has single owner. ##
|
| # updateBoundsCache # Refresh result of getBounds. ##
|
| # writeToMemory # Copy data to buffer. ##
|
| #Table ##
|
| #Subtopic Path_Member_Functions ##
|
| #Topic Overview ##
|
|
|
| #Subtopic Verb |
| #Alias Verbs |
| |
| #Enum Verb
|
|
|
| #Code
|
| enum Verb {
|
| kMove_Verb
|
| kLine_Verb
|
| kQuad_Verb
|
| kConic_Verb
|
| kCubic_Verb
|
| kClose_Verb
|
| kDone_Verb
|
| };
|
| ##
|
|
|
| Verb instructs Path how to interpret one or more Point and optional Weight; |
| manage Contour, and terminate Path. |
| |
| #Const kMove_Verb 0
|
| Starts new Contour at next Point.
|
| ##
|
| #Const kLine_Verb 1
|
| Adds Line from Last_Point to next Point.
|
| Line is a straight segment from Point to Point.
|
| ##
|
| #Const kQuad_Verb 2
|
| Adds Quad from Last_Point, using control Point, and end Point.
|
| Quad is a parabolic section within tangents from Last_Point to control Point,
|
| and control Point to end Point.
|
| ##
|
| #Const kConic_Verb 3
|
| Adds Conic from Last_Point, using control Point, end Point, and Weight.
|
| Conic is a elliptical, parabolic, or hyperbolic section within tangents
|
| from Last_Point to control Point, and control Point to end Point, constrained
|
| by Weight. Weight less than one is elliptical; equal to one is parabolic
|
| (and identical to Quad); greater than one hyperbolic.
|
| ##
|
| #Const kCubic_Verb 4
|
| Adds Cubic from Last_Point, using two control Points, and end Point.
|
| Cubic is a third-order Bezier section within tangents from Last_Point to
|
| first control Point, and from second control Point to end Point.
|
| ##
|
| #Const kClose_Verb 5
|
| Closes Contour, connecting Last_Point to kMove_Verb Point.
|
| ##
|
| #Const kDone_Verb 6
|
| Terminates Path. Not in Verb_Array, but returned by Path iterator.
|
| ## |
| |
| Each Verb has zero or more Points stored in Path. |
| Path iterator returns complete curve descriptions, duplicating shared Points |
| for consecutive entries. |
| |
| #Table |
| #Legend |
| # Verb # Allocated Points # Iterated Points # Weights ## |
| ## |
| # kMove_Verb # 1 # 1 # 0 ## |
| # kLine_Verb # 1 # 2 # 0 ## |
| # kQuad_Verb # 2 # 3 # 0 ## |
| # kConic_Verb # 2 # 3 # 1 ## |
| # kCubic_Verb # 3 # 4 # 0 ## |
| # kClose_Verb # 0 # 1 # 0 ## |
| # kDone_Verb # -- # 0 # 0 ## |
| ## |
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.lineTo(20, 20);
|
| path.quadTo(-10, -10, 30, 30);
|
| path.close();
|
| path.cubicTo(1, 2, 3, 4, 5, 6);
|
| path.conicTo(0, 0, 0, 0, 2);
|
| uint8_t verbs[7];
|
| int count = path.getVerbs(verbs, (int) SK_ARRAY_COUNT(verbs));
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close" };
|
| SkDebugf("verb count: %d\nverbs: ", count);
|
| for (int i = 0; i < count; ++i) {
|
| SkDebugf("k%s_Verb ", verbStr[verbs[i]]);
|
| }
|
| SkDebugf("\n");
|
| }
|
| #StdOut
|
| verb count: 7
|
| verbs: kMove_Verb kLine_Verb kQuad_Verb kClose_Verb kMove_Verb kCubic_Verb kConic_Verb
|
| ##
|
| ##
|
|
|
| #Enum Verb ##
|
| #Subtopic Verb ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Subtopic Direction
|
| #Alias Directions
|
|
|
| #Enum Direction
|
|
|
| #Code
|
| enum Direction {
|
| kCW_Direction
|
| kCCW_Direction
|
| };
|
| ##
|
|
|
| Direction describes whether Contour is clockwise or counterclockwise.
|
| When Path contains multiple overlapping Contours, Direction together with
|
| Fill_Type determines whether overlaps are filled or form holes.
|
|
|
| Direction also determines how Contour is measured. For instance, dashing
|
| measures along Path to determine where to start and stop stroke; Direction
|
| will change dashed results as it steps clockwise or counterclockwise.
|
|
|
| Closed Contours like Rect, Round_Rect, Circle, and Oval added with
|
| kCW_Direction travel clockwise; the same added with kCCW_Direction
|
| travel counterclockwise.
|
|
|
| #Const kCW_Direction
|
| Contour travels in a clockwise direction.
|
| ##
|
| #Const kCCW_Direction
|
| Contour travels in a counterclockwise direction.
|
| ##
|
|
|
|
|
| #Example
|
| #Height 100
|
| void draw(SkCanvas* canvas) {
|
| const SkPoint arrow[] = { {40, -5}, {45, 0}, {40, 5} };
|
| const SkRect rect = {10, 10, 90, 90};
|
| SkPaint rectPaint;
|
| rectPaint.setAntiAlias(true);
|
| SkPaint textPaint(rectPaint);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| rectPaint.setStyle(SkPaint::kStroke_Style);
|
| SkPaint arrowPaint(rectPaint);
|
| SkPath arrowPath;
|
| arrowPath.addPoly(arrow, SK_ARRAY_COUNT(arrow), true);
|
| arrowPaint.setPathEffect(SkPath1DPathEffect::Make(arrowPath, 320, 0,
|
| SkPath1DPathEffect::kRotate_Style));
|
| for (auto direction : { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| canvas->drawRect(rect, rectPaint);
|
| for (unsigned start : { 0, 1, 2, 3 } ) {
|
| SkPath path;
|
| path.addRect(rect, direction, start);
|
| canvas->drawPath(path, arrowPaint);
|
| }
|
| canvas->drawString(SkPath::kCW_Direction == direction ? "CW" : "CCW", rect.centerX(),
|
| rect.centerY(), textPaint);
|
| canvas->translate(120, 0);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso arcTo rArcTo isRect isNestedFillRects addRect addOval
|
|
|
| #Enum Direction ##
|
| #Subtopic Direction ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method SkPath()
|
|
|
| By default, Path has no Verbs, no Points, and no Weights.
|
| Fill_Type is set to kWinding_FillType.
|
|
|
| #Return empty Path. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("path is " "%s" "empty", path.isEmpty() ? "" : "not ");
|
| #StdOut
|
| path is empty
|
| ##
|
| ##
|
|
|
| #SeeAlso reset rewind
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method SkPath(const SkPath& path)
|
|
|
| Copy constructor makes two paths identical by value. Internally, path and
|
| the returned result share pointer values. The underlying Verb_Array, Point_Array
|
| and Weights are copied when modified.
|
|
|
| Creating a Path copy is very efficient and never allocates memory.
|
| Paths are always copied by value from the interface; the underlying shared
|
| pointers are not exposed.
|
|
|
| #Param path Path to copy by value. ##
|
|
|
| #Return Copy of Path. ##
|
|
|
| #Example
|
| #Description
|
| Modifying one path does not effect another, even if they started as copies
|
| of each other.
|
| ##
|
| SkPath path;
|
| path.lineTo(20, 20);
|
| SkPath path2(path);
|
| path2.close();
|
| SkDebugf("path verbs: %d\n", path.countVerbs());
|
| SkDebugf("path2 verbs: %d\n", path2.countVerbs());
|
| path.reset();
|
| SkDebugf("after reset\n" "path verbs: %d\n", path.countVerbs());
|
| SkDebugf("path2 verbs: %d\n", path2.countVerbs());
|
| #StdOut
|
| path verbs: 2
|
| path2 verbs: 3
|
| after reset
|
| path verbs: 0
|
| path2 verbs: 3
|
| ##
|
| ##
|
|
|
| #SeeAlso operator=(const SkPath& path)
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method ~SkPath()
|
|
|
| Releases ownership of any shared data and deletes data if Path is sole owner.
|
|
|
| #Example
|
| #Description
|
| delete calls Path destructor, but copy of original in path2 is unaffected.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPath* path = new SkPath();
|
| path->lineTo(20, 20);
|
| SkPath path2(*path);
|
| delete path;
|
| SkDebugf("path2 is " "%s" "empty", path2.isEmpty() ? "" : "not ");
|
| }
|
| ##
|
|
|
| #SeeAlso SkPath() SkPath(const SkPath& path) operator=(const SkPath& path)
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method SkPath& operator=(const SkPath& path)
|
|
|
| Path assignment makes two paths identical by value. Internally, assignment
|
| shares pointer values. The underlying Verb_Array, Point_Array and Weights
|
| are copied when modified.
|
|
|
| Copying Paths by assignment is very efficient and never allocates memory.
|
| Paths are always copied by value from the interface; the underlying shared
|
| pointers are not exposed.
|
|
|
| #Param path Verb_Array, Point_Array, Weights, amd Fill_Type to copy. ##
|
|
|
| #Return Path copied by value. ##
|
|
|
| #Example
|
| SkPath path1;
|
| path1.addRect({10, 20, 30, 40});
|
| SkPath path2 = path1;
|
| const SkRect& b1 = path1.getBounds();
|
| SkDebugf("path1 bounds = %g, %g, %g, %g\n", b1.fLeft, b1.fTop, b1.fRight, b1.fBottom);
|
| const SkRect& b2 = path2.getBounds();
|
| SkDebugf("path2 bounds = %g, %g, %g, %g\n", b2.fLeft, b2.fTop, b2.fRight, b2.fBottom);
|
| #StdOut
|
| path1 bounds = 10, 20, 30, 40
|
| path2 bounds = 10, 20, 30, 40
|
| #StdOut ##
|
| ##
|
|
|
| #SeeAlso swap() SkPath(const SkPath& path)
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method friend SK_API bool operator==(const SkPath& a, const SkPath& b)
|
|
|
| Compares a and b; returns true if Fill_Type, Verb_Array, Point_Array, and Weights
|
| are equivalent.
|
|
|
| #Param a Path to compare. ##
|
| #Param b Path to compare. ##
|
|
|
| #Return true if Path pair are equivalent. ##
|
|
|
| #Example
|
| #Description
|
| Rewind removes Verb_Array but leaves storage; since storage is not compared,
|
| Path pair are equivalent.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& a, const SkPath& b) -> void {
|
| SkDebugf("%s one %c= two\n", prefix, a == b ? '=' : '!');
|
| };
|
| SkPath one;
|
| SkPath two;
|
| debugster("empty", one, two);
|
| one.moveTo(0, 0);
|
| debugster("moveTo", one, two);
|
| one.rewind();
|
| debugster("rewind", one, two);
|
| one.moveTo(0, 0);
|
| one.reset();
|
| debugster("reset", one, two);
|
| }
|
| #StdOut
|
| empty one == two
|
| moveTo one != two
|
| rewind one == two
|
| reset one == two
|
| ##
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method friend bool operator!=(const SkPath& a, const SkPath& b)
|
|
|
| Compares a and b; returns true if Fill_Type, Verb_Array, Point_Array, and Weights
|
| are not equivalent.
|
|
|
| #Param a Path to compare. ##
|
| #Param b Path to compare. ##
|
|
|
| #Return true if Path pair are not equivalent. ##
|
|
|
| #Example
|
| #Description
|
| Path pair are equal though their convexity is not equal.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& a, const SkPath& b) -> void {
|
| SkDebugf("%s one %c= two\n", prefix, a != b ? '!' : '=');
|
| };
|
| SkPath one;
|
| SkPath two;
|
| debugster("empty", one, two);
|
| one.addRect({10, 20, 30, 40});
|
| two.addRect({10, 20, 30, 40});
|
| debugster("addRect", one, two);
|
| one.setConvexity(SkPath::kConcave_Convexity);
|
| debugster("setConvexity", one, two);
|
| SkDebugf("convexity %c=\n", one.getConvexity() == two.getConvexity() ? '=' : '!');
|
| }
|
| #StdOut
|
| empty one == two
|
| addRect one == two
|
| setConvexity one == two
|
| convexity !=
|
| ##
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isInterpolatable(const SkPath& compare) const
|
|
|
| Return true if Paths contain equal Verbs and equal Weights.
|
| If Paths contain one or more Conics, the Weights must match.
|
|
|
| conicTo may add different Verbs depending on Conic_Weight, so it is not
|
| trival to interpolate a pair of Paths containing Conics with different
|
| Conic_Weight values.
|
|
|
| #Param compare Path to compare. ##
|
|
|
| #Return true if Paths Verb_Array and Weights are equivalent. ##
|
|
|
| #Example
|
| SkPath path, path2;
|
| path.moveTo(20, 20);
|
| path.lineTo(40, 40);
|
| path.lineTo(20, 20);
|
| path.lineTo(40, 40);
|
| path.close();
|
| path2.addRect({20, 20, 40, 40});
|
| SkDebugf("paths are " "%s" "interpolatable", path.isInterpolatable(path2) ? "" : "not ");
|
| #StdOut
|
| paths are interpolatable
|
| ##
|
| ##
|
|
|
| #SeeAlso isInterpolatable
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool interpolate(const SkPath& ending, SkScalar weight, SkPath* out) const
|
|
|
| Interpolate between Paths with equal sized Point_Arrays.
|
| Copy Verb_Array and Weights to out,
|
| and set out Point_Array to a weighted average of this Point_Array and ending
|
| Point_Array, using the formula:
|
| #Formula
|
| (this->points * weight) + ending->points * (1 - weight)
|
| ##
|
|
|
| interpolate() returns false and leaves out unchanged if Point_Array is not
|
| the same size as ending Point_Array. Call isInterpolatable to check Path
|
| compatibility prior to calling interpolate().
|
|
|
| #Param ending Point_Array averaged with this Point_Array. ##
|
| #Param weight Most useful when between zero (ending Point_Array) and
|
| one (this Point_Array); will work with values outside of this
|
| range.
|
| ##
|
| #Param out ##
|
|
|
| #Return true if Paths contain same number of Points. ##
|
|
|
| #Example
|
| #Height 60
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path, path2;
|
| path.moveTo(20, 20);
|
| path.lineTo(40, 40);
|
| path.lineTo(20, 40);
|
| path.lineTo(40, 20);
|
| path.close();
|
| path2.addRect({20, 20, 40, 40});
|
| for (SkScalar i = 0; i <= 1; i += 1.f / 6) {
|
| SkPath interp;
|
| path.interpolate(path2, i, &interp);
|
| canvas->drawPath(interp, paint);
|
| canvas->translate(30, 0);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso isInterpolatable
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool unique() const
|
|
|
| #Private
|
| To be deprecated; only valid for Android framework.
|
| ##
|
|
|
| #Return true if Path has one owner. ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Subtopic Fill_Type |
| |
| #Enum FillType
|
|
|
| #Code
|
| enum FillType {
|
| kWinding_FillType
|
| kEvenOdd_FillType
|
| kInverseWinding_FillType
|
| kInverseEvenOdd_FillType
|
| };
|
| ##
|
| |
| Fill_Type selects the rule used to fill Path. Path set to kWinding_FillType |
| fills if the sum of Contour edges is not zero, where clockwise edges add one, and |
| counterclockwise edges subtract one. Path set to kEvenOdd_FillType fills if the |
| number of Contour edges is odd. Each Fill_Type has an inverse variant that |
| reverses the rule: |
| kInverseWinding_FillType fills where the sum of Contour edges is zero; |
| kInverseEvenOdd_FillType fills where the number of Contour edges is even. |
| |
| #Example |
| #Height 100 |
| #Description |
| The top row has two clockwise rectangles. The second row has one clockwise and |
| one counterclockwise rectangle. The even-odd variants draw the same. The |
| winding variants draw the top rectangle overlap, which has a winding of 2, the |
| same as the outer parts of the top rectangles, which have a winding of 1. |
| ## |
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.addRect({10, 10, 30, 30}, SkPath::kCW_Direction);
|
| path.addRect({20, 20, 40, 40}, SkPath::kCW_Direction);
|
| path.addRect({10, 60, 30, 80}, SkPath::kCW_Direction);
|
| path.addRect({20, 70, 40, 90}, SkPath::kCCW_Direction);
|
| SkPaint strokePaint;
|
| strokePaint.setStyle(SkPaint::kStroke_Style);
|
| SkRect clipRect = {0, 0, 51, 100};
|
| canvas->drawPath(path, strokePaint);
|
| SkPaint fillPaint;
|
| for (auto fillType : { SkPath::kWinding_FillType, SkPath::kEvenOdd_FillType,
|
| SkPath::kInverseWinding_FillType, SkPath::kInverseEvenOdd_FillType } ) {
|
| canvas->translate(51, 0);
|
| canvas->save();
|
| canvas->clipRect(clipRect);
|
| path.setFillType(fillType);
|
| canvas->drawPath(path, fillPaint);
|
| canvas->restore();
|
| }
|
| } |
| ## |
|
|
| #Const kWinding_FillType
|
| Specifies fill as area is enclosed by a non-zero sum of Contour Directions.
|
| ##
|
| #Const kEvenOdd_FillType
|
| Specifies fill as area enclosed by an odd number of Contours.
|
| ##
|
| #Const kInverseWinding_FillType
|
| Specifies fill as area is enclosed by a zero sum of Contour Directions.
|
| ##
|
| #Const kInverseEvenOdd_FillType
|
| Specifies fill as area enclosed by an even number of Contours.
|
| ##
|
|
|
| #Example
|
| #Height 230
|
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.addRect({20, 10, 80, 70}, SkPath::kCW_Direction);
|
| path.addRect({40, 30, 100, 90}, SkPath::kCW_Direction);
|
| SkPaint strokePaint;
|
| strokePaint.setStyle(SkPaint::kStroke_Style);
|
| SkRect clipRect = {0, 0, 128, 128};
|
| canvas->drawPath(path, strokePaint);
|
| canvas->drawLine({0, 50}, {120, 50}, strokePaint);
|
| SkPaint textPaint;
|
| textPaint.setAntiAlias(true);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| SkScalar textHPos[] = { 10, 30, 60, 90, 110 };
|
| canvas->drawPosTextH("01210", 5, textHPos, 48, textPaint);
|
| textPaint.setTextSize(18);
|
| canvas->translate(0, 128);
|
| canvas->scale(.5f, .5f);
|
| canvas->drawString("inverse", 384, 150, textPaint);
|
| SkPaint fillPaint;
|
| for (auto fillType : { SkPath::kWinding_FillType, SkPath::kEvenOdd_FillType,
|
| SkPath::kInverseWinding_FillType, SkPath::kInverseEvenOdd_FillType } ) {
|
| canvas->save();
|
| canvas->clipRect(clipRect);
|
| path.setFillType(fillType);
|
| canvas->drawPath(path, fillPaint);
|
| canvas->restore();
|
| canvas->drawString(fillType & 1 ? "even-odd" : "winding", 64, 170, textPaint);
|
| canvas->translate(128, 0);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkPaint::Style Direction getFillType setFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method FillType getFillType() const
|
|
|
| Returns FillType, the rule used to fill Path. FillType of a new Path is
|
| kWinding_FillType.
|
|
|
| #Return one of: kWinding_FillType, kEvenOdd_FillType, kInverseWinding_FillType,
|
| kInverseEvenOdd_FillType.
|
| ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("default path fill type is %s\n",
|
| path.getFillType() == SkPath::kWinding_FillType ? "kWinding_FillType" :
|
| path.getFillType() == SkPath::kEvenOdd_FillType ? "kEvenOdd_FillType" :
|
| path.getFillType() == SkPath::kInverseWinding_FillType ? "kInverseWinding_FillType" :
|
| "kInverseEvenOdd_FillType");
|
| #StdOut
|
| default path fill type is kWinding_FillType
|
| ##
|
| ##
|
|
|
| #SeeAlso FillType setFillType isInverseFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void setFillType(FillType ft)
|
|
|
| Sets FillType, the rule used to fill Path. While setFillType does not check
|
| that ft is legal, values outside of FillType are not supported.
|
|
|
| #Param ft one of: kWinding_FillType, kEvenOdd_FillType, kInverseWinding_FillType,
|
| kInverseEvenOdd_FillType.
|
| ##
|
|
|
| #Example
|
| #Description
|
| If empty Path is set to inverse FillType, it fills all pixels.
|
| ##
|
| #Height 64
|
| SkPath path;
|
| path.setFillType(SkPath::kInverseWinding_FillType);
|
| SkPaint paint;
|
| paint.setColor(SK_ColorBLUE);
|
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #SeeAlso FillType getFillType toggleInverseFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isInverseFillType() const
|
|
|
| Returns if FillType describes area outside Path geometry. The inverse fill area
|
| extends indefinitely.
|
|
|
| #Return true if FillType is kInverseWinding_FillType or kInverseEvenOdd_FillType. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("default path fill type is inverse: %s\n",
|
| path.isInverseFillType() ? "true" : "false");
|
| #StdOut
|
| default path fill type is inverse: false
|
| ##
|
| ##
|
|
|
| #SeeAlso FillType getFillType setFillType toggleInverseFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void toggleInverseFillType()
|
|
|
| Replace FillType with its inverse. The inverse of FillType describes the area
|
| unmodified by the original FillType.
|
|
|
| #Table
|
| #Legend
|
| # FillType # toggled FillType ##
|
| ##
|
| # kWinding_FillType # kInverseWinding_FillType ##
|
| # kEvenOdd_FillType # kInverseEvenOdd_FillType ##
|
| # kInverseWinding_FillType # kWinding_FillType ##
|
| # kInverseEvenOdd_FillType # kEvenOdd_FillType ##
|
| ##
|
|
|
| #Example
|
| #Description
|
| Path drawn normally and through its inverse touches every pixel once.
|
| ##
|
| #Height 100
|
| SkPath path;
|
| SkPaint paint;
|
| paint.setColor(SK_ColorRED);
|
| paint.setTextSize(80); |
| paint.getTextPath("ABC", 3, 20, 80, &path); |
| canvas->drawPath(path, paint);
|
| path.toggleInverseFillType();
|
| paint.setColor(SK_ColorGREEN);
|
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #SeeAlso FillType getFillType setFillType isInverseFillType
|
|
|
| ##
|
|
|
| #Subtopic Fill_Type ## |
|
|
| # ------------------------------------------------------------------------------
|
| |
| #Subtopic Convexity |
|
|
| #Enum Convexity
|
|
|
| #Code
|
| enum Convexity {
|
| kUnknown_Convexity,
|
| kConvex_Convexity,
|
| kConcave_Convexity
|
| };
|
| ##
|
|
|
| Path is convex if it contains one Contour and Contour loops no more than |
| 360 degrees, and Contour angles all have same Direction. Convex Path |
| may have better performance and require fewer resources on GPU_Surface. |
| |
| Path is concave when either at least one Direction change is clockwise and
|
| another is counterclockwise, or the sum of the changes in Direction is not 360
|
| degrees.
|
|
|
| Initially Path Convexity is kUnknown_Convexity. Path Convexity is computed
|
| if needed by destination Surface.
|
|
|
| #Const kUnknown_Convexity
|
| Indicates Convexity has not been determined.
|
| ##
|
| #Const kConvex_Convexity
|
| Path has one Contour made of a simple geometry without indentations.
|
| ##
|
| #Const kConcave_Convexity
|
| Path has more than one Contour, or a geometry with indentations.
|
| ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPoint quad[] = {{70, 70}, {20, 20}, {120, 20}, {120, 120}};
|
| const char* labels[] = { "unknown", "convex", "concave" };
|
| for (SkScalar x : { 40, 100 } ) {
|
| SkPath path;
|
| quad[0].fX = x;
|
| path.addPoly(quad, SK_ARRAY_COUNT(quad), true);
|
| canvas->drawPath(path, paint);
|
| canvas->drawString(labels[(int) path.getConvexity()], 30, 100, paint);
|
| canvas->translate(100, 100);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso Contour Direction getConvexity getConvexityOrUnknown setConvexity isConvex
|
|
|
| #Enum Convexity ##
|
|
|
| #Method Convexity getConvexity() const
|
|
|
| Computes Convexity if required, and returns stored value.
|
| Convexity is computed if stored value is kUnknown_Convexity,
|
| or if Path has been altered since Convexity was computed or set.
|
|
|
| #Return Computed or stored Convexity. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s path convexity is %s\n", prefix,
|
| SkPath::kUnknown_Convexity == path.getConvexity() ? "unknown" :
|
| SkPath::kConvex_Convexity == path.getConvexity() ? "convex" : "concave"); };
|
| SkPath path;
|
| debugster("initial", path);
|
| path.lineTo(50, 0);
|
| debugster("first line", path);
|
| path.lineTo(50, 50);
|
| debugster("second line", path);
|
| path.lineTo(100, 50);
|
| debugster("third line", path);
|
| }
|
| ##
|
|
|
| #SeeAlso Convexity Contour Direction getConvexityOrUnknown setConvexity isConvex
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method Convexity getConvexityOrUnknown() const
|
|
|
| Returns last computed Convexity, or kUnknown_Convexity if
|
| Path has been altered since Convexity was computed or set.
|
|
|
| #Return Stored Convexity. ##
|
|
|
| #Example
|
| #Description
|
| Convexity is unknown unless getConvexity is called without a subsequent call
|
| that alters the path.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s path convexity is %s\n", prefix,
|
| SkPath::kUnknown_Convexity == path.getConvexityOrUnknown() ? "unknown" :
|
| SkPath::kConvex_Convexity == path.getConvexityOrUnknown() ? "convex" : "concave"); };
|
| SkPath path;
|
| debugster("initial", path);
|
| path.lineTo(50, 0);
|
| debugster("first line", path);
|
| path.getConvexity();
|
| path.lineTo(50, 50);
|
| debugster("second line", path);
|
| path.lineTo(100, 50);
|
| path.getConvexity();
|
| debugster("third line", path);
|
| }
|
| ##
|
|
|
| #SeeAlso Convexity Contour Direction getConvexity setConvexity isConvex
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void setConvexity(Convexity convexity)
|
|
|
| Stores convexity so that it is later returned by getConvexity or getConvexityOrUnknown.
|
| convexity may differ from getConvexity, although setting an incorrect value may
|
| cause incorrect or inefficient drawing.
|
|
|
| If convexity is kUnknown_Convexity: getConvexity will
|
| compute Convexity, and getConvexityOrUnknown will return kUnknown_Convexity.
|
|
|
| If convexity is kConvex_Convexity or kConcave_Convexity, getConvexity
|
| and getConvexityOrUnknown will return convexity until the path is
|
| altered.
|
|
|
| #Param convexity One of kUnknown_Convexity, kConvex_Convexity, or kConcave_Convexity. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s path convexity is %s\n", prefix,
|
| SkPath::kUnknown_Convexity == path.getConvexity() ? "unknown" :
|
| SkPath::kConvex_Convexity == path.getConvexity() ? "convex" : "concave"); };
|
| SkPoint quad[] = {{70, 70}, {20, 20}, {120, 20}, {120, 120}};
|
| SkPath path;
|
| path.addPoly(quad, SK_ARRAY_COUNT(quad), true);
|
| debugster("initial", path);
|
| path.setConvexity(SkPath::kConcave_Convexity);
|
| debugster("after forcing concave", path);
|
| path.setConvexity(SkPath::kUnknown_Convexity);
|
| debugster("after forcing unknown", path);
|
| }
|
| ##
|
|
|
| #SeeAlso Convexity Contour Direction getConvexity getConvexityOrUnknown isConvex
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isConvex() const
|
|
|
| Computes Convexity if required, and returns true if value is kConvex_Convexity.
|
| If setConvexity was called with kConvex_Convexity or kConcave_Convexity, and
|
| the path has not been altered, Convexity is not recomputed.
|
|
|
| #Return true if Convexity stored or computed is kConvex_Convexity. ##
|
|
|
| #Example
|
| #Description
|
| Concave shape is erroneously considered convex after a forced call to
|
| setConvexity.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPoint quad[] = {{70, 70}, {20, 20}, {120, 20}, {120, 120}};
|
| for (SkScalar x : { 40, 100 } ) {
|
| SkPath path;
|
| quad[0].fX = x;
|
| path.addPoly(quad, SK_ARRAY_COUNT(quad), true);
|
| path.setConvexity(SkPath::kConvex_Convexity);
|
| canvas->drawPath(path, paint);
|
| canvas->drawString(path.isConvex() ? "convex" : "not convex", 30, 100, paint);
|
| canvas->translate(100, 100);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso Convexity Contour Direction getConvexity getConvexityOrUnknown setConvexity
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void setIsConvex(bool isConvex)
|
|
|
| #Deprecated
|
| Use setConvexity.
|
| ##
|
|
|
| ##
|
|
|
| #Subtopic Convexity ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isOval(SkRect* rect, Direction* dir = nullptr,
|
| unsigned* start = nullptr) const
|
|
|
| Path is Oval if constructed by addCircle, addOval; and in some cases,
|
| addRoundRect, addRRect. Path constructed with conicTo or rConicTo will not
|
| return true though Path draws Oval.
|
|
|
| isOval triggers performance optimizations on some GPU_Surface implementations.
|
|
|
| #Param rect storage for bounding Rect of Oval. Oval is Circle if rect width
|
| equals rect height. Unwritten if Path is not Oval. May be nullptr.
|
| ##
|
| #Param dir storage for Direction; kCW_Direction if clockwise, kCCW_Direction if
|
| counterclockwise. Unwritten if Path is not Oval. May be nullptr.
|
| ##
|
| #Param start storage for start of Oval: 0 for top,
|
| 1 for right, 2 for bottom, 3 for left. Unwritten if Path is not Oval. May be nullptr.
|
| ##
|
|
|
| #Return true if Path was constructed by method that reduces to Oval. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPath path;
|
| path.addOval({20, 20, 220, 220}, SkPath::kCW_Direction, 1);
|
| SkRect bounds;
|
| SkPath::Direction direction;
|
| unsigned start;
|
| path.isOval(&bounds, &direction, &start);
|
| paint.setColor(0xFF9FBFFF);
|
| canvas->drawRect(bounds, paint);
|
| paint.setColor(0x3f000000);
|
| canvas->drawPath(path, paint);
|
| paint.setColor(SK_ColorBLACK);
|
| canvas->rotate(start * 90, bounds.centerX(), bounds.centerY());
|
| char startText = '0' + start;
|
| paint.setTextSize(20);
|
| canvas->drawText(&startText, 1, bounds.centerX(), bounds.fTop + 20, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(4);
|
| path.reset();
|
| path.addArc(bounds, -90, SkPath::kCW_Direction == direction ? 90 : -90);
|
| path.rLineTo(20, -20);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Oval addCircle addOval
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isRRect(SkRRect* rrect, Direction* dir = nullptr,
|
| unsigned* start = nullptr) const
|
|
|
| Path is Round_Rect if constructed by addRoundRect, addRRect; and if construction
|
| is not empty, not Rect, and not Oval. Path constructed with other other calls
|
| will not return true though Path draws Round_Rect.
|
|
|
| isRRect triggers performance optimizations on some GPU_Surface implementations.
|
|
|
| #Param rrect storage for bounding Rect of Round_Rect.
|
| Unwritten if Path is not Round_Rect. May be nullptr.
|
| ##
|
| #Param dir storage for Direction; kCW_Direction if clockwise, kCCW_Direction if
|
| counterclockwise. Unwritten if Path is not Round_Rect. May be nullptr.
|
| ##
|
| #Param start storage for start of Round_Rect: 0 for top,
|
| 1 for right, 2 for bottom, 3 for left. Unwritten if Path is not Round_Rect. May be nullptr.
|
| ##
|
|
|
| #Return true for Round_Rect Path constructed by addRoundRect or addRRect. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPath path;
|
| path.addRRect(SkRRect::MakeRectXY({20, 20, 220, 220}, 30, 50), SkPath::kCCW_Direction, 3);
|
| SkRRect rrect;
|
| SkPath::Direction direction;
|
| unsigned start;
|
| path.isRRect(&rrect, &direction, &start);
|
| const SkRect& bounds = rrect.rect();
|
| paint.setColor(0xFF9FBFFF);
|
| canvas->drawRect(bounds, paint);
|
| paint.setColor(0x3f000000);
|
| canvas->drawPath(path, paint);
|
| paint.setColor(SK_ColorBLACK);
|
| canvas->rotate(start * 90, bounds.centerX(), bounds.centerY());
|
| char startText = '0' + start;
|
| paint.setTextSize(20);
|
| canvas->drawText(&startText, 1, bounds.centerX(), bounds.fTop + 20, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(4);
|
| path.reset();
|
| path.addArc(bounds, -90, SkPath::kCW_Direction == direction ? 90 : -90);
|
| path.rLineTo(20, -20);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Round_Rect addRoundRect addRRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void reset()
|
|
|
| Sets Path to its intial state.
|
| Removes Verb_Array, Point_Array, and Weights, and sets FillType to kWinding_FillType.
|
| Internal storage associated with Path is released.
|
|
|
| #Example
|
| SkPath path1, path2;
|
| path1.setFillType(SkPath::kInverseWinding_FillType);
|
| path1.addRect({10, 20, 30, 40});
|
| SkDebugf("path1 %c= path2\n", path1 == path2 ? '=' : '!');
|
| path1.reset();
|
| SkDebugf("path1 %c= path2\n", path1 == path2 ? '=' : '!');
|
| ##
|
|
|
| #SeeAlso rewind()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void rewind()
|
|
|
| Sets Path to its intial state, preserving internal storage.
|
| Removes Verb_Array, Point_Array, and Weights, and sets FillType to kWinding_FillType.
|
| Internal storage associated with Path is retained.
|
|
|
| Use rewind() instead of reset() if Path storage will be reused and performance
|
| is critical.
|
|
|
| #Example
|
| #Description
|
| Although path1 retains its internal storage, it is indistinguishable from
|
| a newly initialized path.
|
| ##
|
| SkPath path1, path2;
|
| path1.setFillType(SkPath::kInverseWinding_FillType);
|
| path1.addRect({10, 20, 30, 40});
|
| SkDebugf("path1 %c= path2\n", path1 == path2 ? '=' : '!');
|
| path1.rewind();
|
| SkDebugf("path1 %c= path2\n", path1 == path2 ? '=' : '!');
|
| ##
|
|
|
| #SeeAlso reset()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isEmpty() const
|
|
|
| Empty Path may have FillType but has no SkPoint, Verb, or Conic_Weight.
|
| SkPath() constructs empty Path; reset() and (rewind) make Path empty.
|
|
|
| #Return true if the path contains no Verb array. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s path is %s" "empty\n", prefix, path.isEmpty() ? "" : "not ");
|
| };
|
| SkPath path;
|
| debugster("initial", path);
|
| path.moveTo(0, 0);
|
| debugster("after moveTo", path);
|
| path.rewind();
|
| debugster("after rewind", path);
|
| path.lineTo(0, 0);
|
| debugster("after lineTo", path);
|
| path.reset();
|
| debugster("after reset", path);
|
| }
|
| #StdOut
|
| initial path is empty
|
| after moveTo path is not empty
|
| after rewind path is empty
|
| after lineTo path is not empty
|
| after reset path is empty
|
| ##
|
| ##
|
|
|
| #SeeAlso SkPath() reset() rewind()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isLastContourClosed() const
|
|
|
| Contour is closed if Path Verb array was last modified by close(). When stroked,
|
| closed Contour draws Paint_Stroke_Join instead of Paint_Stroke_Cap at first and last Point.
|
|
|
| #Return true if the last Contour ends with a kClose_Verb. ##
|
|
|
| #Example
|
| #Description
|
| close() has no effect if Path is empty; isLastContourClosed() returns
|
| false until Path has geometry followed by close().
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s last contour is %s" "closed\n", prefix,
|
| path.isLastContourClosed() ? "" : "not ");
|
| };
|
| SkPath path;
|
| debugster("initial", path);
|
| path.close();
|
| debugster("after close", path);
|
| path.lineTo(0, 0);
|
| debugster("after lineTo", path);
|
| path.close();
|
| debugster("after close", path);
|
| }
|
| #StdOut
|
| initial last contour is not closed
|
| after close last contour is not closed
|
| after lineTo last contour is not closed
|
| after close last contour is closed
|
| ##
|
| ##
|
|
|
| #SeeAlso close()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isFinite() const
|
|
|
| Finite Point array values are between negative SK_ScalarMax and
|
| positive SK_ScalarMax. Any Point array value of
|
| SK_ScalarInfinity, SK_ScalarNegativeInfinity, or SK_ScalarNaN
|
| cause isFinite to return false.
|
|
|
| #Return true if all Point values are finite. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s path is %s" "finite\n", prefix, path.isFinite() ? "" : "not ");
|
| };
|
| SkPath path;
|
| debugster("initial", path);
|
| path.lineTo(SK_ScalarMax, SK_ScalarMax);
|
| debugster("after line", path);
|
| SkMatrix matrix;
|
| matrix.setScale(2, 2);
|
| path.transform(matrix);
|
| debugster("after scale", path);
|
| }
|
| #StdOut
|
| initial path is finite
|
| after line path is finite
|
| after scale path is not finite
|
| ##
|
| ##
|
|
|
| #SeeAlso SkScalar
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isVolatile() const
|
|
|
| Returns true if the path is volatile; it will not be altered or discarded
|
| by the caller after it is drawn. Paths by default have volatile set false, allowing
|
| Surface to attach a cache of data which speeds repeated drawing. If true, Surface
|
| may not speed repeated drawing.
|
|
|
| #Return true if caller will alter Path after drawing. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("volatile by default is %s\n", path.isVolatile() ? "true" : "false");
|
| #StdOut
|
| volatile by default is false
|
| ##
|
| ##
|
|
|
| #SeeAlso setIsVolatile
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void setIsVolatile(bool isVolatile)
|
|
|
| Specify whether Path is volatile; whether it will be altered or discarded
|
| by the caller after it is drawn. Paths by default have volatile set false, allowing
|
| Device to attach a cache of data which speeds repeated drawing.
|
|
|
| Mark temporary paths, discarded or modified after use, as volatile
|
| to inform Device that the path need not be cached.
|
|
|
| Mark animating Path volatile to improve performance.
|
| Mark unchanging Path non-volative to improve repeated rendering.
|
|
|
| Raster_Surface Path draws are affected by volatile for some shadows.
|
| GPU_Surface Path draws are affected by volatile for some shadows and concave geometries.
|
|
|
| #Param isVolatile true if caller will alter Path after drawing. ##
|
|
|
| #Example
|
| #Height 50
|
| #Width 50
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.setIsVolatile(true);
|
| path.lineTo(40, 40);
|
| canvas->drawPath(path, paint);
|
| path.rewind();
|
| path.moveTo(0, 40);
|
| path.lineTo(40, 0);
|
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #ToDo tie example to bench to show how volatile affects speed or dm to show resource usage ##
|
|
|
| #SeeAlso isVolatile
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static bool IsLineDegenerate(const SkPoint& p1, const SkPoint& p2, bool exact)
|
|
|
| Test if Line between Point pair is degenerate.
|
| Line with no length or that moves a very short distance is degenerate; it is
|
| treated as a point.
|
|
|
| #Param p1 Line start point. ##
|
| #Param p2 Line end point. ##
|
| #Param exact If true, returns true only if p1 equals p2. If false, returns true
|
| if p1 equals or nearly equals p2.
|
| ##
|
|
|
| #Return true if Line is degenerate; its length is effectively zero. ##
|
|
|
| #Example
|
| #Description
|
| As single precision floats, 100 and 100.000001f have the same bit representation,
|
| and are exactly equal. 100 and 100.0001f have different bit representations, and
|
| are not exactly equal, but are nearly equal.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPoint points[] = { {100, 100}, {100.000001f, 100.000001f}, {100.0001f, 100.0001f} };
|
| for (size_t i = 0; i < SK_ARRAY_COUNT(points) - 1; ++i) {
|
| for (bool exact : { false, true } ) {
|
| SkDebugf("line from (%1.8g,%1.8g) to (%1.8g,%1.8g) is %s" "degenerate, %s\n",
|
| points[i].fX, points[i].fY, points[i + 1].fX, points[i + 1].fY,
|
| SkPath::IsLineDegenerate(points[i], points[i + 1], exact)
|
| ? "" : "not ", exact ? "exactly" : "nearly");
|
| }
|
| }
|
| }
|
| #StdOut
|
| line from (100,100) to (100,100) is degenerate, nearly
|
| line from (100,100) to (100,100) is degenerate, exactly
|
| line from (100,100) to (100.0001,100.0001) is degenerate, nearly
|
| line from (100,100) to (100.0001,100.0001) is not degenerate, exactly
|
| #StdOut ##
|
| ##
|
|
|
| #SeeAlso IsQuadDegenerate IsCubicDegenerate SkPoint::equalsWithinTolerance
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static bool IsQuadDegenerate(const SkPoint& p1, const SkPoint& p2,
|
| const SkPoint& p3, bool exact)
|
|
|
| Test if Quad is degenerate.
|
| Quad with no length or that moves a very short distance is degenerate; it is
|
| treated as a point.
|
|
|
| #Param p1 Quad start point. ##
|
| #Param p2 Quad control point. ##
|
| #Param p3 Quad end point. ##
|
| #Param exact If true, returns true only if p1, p2, and p3 are equal.
|
| If false, returns true if p1, p2, and p3 are equal or nearly equal.
|
| ##
|
|
|
| #Return true if Quad is degenerate; its length is effectively zero. ##
|
|
|
| #Example
|
| #Description
|
| As single precision floats: 100, 100.00001f, and 100.00002f have different bit representations
|
| but nearly the same value. Translating all three by 1000 gives them the same bit representation;
|
| the fractional portion of the number can't be represented by the float and is lost.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const SkPath& path, bool exact) -> void {
|
| SkDebugf("quad (%1.8g,%1.8g), (%1.8g,%1.8g), (%1.8g,%1.8g) is %s" "degenerate, %s\n",
|
| path.getPoint(0).fX, path.getPoint(0).fY, path.getPoint(1).fX,
|
| path.getPoint(1).fY, path.getPoint(2).fX, path.getPoint(2).fY,
|
| SkPath::IsQuadDegenerate(path.getPoint(0), path.getPoint(1), path.getPoint(2), exact) ?
|
| "" : "not ", exact ? "exactly" : "nearly");
|
| };
|
| SkPath path, offset;
|
| path.moveTo({100, 100});
|
| path.quadTo({100.00001f, 100.00001f}, {100.00002f, 100.00002f});
|
| offset.addPath(path, 1000, 1000);
|
| for (bool exact : { false, true } ) {
|
| debugster(path, exact);
|
| debugster(offset, exact);
|
| }
|
| }
|
| #StdOut
|
| quad (100,100), (100.00001,100.00001), (100.00002,100.00002) is degenerate, nearly
|
| quad (1100,1100), (1100,1100), (1100,1100) is degenerate, nearly
|
| quad (100,100), (100.00001,100.00001), (100.00002,100.00002) is not degenerate, exactly
|
| quad (1100,1100), (1100,1100), (1100,1100) is degenerate, exactly
|
| #StdOut ##
|
| ##
|
|
|
| #SeeAlso IsLineDegenerate IsCubicDegenerate SkPoint::equalsWithinTolerance
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static bool IsCubicDegenerate(const SkPoint& p1, const SkPoint& p2,
|
| const SkPoint& p3, const SkPoint& p4, bool exact)
|
|
|
| Test if Cubic is degenerate.
|
| Cubic with no length or that moves a very short distance is degenerate; it is
|
| treated as a point.
|
|
|
| #Param p1 Cubic start point. ##
|
| #Param p2 Cubic control point 1. ##
|
| #Param p3 Cubic control point 2. ##
|
| #Param p4 Cubic end point. ##
|
| #Param exact If true, returns true only if p1, p2, p3, and p4 are equal.
|
| If false, returns true if p1, p2, p3, and p4 are equal or nearly equal.
|
| ##
|
|
|
| #Return true if Cubic is degenerate; its length is effectively zero. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPoint points[] = {{1, 0}, {0, 0}, {0, 0}, {0, 0}};
|
| SkScalar step = 1;
|
| SkScalar prior, length, degenerate;
|
| do {
|
| prior = points[0].fX;
|
| step /= 2;
|
| if (SkPath::IsCubicDegenerate(points[0], points[1], points[2], points[3], false)) {
|
| degenerate = prior;
|
| points[0].fX += step;
|
| } else {
|
| length = prior;
|
| points[0].fX -= step;
|
| }
|
| } while (prior != points[0].fX);
|
| SkDebugf("%1.8g is degenerate\n", degenerate);
|
| SkDebugf("%1.8g is length\n", length);
|
| }
|
| #StdOut
|
| 0.00024414062 is degenerate
|
| 0.00024414065 is length
|
| #StdOut ##
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isLine(SkPoint line[2]) const
|
|
|
| Returns true if Path contains only one Line;
|
| Path_Verb array has two entries: kMove_Verb, kLine_Verb.
|
| If Path contains one Line and line is not nullptr, line is set to
|
| Line start point and Line end point.
|
| Returns false if Path is not one Line; line is unaltered.
|
|
|
| #Param line storage for Line. May be nullptr. ##
|
|
|
| #Return true if Path contains exactly one Line. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkPoint line[2];
|
| if (path.isLine(line)) {
|
| SkDebugf("%s is line (%1.8g,%1.8g) (%1.8g,%1.8g)\n", prefix,
|
| line[0].fX, line[0].fY, line[1].fX, line[1].fY);
|
| } else {
|
| SkDebugf("%s is not line\n", prefix);
|
| }
|
| };
|
| SkPath path;
|
| debugster("empty", path);
|
| path.lineTo(0, 0);
|
| debugster("zero line", path);
|
| path.rewind();
|
| path.moveTo(10, 10);
|
| path.lineTo(20, 20);
|
| debugster("line", path);
|
| path.moveTo(20, 20);
|
| debugster("second move", path);
|
| }
|
| #StdOut
|
| empty is not line
|
| zero line is line (0,0) (0,0)
|
| line is line (10,10) (20,20)
|
| second move is not line
|
| ##
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Subtopic Point_Array |
| #Alias Point_Arrays |
| |
| Point_Array contains Points satisfying the allocated Points for |
| each Verb in Verb_Array. For instance, Path containing one Contour with Line |
| and Quad is described by Verb_Array: move to, line to, quad to; and |
| one Point for move, one Point for Line, two Points for Quad; totaling four Points. |
| |
| Point_Array may be read directly from Path with getPoints, or inspected with |
| getPoint, with Iter, or with RawIter. |
|
|
| #Method int getPoints(SkPoint points[], int max) const
|
|
|
| Returns number of points in Path. Up to max points are copied.
|
| points may be nullptr; then, max must be zero.
|
| If max is greater than number of points, excess points storage is unaltered.
|
|
|
| #Param points storage for Path Point array. May be nullptr. ##
|
| #Param max Number of points alloted in points storage; must be greater than or equal to zero. ##
|
|
|
| #Return Path Point array length. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path, SkPoint* points, int max) -> void {
|
| int count = path.getPoints(points, max);
|
| SkDebugf("%s point count: %d ", prefix, count);
|
| for (int i = 0; i < SkTMin(count, max) && points; ++i) {
|
| SkDebugf("(%1.8g,%1.8g) ", points[i].fX, points[i].fY);
|
| }
|
| SkDebugf("\n");
|
| };
|
| SkPath path;
|
| path.lineTo(20, 20);
|
| path.lineTo(-10, -10);
|
| SkPoint points[3];
|
| debugster("no points", path, nullptr, 0);
|
| debugster("zero max", path, points, 0);
|
| debugster("too small", path, points, 2);
|
| debugster("just right", path, points, path.countPoints());
|
| }
|
| #StdOut
|
| no points point count: 3
|
| zero max point count: 3
|
| too small point count: 3 (0,0) (20,20)
|
| just right point count: 3 (0,0) (20,20) (-10,-10)
|
| ##
|
| ##
|
|
|
| #SeeAlso countPoints getPoint
|
| ##
|
|
|
| #Method int countPoints() const
|
|
|
| Returns the number of points in Path.
|
| Point count is initially zero.
|
|
|
| #Return Path Point array length. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s point count: %d\n", prefix, path.countPoints());
|
| };
|
| SkPath path;
|
| debugster("empty", path);
|
| path.lineTo(0, 0);
|
| debugster("zero line", path);
|
| path.rewind();
|
| path.moveTo(10, 10);
|
| path.lineTo(20, 20);
|
| debugster("line", path);
|
| path.moveTo(20, 20);
|
| debugster("second move", path);
|
| }
|
| #StdOut
|
| empty point count: 0
|
| zero line point count: 2
|
| line point count: 2
|
| second move point count: 3
|
| ##
|
| ##
|
|
|
| #SeeAlso getPoints
|
| ##
|
|
|
| #Method SkPoint getPoint(int index) const
|
|
|
| Returns Point at index in Point_Array. Valid range for index is
|
| 0 to countPoints - 1.
|
| If the index is out of range, getPoint returns (0, 0).
|
|
|
| #Param index Point_Array element selector. ##
|
|
|
| #Return Point_Array value or (0, 0). ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkDebugf("%s point count: %d\n", prefix, path.countPoints());
|
| };
|
| SkPath path;
|
| path.lineTo(20, 20);
|
| path.offset(-10, -10);
|
| for (int i= 0; i < path.countPoints(); ++i) {
|
| SkDebugf("point %d: (%1.8g,%1.8g)\n", i, path.getPoint(i).fX, path.getPoint(i).fY);
|
| }
|
| }
|
| #StdOut
|
| point 0: (-10,-10)
|
| point 1: (10,10)
|
| ##
|
| ##
|
|
|
| #SeeAlso countPoints getPoints
|
| ##
|
|
|
|
|
| #Subtopic Point_Array ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Subtopic Verb_Array |
| |
| Verb_Array always starts with kMove_Verb. |
| If kClose_Verb is not the last entry, it is always followed by kMove_Verb; |
| the quantity of kMove_Verb equals the Contour count. |
| Verb_Array does not include or count kDone_Verb; it is a convenience |
| returned when iterating through Verb_Array. |
| |
| Verb_Array may be read directly from Path with getVerbs, or inspected with Iter, |
| or with RawIter. |
|
|
| #Method int countVerbs() const
|
|
|
| Returns the number of Verbs: kMove_Verb, kLine_Verb, kQuad_Verb, kConic_Verb,
|
| kCubic_Verb, and kClose_Verb; added to Path.
|
|
|
| #Return Length of Verb_Array. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("empty verb count: %d\n", path.countVerbs());
|
| path.addRoundRect({10, 20, 30, 40}, 5, 5);
|
| SkDebugf("round rect verb count: %d\n", path.countVerbs());
|
| #StdOut
|
| empty verb count: 0
|
| round rect verb count: 10
|
| ##
|
| ##
|
|
|
| #SeeAlso getVerbs Iter RawIter
|
|
|
| ##
|
|
|
| #Method int getVerbs(uint8_t verbs[], int max) const
|
|
|
| Returns the number of verbs in the path. Up to max verbs are copied. The
|
| verbs are copied as one byte per verb.
|
|
|
| #Param verbs If not null, receives up to max verbs ##
|
| #Param max The maximum number of verbs to copy into verbs ##
|
|
|
| #Return the actual number of verbs in the path ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path, uint8_t* verbs, int max) -> void {
|
| int count = path.getVerbs(verbs, max);
|
| SkDebugf("%s verb count: %d ", prefix, count);
|
| const char* verbStr[] = { "move", "line", "quad", "conic", "cubic", "close" };
|
| for (int i = 0; i < SkTMin(count, max) && verbs; ++i) {
|
| SkDebugf("%s ", verbStr[verbs[i]]);
|
| }
|
| SkDebugf("\n");
|
| };
|
| SkPath path;
|
| path.lineTo(20, 20);
|
| path.lineTo(-10, -10);
|
| uint8_t verbs[3];
|
| debugster("no verbs", path, nullptr, 0);
|
| debugster("zero max", path, verbs, 0);
|
| debugster("too small", path, verbs, 2);
|
| debugster("just right", path, verbs, path.countVerbs());
|
| }
|
| #StdOut
|
| no verbs verb count: 3
|
| zero max verb count: 3
|
| too small verb count: 3 move line
|
| just right verb count: 3 move line line
|
| ##
|
| ##
|
|
|
| #SeeAlso countVerbs getPoints Iter RawIter
|
| ##
|
| |
| #Subtopic Verb_Array ## |
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void swap(SkPath& other)
|
|
|
| Exchanges the Verb_Array, Point_Array, Weights, and Fill_Type with other.
|
| Cached state is also exchanged. swap() internally exchanges pointers, so
|
| it is lightweight and does not allocate memory.
|
|
|
| swap() usage has largely been replaced by operator=(const SkPath& path).
|
| Paths do not copy their content on assignment util they are written to,
|
| making assignment as efficient as swap().
|
|
|
| #Param other Path exchanged by value. ##
|
|
|
| #Example
|
| SkPath path1, path2;
|
| path1.addRect({10, 20, 30, 40});
|
| path1.swap(path2);
|
| const SkRect& b1 = path1.getBounds();
|
| SkDebugf("path1 bounds = %g, %g, %g, %g\n", b1.fLeft, b1.fTop, b1.fRight, b1.fBottom);
|
| const SkRect& b2 = path2.getBounds();
|
| SkDebugf("path2 bounds = %g, %g, %g, %g\n", b2.fLeft, b2.fTop, b2.fRight, b2.fBottom);
|
| #StdOut
|
| path1 bounds = 0, 0, 0, 0
|
| path2 bounds = 10, 20, 30, 40
|
| #StdOut ##
|
| ##
|
|
|
| #SeeAlso operator=(const SkPath& path)
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method const SkRect& getBounds() const
|
|
|
| Returns minimum and maximum x and y values of Point_Array. If Path contains
|
| no points, getBounds returns (0, 0, 0, 0). Returned bounds width and height may
|
| be larger or smaller than area affected when Path is drawn.
|
|
|
| getBounds includes all Points added to Path, including Points associated with
|
| kMove_Verb that define empty Contours.
|
|
|
| #Return bounds of all Points in Point_Array. ##
|
|
|
| #Example
|
| #Description
|
| Bounds of upright Circle can be predicted from center and radius.
|
| Bounds of rotated Circle includes control Points outside of filled area.
|
| ##
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| const SkRect& bounds = path.getBounds();
|
| SkDebugf("%s bounds = %g, %g, %g, %g\n", prefix,
|
| bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom);
|
| };
|
| SkPath path;
|
| debugster("empty", path);
|
| path.addCircle(50, 45, 25);
|
| debugster("circle", path);
|
| SkMatrix matrix;
|
| matrix.setRotate(45, 50, 45);
|
| path.transform(matrix);
|
| debugster("rotated circle", path);
|
| #StdOut
|
| empty bounds = 0, 0, 0, 0
|
| circle bounds = 25, 20, 75, 70
|
| rotated circle bounds = 14.6447, 9.64466, 85.3553, 80.3553
|
| ##
|
| ##
|
|
|
| #SeeAlso computeTightBounds updateBoundsCache
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void updateBoundsCache() const
|
|
|
| Update internal bounds so that subsequent calls to getBounds are instantaneous.
|
| Unaltered copies of Path may also access cached bounds through getBounds.
|
|
|
| For now, updateBoundsCache is identical to getBounds, where the
|
| returned value is ignored.
|
|
|
| updateBoundsCache prepares a Path subsequently drawn from multiple threads,
|
| to avoid a race condition where each draw separately computes the bounds.
|
|
|
| #Example
|
| double times[2] = { 0, 0 };
|
| for (int i = 0; i < 10000; ++i) {
|
| SkPath path;
|
| for (int j = 1; j < 100; ++ j) {
|
| path.addCircle(50 + j, 45 + j, 25 + j);
|
| }
|
| if (1 & i) {
|
| path.updateBoundsCache();
|
| }
|
| double start = SkTime::GetNSecs();
|
| (void) path.getBounds();
|
| times[1 & i] += SkTime::GetNSecs() - start;
|
| }
|
| SkDebugf("uncached avg: %g ms\n", times[0] * 1e-6);
|
| SkDebugf("cached avg: %g ms\n", times[1] * 1e-6);
|
| #StdOut
|
| #Volatile
|
| uncached avg: 0.18048 ms
|
| cached avg: 0.182784 ms
|
| ##
|
| ##
|
|
|
| #SeeAlso getBounds
|
| #ToDo the results don't make sense, need to profile to figure this out ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method SkRect computeTightBounds() const
|
|
|
| Returns minimum and maximum x and y values of the lines and curves in Path.
|
| If Path contains no points, computeTightBounds returns (0, 0, 0, 0).
|
| Returned bounds width and height may be larger or smaller than area affected
|
| when Path is drawn.
|
|
|
| computeTightBounds behaves identically to getBounds when Path contains
|
| only lines. If Path contains curves, compute computeTightBounds includes
|
| the maximum extent of the Quad, Conic, or Cubic; is slower,
|
| and does not cache the result.
|
|
|
| Like getBounds, computeTightBounds includes Points associated with
|
| kMove_Verb that define empty Contours.
|
|
|
| #Return ##
|
|
|
| #Example
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| const SkRect& bounds = path.computeTightBounds();
|
| SkDebugf("%s bounds = %g, %g, %g, %g\n", prefix,
|
| bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom);
|
| };
|
| SkPath path;
|
| debugster("empty", path);
|
| path.addCircle(50, 45, 25);
|
| debugster("circle", path);
|
| SkMatrix matrix;
|
| matrix.setRotate(45, 50, 45);
|
| path.transform(matrix);
|
| debugster("rotated circle", path);
|
| #StdOut
|
| empty bounds = 0, 0, 0, 0
|
| circle bounds = 25, 20, 75, 70
|
| rotated circle bounds = 25, 20, 75, 70
|
| ##
|
| ##
|
|
|
| #SeeAlso getBounds
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool conservativelyContainsRect(const SkRect& rect) const
|
|
|
| Returns true if rect is contained by Path.
|
| May return false when rect is contained by Path.
|
|
|
| For now, only returns true if Path has one Contour and is convex.
|
| rect may share points and edges with Path and be contained.
|
| If rect is empty, that is, it has zero width or height; conservativelyContainsRect
|
| returns true if the Point or Line described by rect is contained by Path.
|
|
|
| #Param rect Rect, Line, or Point checked for containment. ##
|
|
|
| #Return true if rect is contained. ##
|
|
|
| #Example
|
| #Height 140
|
| #Description
|
| Rect is drawn in blue if it is contained by red Path.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.addRoundRect({10, 20, 54, 120}, 10, 20);
|
| SkRect tests[] = {
|
| { 10, 40, 54, 80 },
|
| { 25, 20, 39, 120 },
|
| { 15, 25, 49, 115 },
|
| { 13, 27, 51, 113 },
|
| };
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(tests); ++i) {
|
| SkPaint paint;
|
| paint.setColor(SK_ColorRED);
|
| canvas->drawPath(path, paint);
|
| bool rectInPath = path.conservativelyContainsRect(tests[i]);
|
| paint.setColor(rectInPath ? SK_ColorBLUE : SK_ColorBLACK);
|
| canvas->drawRect(tests[i], paint);
|
| canvas->translate(64, 0);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso contains Op Rect Convexity
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void incReserve(unsigned extraPtCount)
|
|
|
| grows Path Verb_Array and Point_Array to contain extraPtCount additional Points.
|
| incReserve may improve performance and use less memory by
|
| reducing the number and size of allocations when creating Path.
|
|
|
| #Param extraPtCount number of additional Points to preallocate. ##
|
|
|
| #Example
|
| #Height 192
|
| void draw(SkCanvas* canvas) {
|
| auto addPoly = [](int sides, SkScalar size, SkPath* path) -> void {
|
| path->moveTo(size, 0);
|
| for (int i = 1; i < sides; i++) {
|
| SkScalar c, s = SkScalarSinCos(SK_ScalarPI * 2 * i / sides, &c);
|
| path->lineTo(c * size, s * size);
|
| }
|
| path->close();
|
| };
|
| SkPath path;
|
| path.incReserve(3 + 4 + 5 + 6 + 7 + 8 + 9);
|
| for (int sides = 3; sides < 10; ++sides) {
|
| addPoly(sides, sides, &path);
|
| }
|
| SkMatrix matrix;
|
| matrix.setScale(10, 10, -10, -10);
|
| path.transform(matrix);
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Point_Array
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void moveTo(SkScalar x, SkScalar y)
|
|
|
| Adds beginning of Contour at Point (x, y).
|
|
|
| #Param x x-coordinate of Contour start. ##
|
| #Param y y-coordinate of Contour start. ##
|
|
|
| #Example
|
| #Width 140
|
| #Height 100
|
| void draw(SkCanvas* canvas) {
|
| SkRect rect = { 20, 20, 120, 80 };
|
| SkPath path;
|
| path.addRect(rect);
|
| path.moveTo(rect.fLeft, rect.fTop);
|
| path.lineTo(rect.fRight, rect.fBottom);
|
| path.moveTo(rect.fLeft, rect.fBottom);
|
| path.lineTo(rect.fRight, rect.fTop);
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour lineTo rMoveTo quadTo conicTo cubicTo close()
|
|
|
| ##
|
|
|
| #Method void moveTo(const SkPoint& p)
|
|
|
| Adds beginning of Contour at Point p.
|
|
|
| #Param p Contour start. ##
|
|
|
| #Example
|
| #Width 128
|
| #Height 128
|
| void draw(SkCanvas* canvas) {
|
| SkPoint data[][3] = {{{30,40},{60,60},{90,30}}, {{30,120},{60,100},{90,120}},
|
| {{60,100},{60,40},{70,30}}, {{60,40},{50,20},{70,30}}};
|
| SkPath path;
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(data); ++i) {
|
| path.moveTo(data[i][0]);
|
| path.lineTo(data[i][1]);
|
| path.lineTo(data[i][2]);
|
| }
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour lineTo rMoveTo quadTo conicTo cubicTo close()
|
|
|
| ##
|
|
|
| #Method void rMoveTo(SkScalar dx, SkScalar dy)
|
|
|
| Adds beginning of Contour relative to Last_Point.
|
| If Path is empty, starts Contour at (dx, dy).
|
| Otherwise, start Contour at Last_Point offset by (dx, dy).
|
| rMoveTo stands for relative move to.
|
|
|
| #Param dx offset from Last_Point x to Contour start x. ##
|
| #Param dy offset from Last_Point y to Contour start y. ##
|
|
|
| #Example
|
| #Height 100
|
| SkPath path;
|
| path.addRect({20, 20, 80, 80}, SkPath::kCW_Direction, 2);
|
| path.rMoveTo(25, 2);
|
| SkVector arrow[] = {{0, -4}, {-20, 0}, {0, -3}, {-5, 5}, {5, 5}, {0, -3}, {20, 0}};
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(arrow); ++i) {
|
| path.rLineTo(arrow[i].fX, arrow[i].fY);
|
| }
|
| SkPaint paint;
|
| canvas->drawPath(path, paint);
|
| SkPoint lastPt;
|
| path.getLastPt(&lastPt);
|
| canvas->drawString("start", lastPt.fX, lastPt.fY, paint);
|
| ##
|
|
|
| #SeeAlso Contour lineTo moveTo quadTo conicTo cubicTo close()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void lineTo(SkScalar x, SkScalar y)
|
|
|
| Adds Line from Last_Point to (x, y). If Path is empty, or last Verb is
|
| kClose_Verb, Last_Point is set to (0, 0) before adding Line.
|
|
|
| lineTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| lineTo then appends kLine_Verb to Verb_Array and (x, y) to Point_Array.
|
|
|
| #Param x end of added Line in x. ##
|
| #Param y end of added Line in y. ##
|
|
|
| #Example
|
| #Height 100
|
| ###$
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setTextSize(72);
|
| canvas->drawString("#", 120, 80, paint);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(5);
|
| SkPath path;
|
| SkPoint hash[] = {{58, 28}, {43, 80}, {37, 45}, {85, 45}};
|
| SkVector offsets[] = {{0, 0}, {17, 0}, {0, 0}, {-5, 17}};
|
| unsigned o = 0;
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(hash); i += 2) {
|
| for (unsigned j = 0; j < 2; o++, j++) {
|
| path.moveTo(hash[i].fX + offsets[o].fX, hash[i].fY + offsets[o].fY);
|
| path.lineTo(hash[i + 1].fX + offsets[o].fX, hash[i + 1].fY + offsets[o].fY);
|
| }
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| $$$#
|
| ##
|
|
|
| #SeeAlso Contour moveTo rLineTo addRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void lineTo(const SkPoint& p)
|
|
|
| Adds Line from Last_Point to Point p. If Path is empty, or last Verb is
|
| kClose_Verb, Last_Point is set to (0, 0) before adding Line.
|
|
|
| lineTo first appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| lineTo then appends kLine_Verb to Verb_Array and Point p to Point_Array.
|
|
|
| #Param p end Point of added Line. ##
|
|
|
| #Example
|
| #Height 100
|
| SkPath path;
|
| SkVector oxo[] = {{25, 25}, {35, 35}, {25, 35}, {35, 25},
|
| {40, 20}, {40, 80}, {60, 20}, {60, 80},
|
| {20, 40}, {80, 40}, {20, 60}, {80, 60}};
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(oxo); i += 2) {
|
| path.moveTo(oxo[i]);
|
| path.lineTo(oxo[i + 1]);
|
| }
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #SeeAlso Contour moveTo rLineTo addRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void rLineTo(SkScalar dx, SkScalar dy)
|
|
|
| Adds Line from Last_Point to Vector (dx, dy). If Path is empty, or last Verb is
|
| kClose_Verb, Last_Point is set to (0, 0) before adding Line.
|
|
|
| rLineTo first appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| rLineTo then appends kLine_Verb to Verb_Array and Line end to Point_Array.
|
| Line end is Last_Point plus Vector (dx, dy).
|
| rLineTo stands for relative line to.
|
|
|
| #Param dx offset from Last_Point x to Line end x. ##
|
| #Param dy offset from Last_Point y to Line end y. ##
|
|
|
| #Example
|
| #Height 128
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(10, 98);
|
| SkScalar x = 0, y = 0;
|
| for (int i = 10; i < 100; i += 5) {
|
| x += i * ((i & 2) - 1);
|
| y += i * (((i + 1) & 2) - 1);
|
| path.rLineTo(x, y);
|
|
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo lineTo addRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Topic Quad |
| |
| Quad describes a quadratic Bezier, a second-order curve identical to a section |
| of a parabola. Quad begins at a start Point, curves towards a control Point, |
| and then curves to an end Point. |
| |
| #Example |
| #Height 110 |
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPoint quadPts[] = {{20, 90}, {120, 10}, {220, 90}};
|
| canvas->drawLine(quadPts[0], quadPts[1], paint);
|
| canvas->drawLine(quadPts[1], quadPts[2], paint);
|
| SkPath path;
|
| path.moveTo(quadPts[0]);
|
| path.quadTo(quadPts[1], quadPts[2]);
|
| paint.setStrokeWidth(3);
|
| canvas->drawPath(path, paint);
|
| }
|
| ## |
| |
| Quad is a special case of Conic where Conic_Weight is set to one. |
| |
| Quad is always contained by the triangle connecting its three Points. Quad |
| begins tangent to the line between start Point and control Point, and ends |
| tangent to the line between control Point and end Point. |
| |
| #Example |
| #Height 160 |
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPoint quadPts[] = {{20, 150}, {120, 10}, {220, 150}};
|
| SkColor colors[] = { 0xff88ff00, 0xff0088bb, 0xff6600cc, 0xffbb3377 };
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(colors); ++i) {
|
| paint.setColor(0x7fffffff & colors[i]);
|
| paint.setStrokeWidth(1);
|
| canvas->drawLine(quadPts[0], quadPts[1], paint);
|
| canvas->drawLine(quadPts[1], quadPts[2], paint);
|
| SkPath path;
|
| path.moveTo(quadPts[0]);
|
| path.quadTo(quadPts[1], quadPts[2]);
|
| paint.setStrokeWidth(3);
|
| paint.setColor(colors[i]);
|
| canvas->drawPath(path, paint);
|
| quadPts[1].fY += 30;
|
| }
|
| } |
| ## |
|
|
| #Method void quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2)
|
|
|
| Adds Quad from Last_Point towards (x1, y1), to (x2, y2).
|
| If Path is empty, or last Verb is kClose_Verb, Last_Point is set to (0, 0)
|
| before adding Quad.
|
|
|
| quadTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| quadTo then appends kQuad_Verb to Verb_Array; and (x1, y1), (x2, y2)
|
| to Point_Array.
|
|
|
| #Param x1 control Point of Quad in x. ##
|
| #Param y1 control Point of Quad in y. ##
|
| #Param x2 end Point of Quad in x. ##
|
| #Param y2 end Point of Quad in y. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(0, -10);
|
| for (int i = 0; i < 128; i += 16) {
|
| path.quadTo( 10 + i, -10 - i, 10 + i, 0);
|
| path.quadTo( 14 + i, 14 + i, 0, 14 + i);
|
| path.quadTo(-18 - i, 18 + i, -18 - i, 0);
|
| path.quadTo(-22 - i, -22 - i, 0, -22 - i);
|
| }
|
| path.offset(128, 128);
|
| canvas->drawPath(path, paint); |
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo conicTo rQuadTo
|
|
|
| ##
|
|
|
| #Method void quadTo(const SkPoint& p1, const SkPoint& p2)
|
|
|
| Adds Quad from Last_Point towards Point p1, to Point p2.
|
| If Path is empty, or last Verb is kClose_Verb, Last_Point is set to (0, 0)
|
| before adding Quad.
|
|
|
| quadTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| quadTo then appends kQuad_Verb to Verb_Array; and Points p1, p2
|
| to Point_Array.
|
|
|
| #Param p1 control Point of added Quad. ##
|
| #Param p2 end Point of added Quad. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setAntiAlias(true);
|
| SkPath path;
|
| SkPoint pts[] = {{128, 10}, {10, 214}, {236, 214}};
|
| path.moveTo(pts[1]);
|
| for (int i = 0; i < 3; ++i) {
|
| path.quadTo(pts[i % 3], pts[(i + 2) % 3]);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo conicTo rQuadTo
|
|
|
| ##
|
|
|
| #Method void rQuadTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2)
|
|
|
| Adds Quad from Last_Point towards Vector (dx1, dy1), to Vector (dx2, dy2).
|
| If Path is empty, or last Verb
|
| is kClose_Verb, Last_Point is set to (0, 0) before adding Quad.
|
|
|
| rQuadTo first appends kMove_Verb to Verb_Array and (0, 0) to Point_Array,
|
| if needed. rQuadTo then appends kQuad_Verb to Verb_Array; and appends Quad
|
| control and Quad end to Point_Array.
|
| Quad control is Last_Point plus Vector (dx1, dy1).
|
| Quad end is Last_Point plus Vector (dx2, dy2).
|
| rQuadTo stands for relative quad to.
|
|
|
| #Param dx1 offset from Last_Point x to Quad control x. ##
|
| #Param dy1 offset from Last_Point x to Quad control y. ##
|
| #Param dx2 offset from Last_Point x to Quad end x. ##
|
| #Param dy2 offset from Last_Point x to Quad end y. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkPath path;
|
| path.moveTo(128, 20);
|
| path.rQuadTo(-6, 10, -7, 10);
|
| for (int i = 1; i < 32; i += 4) {
|
| path.rQuadTo(10 + i, 10 + i, 10 + i * 4, 10);
|
| path.rQuadTo(-10 - i, 10 + i, -10 - (i + 2) * 4, 10);
|
| }
|
| path.quadTo(92, 220, 128, 215);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo conicTo quadTo
|
|
|
| ##
|
|
|
| #Topic Quad ## |
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Topic Conic |
| #Alias Conics |
| |
| Conic describes a conical section: a piece of an ellipse, or a piece of a |
| parabola, or a piece of a hyperbola. Conic begins at a start Point, |
| curves towards a control Point, and then curves to an end Point. The influence |
| of the control Point is determined by Conic_Weight. |
| |
| Each Conic in Path adds two Points and one Weight. Weights in Path may be |
| inspected with Iter, or with RawIter. |
| |
| #Subtopic Weight |
| #Alias Weights |
| |
| Weight determines both the strength of the control Point and the type of Conic. |
| If Weight is exactly one, then Conic is identical to Quad; it is always a |
| parabolic segment. |
| |
| |
| |
| #Example |
| #Description |
| When Conic weight is one, Quad is added to path; the two are identical. |
| ## |
| void draw(SkCanvas* canvas) {
|
| const char* verbNames[] = { "move", "line", "quad", "conic", "cubic", "close", "done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath path;
|
| path.conicTo(20, 30, 50, 60, 1);
|
| SkPath::Iter iter(path, false);
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("%s ", verbNames[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%g, %g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| } |
| #StdOut |
| move {0, 0},
|
| quad {0, 0}, {20, 30}, {50, 60},
|
| done |
| ## |
| ## |
| |
| If weight is less than one, Conic is an elliptical segment. |
| |
| #Example |
| #Description |
| A 90 degree circular arc has the weight |
| #Formula |
| 1 / sqrt(2) |
| ## |
| . |
| ## |
| void draw(SkCanvas* canvas) {
|
| const char* verbNames[] = { "move", "line", "quad", "conic", "cubic", "close", "done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath path;
|
| path.arcTo(20, 0, 20, 20, 20);
|
| SkPath::Iter iter(path, false);
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("%s ", verbNames[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%g, %g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| } |
| #StdOut |
| move {0, 0},
|
| conic {0, 0}, {20, 0}, {20, 20}, weight = 0.707107
|
| done |
| ## |
| ## |
| |
| If weight is greater than one, Conic is a hyperbolic segment. As w gets large, |
| a hyperbolic segment can be approximated by straight lines connecting the |
| control Point with the end Points. |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| const char* verbNames[] = { "move", "line", "quad", "conic", "cubic", "close", "done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath path;
|
| path.conicTo(20, 0, 20, 20, SK_ScalarInfinity);
|
| SkPath::Iter iter(path, false);
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("%s ", verbNames[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%g, %g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| } |
| #StdOut |
| move {0, 0},
|
| line {0, 0}, {20, 0},
|
| line {20, 0}, {20, 20},
|
| done |
| ## |
| ## |
| |
| #Subtopic Weight ## |
|
|
| #Method void conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
|
| SkScalar w)
|
|
|
| Adds Conic from Last_Point towards (x1, y1), to (x2, y2), weighted by w.
|
| If Path is empty, or last Verb is kClose_Verb, Last_Point is set to (0, 0)
|
| before adding Conic.
|
|
|
| conicTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
|
|
| If w is finite and not one, conicTo then appends kConic_Verb to Verb_Array;
|
| and (x1, y1), (x2, y2) to Point_Array; and w to Weights.
|
|
|
| If w is one, conicTo appends kQuad_Verb to Verb_Array, and
|
| (x1, y1), (x2, y2) to Point_Array.
|
|
|
| If w is not finite, conicTo appends kLine_Verb twice to Verb_Array, and
|
| (x1, y1), (x2, y2) to Point_Array.
|
|
|
| #Param x1 control Point of Conic in x. ##
|
| #Param y1 control Point of Conic in y. ##
|
| #Param x2 end Point of Conic in x. ##
|
| #Param y2 end Point of Conic in y. ##
|
| #Param w weight of added Conic. ##
|
|
|
| #Example
|
| #Height 160 |
| #Description
|
| As weight increases, curve is pulled towards control point.
|
| The bottom two curves are elliptical; the next is parabolic; the
|
| top curve is hyperbolic.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPoint conicPts[] = {{20, 150}, {120, 10}, {220, 150}};
|
| canvas->drawLine(conicPts[0], conicPts[1], paint);
|
| canvas->drawLine(conicPts[1], conicPts[2], paint);
|
| SkColor colors[] = { 0xff88ff00, 0xff0088bb, 0xff6600cc, 0xffbb3377 };
|
| paint.setStrokeWidth(3);
|
| SkScalar weight = 0.5f;
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(colors); ++i) {
|
| SkPath path;
|
| path.moveTo(conicPts[0]);
|
| path.conicTo(conicPts[1], conicPts[2], weight);
|
| paint.setColor(colors[i]);
|
| canvas->drawPath(path, paint);
|
| weight += 0.25f;
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso rConicTo arcTo addArc quadTo
|
|
|
| ##
|
|
|
| #Method void conicTo(const SkPoint& p1, const SkPoint& p2, SkScalar w)
|
|
|
| Adds Conic from Last_Point towards Point p1, to Point p2, weighted by w.
|
| If Path is empty, or last Verb is kClose_Verb, Last_Point is set to (0, 0)
|
| before adding Conic.
|
|
|
| conicTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
|
|
| If w is finite and not one, conicTo then appends kConic_Verb to Verb_Array;
|
| and Points p1, p2 to Point_Array; and w to Weights.
|
|
|
| If w is one, conicTo appends kQuad_Verb to Verb_Array, and Points p1, p2
|
| to Point_Array.
|
|
|
| If w is not finite, conicTo appends kLine_Verb twice to Verb_Array, and
|
| Points p1, p2 to Point_Array.
|
|
|
| #Param p1 control Point of added Conic. ##
|
| #Param p2 end Point of added Conic. ##
|
| #Param w weight of added Conic. ##
|
|
|
| #Example
|
| #Height 128 |
| #Description
|
| Conics and arcs use identical representations. As the arc sweep increases
|
| the conic weight also increases, but remains smaller than one.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkRect oval = {0, 20, 120, 140};
|
| SkPath path;
|
| for (int i = 0; i < 4; ++i) {
|
| path.moveTo(oval.centerX(), oval.fTop);
|
| path.arcTo(oval, -90, 90 - 20 * i, false);
|
| oval.inset(15, 15);
|
| }
|
| path.offset(100, 0);
|
| SkScalar conicWeights[] = { 0.707107f, 0.819152f, 0.906308f, 0.965926f };
|
| SkPoint conicPts[][3] = { { {40, 20}, {100, 20}, {100, 80} },
|
| { {40, 35}, {71.509f, 35}, {82.286f, 64.6091f} },
|
| { {40, 50}, {53.9892f, 50}, {62.981f, 60.7164f} },
|
| { {40, 65}, {44.0192f, 65}, {47.5f, 67.0096f} } };
|
| for (int i = 0; i < 4; ++i) {
|
| path.moveTo(conicPts[i][0]);
|
| path.conicTo(conicPts[i][1], conicPts[i][2], conicWeights[i]);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso rConicTo arcTo addArc quadTo
|
|
|
| ##
|
|
|
| #Method void rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2,
|
| SkScalar w)
|
|
|
| Adds Conic from Last_Point towards Vector (dx1, dy1), to Vector (dx2, dy2),
|
| weighted by w. If Path is empty, or last Verb
|
| is kClose_Verb, Last_Point is set to (0, 0) before adding Conic.
|
|
|
| rConicTo first appends kMove_Verb to Verb_Array and (0, 0) to Point_Array,
|
| if needed.
|
|
|
| If w is finite and not one, rConicTo then appends kConic_Verb to Verb_Array,
|
| and w is recorded as Conic_Weight; otherwise, if w is one, rConicTo appends
|
| kQuad_Verb to Verb_Array; or if w is not finite, rConicTo appends kLine_Verb
|
| twice to Verb_Array.
|
|
|
| In all cases rConicTo then appends Points control and end to Point_Array.
|
| control is Last_Point plus Vector (dx1, dy1).
|
| end is Last_Point plus Vector (dx2, dy2).
|
|
|
| rConicTo stands for relative conic to.
|
|
|
| #Param dx1 offset from Last_Point x to Conic control x. ##
|
| #Param dy1 offset from Last_Point x to Conic control y. ##
|
| #Param dx2 offset from Last_Point x to Conic end x. ##
|
| #Param dy2 offset from Last_Point x to Conic end y. ##
|
| #Param w weight of added Conic. ##
|
|
|
| #Example
|
| #Height 140
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(20, 80);
|
| path.rConicTo( 60, 0, 60, 60, 0.707107f);
|
| path.rConicTo( 0, -60, 60, -60, 0.707107f);
|
| path.rConicTo(-60, 0, -60, -60, 0.707107f);
|
| path.rConicTo( 0, 60, -60, 60, 0.707107f);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso conicTo arcTo addArc quadTo
|
|
|
| ##
|
|
|
| #Topic Conic ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Topic Cubic |
| #Alias Cubics |
| |
| Cubic describes a cubic Bezier, a third-order curve. |
| Cubic begins at a start Point, curving towards the first control Point; |
| and curves from the end Point towards the second control Point. |
| |
| #Example |
| #Height 160 |
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPoint cubicPts[] = {{20, 150}, {90, 10}, {160, 150}, {230, 10}};
|
| SkColor colors[] = { 0xff88ff00, 0xff0088bb, 0xff6600cc, 0xffbb3377 };
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(colors); ++i) {
|
| paint.setColor(0x7fffffff & colors[i]);
|
| paint.setStrokeWidth(1);
|
| for (unsigned j = 0; j < 3; ++j) {
|
| canvas->drawLine(cubicPts[j], cubicPts[j + 1], paint);
|
| }
|
| SkPath path;
|
| path.moveTo(cubicPts[0]);
|
| path.cubicTo(cubicPts[1], cubicPts[2], cubicPts[3]);
|
| paint.setStrokeWidth(3);
|
| paint.setColor(colors[i]);
|
| canvas->drawPath(path, paint);
|
| cubicPts[1].fY += 30;
|
| cubicPts[2].fX += 30;
|
| }
|
| } |
| ## |
|
|
| #Method void cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
|
| SkScalar x3, SkScalar y3)
|
|
|
| Adds Cubic from Last_Point towards (x1, y1), then towards (x2, y2), ending at
|
| (x3, y3). If Path is empty, or last Verb is kClose_Verb, Last_Point is set to
|
| (0, 0) before adding Cubic.
|
|
|
| cubicTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| cubicTo then appends kCubic_Verb to Verb_Array; and (x1, y1), (x2, y2), (x3, y3)
|
| to Point_Array.
|
|
|
| #Param x1 first control Point of Cubic in x. ##
|
| #Param y1 first control Point of Cubic in y. ##
|
| #Param x2 second control Point of Cubic in x. ##
|
| #Param y2 second control Point of Cubic in y. ##
|
| #Param x3 end Point of Cubic in x. ##
|
| #Param y3 end Point of Cubic in y. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(0, -10);
|
| for (int i = 0; i < 128; i += 16) {
|
| SkScalar c = i * 0.5f;
|
| path.cubicTo( 10 + c, -10 - i, 10 + i, -10 - c, 10 + i, 0);
|
| path.cubicTo( 14 + i, 14 + c, 14 + c, 14 + i, 0, 14 + i);
|
| path.cubicTo(-18 - c, 18 + i, -18 - i, 18 + c, -18 - i, 0);
|
| path.cubicTo(-22 - i, -22 - c, -22 - c, -22 - i, 0, -22 - i);
|
| }
|
| path.offset(128, 128);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo rCubicTo quadTo
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void cubicTo(const SkPoint& p1, const SkPoint& p2, const SkPoint& p3)
|
|
|
| Adds Cubic from Last_Point towards Point p1, then towards Point p2, ending at
|
| Point p3. If Path is empty, or last Verb is kClose_Verb, Last_Point is set to
|
| (0, 0) before adding Cubic.
|
|
|
| cubicTo appends kMove_Verb to Verb_Array and (0, 0) to Point_Array, if needed.
|
| cubicTo then appends kCubic_Verb to Verb_Array; and Points p1, p2, p3
|
| to Point_Array.
|
|
|
| #Param p1 first control Point of Cubic. ##
|
| #Param p2 second control Point of Cubic. ##
|
| #Param p3 end Point of Cubic. ##
|
|
|
| #Example
|
| #Height 84
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPoint pts[] = { {20, 20}, {300, 80}, {-140, 90}, {220, 10} };
|
| SkPath path;
|
| path.moveTo(pts[0]);
|
| path.cubicTo(pts[1], pts[2], pts[3]);
|
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #SeeAlso Contour moveTo rCubicTo quadTo
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
|
| SkScalar x3, SkScalar y3)
|
|
|
| Adds Cubic from Last_Point towards Vector (dx1, dy1), then towards
|
| Vector (dx2, dy2), to Vector (dx3, dy3).
|
| If Path is empty, or last Verb
|
| is kClose_Verb, Last_Point is set to (0, 0) before adding Cubic.
|
|
|
| rCubicTo first appends kMove_Verb to Verb_Array and (0, 0) to Point_Array,
|
| if needed. rCubicTo then appends kCubic_Verb to Verb_Array; and appends Cubic
|
| control and Cubic end to Point_Array.
|
| Cubic control is Last_Point plus Vector (dx1, dy1).
|
| Cubic end is Last_Point plus Vector (dx2, dy2).
|
| rCubicTo stands for relative cubic to.
|
|
|
| #Param x1 offset from Last_Point x to first Cubic control x. ##
|
| #Param y1 offset from Last_Point x to first Cubic control y. ##
|
| #Param x2 offset from Last_Point x to second Cubic control x. ##
|
| #Param y2 offset from Last_Point x to second Cubic control y. ##
|
| #Param x3 offset from Last_Point x to Cubic end x. ##
|
| #Param y3 offset from Last_Point x to Cubic end y. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| SkPath path;
|
| path.moveTo(24, 108);
|
| for (int i = 0; i < 16; i++) {
|
| SkScalar sx, sy;
|
| sx = SkScalarSinCos(i * SK_ScalarPI / 8, &sy);
|
| path.rCubicTo(40 * sx, 4 * sy, 4 * sx, 40 * sy, 40 * sx, 40 * sy);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso Contour moveTo cubicTo quadTo
|
|
|
| ##
|
|
|
| #Topic Cubic ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Topic Arc
|
|
|
| Arc can be constructed in a number of ways. Arc may be described by part of Oval and angles,
|
| by start point and end point, and by radius and tangent lines. Each construction has advantages,
|
| and some constructions correspond to Arc drawing in graphics standards.
|
|
|
| All Arc draws are implemented by one or more Conic draws. When Conic_Weight is less than one,
|
| Conic describes an Arc of some Oval or Circle.
|
|
|
| arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo)
|
| describes Arc as a piece of Oval, beginning at start angle, sweeping clockwise or counterclockwise,
|
| which may continue Contour or start a new one. This construction is similar to PostScript and
|
| HTML_Canvas arcs. Variation addArc always starts new Contour. Canvas::drawArc draws without
|
| requiring Path.
|
|
|
| arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius)
|
| describes Arc as tangent to the line (x0, y0), (x1, y1) and tangent to the line (x1, y1), (x2, y2)
|
| where (x0, y0) is the last Point added to Path. This construction is similar to PostScript and
|
| HTML_Canvas arcs.
|
|
|
| arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep,
|
| SkScalar x, SkScalar y)
|
| describes Arc as part of Oval with radii (rx, ry), beginning at
|
| last Point added to Path and ending at (x, y). More than one Arc satisfies this criteria,
|
| so additional values choose a single solution. This construction is similar to SVG arcs.
|
|
|
| conicTo describes Arc of less than 180 degrees as a pair of tangent lines and Conic_Weight.
|
| conicTo can represent any Arc with a sweep less than 180 degrees at any rotation. All arcTo
|
| constructions are converted to Conic data when added to Path.
|
|
|
| #ToDo allow example to hide source and not be exposed as fiddle since markdown / html can't
|
| do the kind of table shown in the illustration.
|
| example is spaced correctly on fiddle but spacing is too wide on pc
|
| ##
|
|
|
| #Example
|
| #Height 300
|
| #Width 600
|
| #Description
|
| #List
|
| # <sup>1</sup> arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo) ##
|
| # <sup>2</sup> parameter sets force MoveTo ##
|
| # <sup>3</sup> start angle must be multiple of 90 degrees. ##
|
| # <sup>4</sup> arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius) ##
|
| # <sup>5</sup> arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
|
| Direction sweep, SkScalar x, SkScalar y) ##
|
| #List ##
|
| #Description ##
|
| #Function
|
| struct data {
|
| const char* name;
|
| char super;
|
| int yn[10];
|
| };
|
|
|
| const data dataSet[] = {
|
| { "arcTo sweep", '1', {1, 3, 1, 0, 0, 0, 0, 1, 0, 0 }},
|
| { "drawArc", 0, {1, -1, 1, 1, 1, 1, 1, 0, 0, 0 }},
|
| { "addArc", 0, {1, 1, 1, 4, 0, 1, 1, 1, 0, 0 }},
|
| { "arcTo tangents", '4', {0, 0, 0, 0, 0, 0, 0, 1, 1, 0 }},
|
| { "arcTo radii", '5', {1, 0, 1, 0, 0, 0, 0, 1, 1, 0 }},
|
| { "conicTo", 0, {1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }}
|
| };
|
|
|
| #define __degree_symbol__ "\xC2" "\xB0"
|
|
|
| const char* headers[] = {
|
| "Oval part",
|
| "force moveTo",
|
| "can draw 180" __degree_symbol__,
|
| "can draw 360" __degree_symbol__,
|
| "can draw greater than 360" __degree_symbol__,
|
| "ignored if radius is zero",
|
| "ignored if sweep is zero",
|
| "requires Path",
|
| "describes rotation",
|
| "describes perspective",
|
| };
|
|
|
| const char* yna[] = {
|
| "n/a",
|
| "no",
|
| "yes"
|
| };
|
|
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint lp;
|
| lp.setAntiAlias(true);
|
| SkPaint tp(lp);
|
| SkPaint sp(tp);
|
| SkPaint bp(tp);
|
| bp.setFakeBoldText(true);
|
| sp.setTextSize(10);
|
| lp.setColor(SK_ColorGRAY);
|
| canvas->translate(0, 32);
|
| const int tl = 115;
|
| for (unsigned col = 0; col <= SK_ARRAY_COUNT(headers); ++col) {
|
| canvas->drawLine(tl + col * 35, 100, tl + col * 35, 250, lp);
|
| if (0 == col) {
|
| continue;
|
| }
|
| canvas->drawLine(tl + col * 35, 100, tl + 100 + col * 35, 0, lp);
|
| SkPath path;
|
| path.moveTo(tl - 3 + col * 35, 103);
|
| path.lineTo(tl + 124 + col * 35, -24);
|
| canvas->drawTextOnPathHV(headers[col -1], strlen(headers[col -1]), path, 0, -9, bp);
|
| }
|
| for (unsigned row = 0; row <= SK_ARRAY_COUNT(dataSet); ++row) {
|
| if (0 == row) {
|
| canvas->drawLine(tl, 100, tl + 350, 100, lp);
|
| } else {
|
| canvas->drawLine(5, 100 + row * 25, tl + 350, 100 + row * 25, lp);
|
| }
|
| if (row == SK_ARRAY_COUNT(dataSet)) {
|
| break;
|
| }
|
| canvas->drawString(dataSet[row].name, 5, 117 + row * 25, bp);
|
| if (dataSet[row].super) {
|
| SkScalar width = bp.measureText(dataSet[row].name, strlen(dataSet[row].name));
|
| canvas->drawText(&dataSet[row].super, 1, 8 + width, 112 + row * 25, sp);
|
| }
|
| for (unsigned col = 0; col < SK_ARRAY_COUNT(headers); ++col) {
|
| int val = dataSet[row].yn[col];
|
| canvas->drawString(yna[SkTMin(2, val + 1)], tl + 5 + col * 35, 117 + row * 25, tp);
|
| if (val > 1) {
|
| char supe = '0' + val - 1;
|
| canvas->drawText(&supe, 1, tl + 25 + col * 35, 112 + row * 25, sp);
|
| }
|
| }
|
| }
|
| }
|
| #Example ##
|
|
|
| #Example
|
| #Height 128
|
| #Description
|
| #ToDo make this a list or table ##
|
| 1 describes an arc from an oval, a starting angle, and a sweep angle.
|
| 2 is similar to 1, but does not require building a path to draw.
|
| 3 is similar to 1, but always begins new Contour.
|
| 4 describes an arc from a pair of tangent lines and a radius.
|
| 5 describes an arc from Oval center, arc start Point and arc end Point.
|
| 6 describes an arc from a pair of tangent lines and a Conic_Weight.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkRect oval = {8, 8, 56, 56};
|
| SkPaint ovalPaint;
|
| ovalPaint.setAntiAlias(true);
|
| SkPaint textPaint(ovalPaint);
|
| ovalPaint.setStyle(SkPaint::kStroke_Style);
|
| SkPaint arcPaint(ovalPaint);
|
| arcPaint.setStrokeWidth(5);
|
| arcPaint.setColor(SK_ColorBLUE);
|
| canvas->translate(-64, 0);
|
| for (char arcStyle = '1'; arcStyle <= '6'; ++arcStyle) {
|
| '4' == arcStyle ? canvas->translate(-96, 55) : canvas->translate(64, 0);
|
| canvas->drawText(&arcStyle, 1, 30, 36, textPaint);
|
| canvas->drawOval(oval, ovalPaint);
|
| SkPath path;
|
| path.moveTo({56, 32});
|
| switch (arcStyle) {
|
| case '1':
|
| path.arcTo(oval, 0, 90, false);
|
| break;
|
| case '2':
|
| canvas->drawArc(oval, 0, 90, false, arcPaint);
|
| continue;
|
| case '3':
|
| path.addArc(oval, 0, 90);
|
| break;
|
| case '4':
|
| path.arcTo({56, 56}, {32, 56}, 24);
|
| break;
|
| case '5':
|
| path.arcTo({24, 24}, 0, SkPath::kSmall_ArcSize, SkPath::kCW_Direction, {32, 56});
|
| break;
|
| case '6':
|
| path.conicTo({56, 56}, {32, 56}, SK_ScalarRoot2Over2);
|
| break;
|
| }
|
| canvas->drawPath(path, arcPaint);
|
| }
|
| }
|
| #Example ##
|
|
|
|
|
| #Method void arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo)
|
|
|
| Append Arc to Path. Arc added is part of ellipse
|
| bounded by oval, from startAngle through sweepAngle. Both startAngle and
|
| sweepAngle are measured in degrees, where zero degrees is aligned with the
|
| positive x-axis, and positive sweeps extends Arc clockwise.
|
|
|
| arcTo adds Line connecting Path last Point to initial Arc Point if forceMoveTo
|
| is false and Path is not empty. Otherwise, added Contour begins with first point
|
| of Arc. Angles greater than -360 and less than 360 are treated modulo 360.
|
|
|
| #Param oval bounds of ellipse containing Arc. ##
|
| #Param startAngle starting angle of Arc in degrees. ##
|
| #Param sweepAngle sweep, in degrees. Positive is clockwise; treated modulo 360. ##
|
| #Param forceMoveTo true to start a new contour with Arc. ##
|
|
|
| #Example
|
| #Height 200
|
| #Description
|
| arcTo continues a previous contour when forceMoveTo is false and when Path
|
| is not empty.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPath path;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(4);
|
| path.moveTo(0, 0);
|
| path.arcTo({20, 20, 120, 120}, -90, 90, false);
|
| canvas->drawPath(path, paint);
|
| path.rewind();
|
| path.arcTo({120, 20, 220, 120}, -90, 90, false);
|
| canvas->drawPath(path, paint);
|
| path.rewind();
|
| path.moveTo(0, 0);
|
| path.arcTo({20, 120, 120, 220}, -90, 90, true);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso addArc SkCanvas::drawArc conicTo
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius)
|
|
|
| Append Arc to Path, after appending Line if needed. Arc is implemented by Conic
|
| weighted to describe part of Circle. Arc is contained by tangent from
|
| last Path point (x0, y0) to (x1, y1), and tangent from (x1, y1) to (x2, y2). Arc
|
| is part of Circle sized to radius, positioned so it touches both tangent lines.
|
|
|
| #ToDo allow example to hide source and not be exposed as fiddle ##
|
|
|
| #Example
|
| #Height 226
|
| void draw(SkCanvas* canvas) {
|
| SkPaint tangentPaint;
|
| tangentPaint.setAntiAlias(true);
|
| SkPaint textPaint(tangentPaint);
|
| tangentPaint.setStyle(SkPaint::kStroke_Style);
|
| tangentPaint.setColor(SK_ColorGRAY);
|
| SkPaint arcPaint(tangentPaint);
|
| arcPaint.setStrokeWidth(5);
|
| arcPaint.setColor(SK_ColorBLUE);
|
| SkPath path;
|
| SkPoint pts[] = { {56, 20}, {200, 20}, {90, 190} };
|
| SkScalar radius = 50;
|
| path.moveTo(pts[0]);
|
| path.arcTo(pts[1], pts[2], radius);
|
| canvas->drawLine(pts[0], pts[1], tangentPaint);
|
| canvas->drawLine(pts[1], pts[2], tangentPaint);
|
| SkPoint lastPt;
|
| (void) path.getLastPt(&lastPt);
|
| SkVector radial = pts[2] - pts[1];
|
| radial.setLength(radius);
|
| SkPoint center = { lastPt.fX - radial.fY, lastPt.fY + radial.fX };
|
| canvas->drawCircle(center, radius, tangentPaint);
|
| canvas->drawLine(lastPt, center, tangentPaint);
|
| radial = pts[1] - pts[0];
|
| radial.setLength(radius);
|
| SkPoint arcStart = { center.fX + radial.fY, center.fY - radial.fX };
|
| canvas->drawLine(center, arcStart, tangentPaint);
|
| canvas->drawPath(path, arcPaint);
|
| textPaint.setTextAlign(SkPaint::kRight_Align);
|
| canvas->drawString("(x0, y0)", pts[0].fX - 5, pts[0].fY, textPaint);
|
| textPaint.setTextAlign(SkPaint::kLeft_Align);
|
| canvas->drawString("(x1, y1)", pts[1].fX + 5, pts[1].fY, textPaint);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| canvas->drawString("(x2, y2)", pts[2].fX, pts[2].fY + 15, textPaint);
|
| textPaint.setTextAlign(SkPaint::kRight_Align);
|
| canvas->drawString("radius", center.fX + 15, center.fY + 25, textPaint);
|
| canvas->drawString("radius", center.fX - 3, center.fY - 16, textPaint);
|
| }
|
| ##
|
|
|
| If last Path Point does not start Arc, arcTo appends connecting Line to Path.
|
| The length of Vector from (x1, y1) to (x2, y2) does not affect Arc.
|
|
|
| #Example
|
| #Height 128
|
| void draw(SkCanvas* canvas) {
|
| SkPaint tangentPaint;
|
| tangentPaint.setAntiAlias(true);
|
| SkPaint textPaint(tangentPaint);
|
| tangentPaint.setStyle(SkPaint::kStroke_Style);
|
| tangentPaint.setColor(SK_ColorGRAY);
|
| SkPaint arcPaint(tangentPaint);
|
| arcPaint.setStrokeWidth(5);
|
| arcPaint.setColor(SK_ColorBLUE);
|
| SkPath path;
|
| SkPoint pts[] = { {156, 20}, {200, 20}, {170, 50} };
|
| SkScalar radius = 50;
|
| path.moveTo(pts[0]);
|
| path.arcTo(pts[1], pts[2], radius);
|
| canvas->drawLine(pts[0], pts[1], tangentPaint);
|
| canvas->drawLine(pts[1], pts[2], tangentPaint);
|
| SkPoint lastPt;
|
| (void) path.getLastPt(&lastPt);
|
| SkVector radial = pts[2] - pts[1];
|
| radial.setLength(radius);
|
| SkPoint center = { lastPt.fX - radial.fY, lastPt.fY + radial.fX };
|
| canvas->drawLine(lastPt, center, tangentPaint);
|
| radial = pts[1] - pts[0];
|
| radial.setLength(radius);
|
| SkPoint arcStart = { center.fX + radial.fY, center.fY - radial.fX };
|
| canvas->drawLine(center, arcStart, tangentPaint);
|
| canvas->drawPath(path, arcPaint);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| canvas->drawString("(x0, y0)", pts[0].fX, pts[0].fY - 7, textPaint);
|
| textPaint.setTextAlign(SkPaint::kLeft_Align);
|
| canvas->drawString("(x1, y1)", pts[1].fX + 5, pts[1].fY, textPaint);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| canvas->drawString("(x2, y2)", pts[2].fX, pts[2].fY + 15, textPaint);
|
| textPaint.setTextAlign(SkPaint::kRight_Align);
|
| canvas->drawString("radius", center.fX + 15, center.fY + 25, textPaint);
|
| canvas->drawString("radius", center.fX - 5, center.fY - 20, textPaint);
|
| }
|
| ##
|
|
|
| Arc sweep is always less than 180 degrees. If radius is zero, or if
|
| tangents are nearly parallel, arcTo appends Line from last Path Point to (x1, y1).
|
|
|
| arcTo appends at most one Line and one Conic.
|
| arcTo implements the functionality of PostScript_arct and HTML_Canvas_arcTo.
|
|
|
| #Param x1 x common to pair of tangents. ##
|
| #Param y1 y common to pair of tangents. ##
|
| #Param x2 x end of second tangent. ##
|
| #Param y2 y end of second tangent. ##
|
| #Param radius distance from Arc to Circle center. ##
|
|
|
| #Example
|
| #Description
|
| arcTo is represented by Line and circular Conic in Path.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.moveTo({156, 20});
|
| path.arcTo(200, 20, 170, 50, 50);
|
| SkPath::Iter iter(path, false);
|
| SkPoint p[4];
|
| SkPath::Verb verb;
|
| while (SkPath::kDone_Verb != (verb = iter.next(p))) {
|
| switch (verb) {
|
| case SkPath::kMove_Verb:
|
| SkDebugf("move to (%g,%g)\n", p[0].fX, p[0].fY);
|
| break;
|
| case SkPath::kLine_Verb:
|
| SkDebugf("line (%g,%g),(%g,%g)\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY);
|
| break;
|
| case SkPath::kConic_Verb:
|
| SkDebugf("conic (%g,%g),(%g,%g),(%g,%g) weight %g\n",
|
| p[0].fX, p[0].fY, p[1].fX, p[1].fY, p[2].fX, p[2].fY, iter.conicWeight());
|
| break;
|
| default:
|
| SkDebugf("unexpected verb\n");
|
| }
|
| }
|
| }
|
| #StdOut
|
| move to (156,20)
|
| line (156,20),(79.2893,20)
|
| conic (79.2893,20),(200,20),(114.645,105.355) weight 0.382683
|
| ##
|
| ##
|
|
|
| #SeeAlso conicTo
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void arcTo(const SkPoint p1, const SkPoint p2, SkScalar radius)
|
|
|
| Append Arc to Path, after appending Line if needed. Arc is implemented by Conic
|
| weighted to describe part of Circle. Arc is contained by tangent from
|
| last Path point to p1, and tangent from p1 to p2. Arc
|
| is part of Circle sized to radius, positioned so it touches both tangent lines.
|
|
|
| If last Path Point does not start Arc, arcTo appends connecting Line to Path.
|
| The length of Vector from p1 to p2 does not affect Arc.
|
|
|
| Arc sweep is always less than 180 degrees. If radius is zero, or if
|
| tangents are nearly parallel, arcTo appends Line from last Path Point to p1.
|
|
|
| arcTo appends at most one Line and one Conic.
|
| arcTo implements the functionality of PostScript_arct and HTML_Canvas_arcTo.
|
|
|
| #Param p1 Point common to pair of tangents. ##
|
| #Param p2 end of second tangent. ##
|
| #Param radius distance from Arc to Circle center. ##
|
|
|
| #Example
|
| #Description
|
| Because tangent lines are parallel, arcTo appends line from last Path Point to
|
| p1, but does not append a circular Conic.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.moveTo({156, 20});
|
| path.arcTo({200, 20}, {170, 20}, 50);
|
| SkPath::Iter iter(path, false);
|
| SkPoint p[4];
|
| SkPath::Verb verb;
|
| while (SkPath::kDone_Verb != (verb = iter.next(p))) {
|
| switch (verb) {
|
| case SkPath::kMove_Verb:
|
| SkDebugf("move to (%g,%g)\n", p[0].fX, p[0].fY);
|
| break;
|
| case SkPath::kLine_Verb:
|
| SkDebugf("line (%g,%g),(%g,%g)\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY);
|
| break;
|
| case SkPath::kConic_Verb:
|
| SkDebugf("conic (%g,%g),(%g,%g),(%g,%g) weight %g\n",
|
| p[0].fX, p[0].fY, p[1].fX, p[1].fY, p[2].fX, p[2].fY, iter.conicWeight());
|
| break;
|
| default:
|
| SkDebugf("unexpected verb\n");
|
| }
|
| }
|
| }
|
| #StdOut
|
| move to (156,20)
|
| line (156,20),(200,20)
|
| ##
|
| ##
|
|
|
| #SeeAlso conicTo
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Enum ArcSize
|
|
|
| #Code
|
| enum ArcSize {
|
| kSmall_ArcSize
|
| kLarge_ArcSize
|
| };
|
| ##
|
|
|
| Four Oval parts with radii (rx, ry) start at last Path Point and ends at (x, y).
|
| ArcSize and Direction select one of the four Oval parts.
|
|
|
| #Const kSmall_ArcSize 0
|
| Smaller of Arc pair.
|
| ##
|
| #Const kLarge_ArcSize 1
|
| Larger of Arc pair.
|
| ##
|
|
|
| #Example
|
| #Height 160
|
| #Description
|
| Arc begins at top of Oval pair and ends at bottom. Arc can take four routes to get there.
|
| Two routes are large, and two routes are counterclockwise. The one route both large
|
| and counterclockwise is blue.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| for (auto sweep: { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| for (auto arcSize : { SkPath::kSmall_ArcSize, SkPath::kLarge_ArcSize } ) {
|
| SkPath path;
|
| path.moveTo({120, 50});
|
| path.arcTo(70, 40, 30, arcSize, sweep, 156, 100);
|
| if (SkPath::kCCW_Direction == sweep && SkPath::kLarge_ArcSize == arcSize) {
|
| paint.setColor(SK_ColorBLUE);
|
| paint.setStrokeWidth(3);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso arcTo Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
|
| Direction sweep, SkScalar x, SkScalar y)
|
|
|
| Append Arc to Path. Arc is implemented by one or more Conic weighted to describe part of Oval
|
| with radii (rx, ry) rotated by xAxisRotate degrees. Arc curves from last Path Point to (x, y),
|
| choosing one of four possible routes: clockwise or counterclockwise, and smaller or larger.
|
|
|
| Arc sweep is always less than 360 degrees. arcTo appends Line to (x, y) if either radii are zero,
|
| or if last Path Point equals (x, y). arcTo scales radii (rx, ry) to fit last Path Point and
|
| (x, y) if both are greater than zero but too small.
|
|
|
| arcTo appends up to four Conic curves.
|
| arcTo implements the functionatlity of SVG_Arc, although SVG sweep-flag value is
|
| opposite the integer value of sweep; SVG sweep-flag uses 1 for clockwise, while kCW_Direction
|
| cast to int is zero.
|
|
|
| #Param rx radius in x before x-axis rotation. ##
|
| #Param ry radius in y before x-axis rotation. ##
|
| #Param xAxisRotate x-axis rotation in degrees; positve values are clockwise. ##
|
| #Param largeArc chooses smaller or larger Arc. ##
|
| #Param sweep chooses clockwise or counterclockwise Arc. ##
|
| #Param x end of Arc. ##
|
| #Param y end of Arc. ##
|
|
|
| #Example
|
| #Height 160
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| for (auto sweep: { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| for (auto arcSize : { SkPath::kSmall_ArcSize, SkPath::kLarge_ArcSize } ) {
|
| SkPath path;
|
| path.moveTo({120, 50});
|
| path.arcTo(70, 40, 30, arcSize, sweep, 120.1, 50);
|
| if (SkPath::kCCW_Direction == sweep && SkPath::kLarge_ArcSize == arcSize) {
|
| paint.setColor(SK_ColorBLUE);
|
| paint.setStrokeWidth(3);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso rArcTo ArcSize Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void arcTo(const SkPoint r, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep,
|
| const SkPoint xy)
|
|
|
| Append Arc to Path. Arc is implemented by one or more Conic weighted to describe part of Oval
|
| with radii (r.fX, r.fY) rotated by xAxisRotate degrees. Arc curves from last Path Point to
|
| (xy.fX, xy.fY), choosing one of four possible routes: clockwise or counterclockwise,
|
| and smaller or larger.
|
|
|
| Arc sweep is always less than 360 degrees. arcTo appends Line to xy if either radii are zero,
|
| or if last Path Point equals (x, y). arcTo scales radii r to fit last Path Point and
|
| xy if both are greater than zero but too small.
|
|
|
| arcTo appends up to four Conic curves.
|
| arcTo implements the functionatlity of SVG_Arc, although SVG sweep-flag value is
|
| opposite the integer value of sweep; SVG sweep-flag uses 1 for clockwise, while kCW_Direction
|
| cast to int is zero.
|
|
|
| #Param r radii in x and y before x-axis rotation. ##
|
| #Param xAxisRotate x-axis rotation in degrees; positve values are clockwise. ##
|
| #Param largeArc chooses smaller or larger Arc. ##
|
| #Param sweep chooses clockwise or counterclockwise Arc. ##
|
| #Param xy end of Arc. ##
|
|
|
| #Example
|
| #Height 108
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPath path;
|
| const SkPoint starts[] = {{20, 20}, {120, 20}, {70, 60}};
|
| for (auto start : starts) {
|
| path.moveTo(start.fX, start.fY);
|
| path.rArcTo(20, 20, 0, SkPath::kSmall_ArcSize, SkPath::kCCW_Direction, 60, 0);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso rArcTo ArcSize Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void rArcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
|
| Direction sweep, SkScalar dx, SkScalar dy)
|
|
|
| Append Arc to Path, relative to last Path Point. Arc is implemented by one or
|
| more Conic, weighted to describe part of Oval with radii (r.fX, r.fY) rotated by
|
| xAxisRotate degrees. Arc curves from last Path Point (x0, y0) to
|
| (x0 + dx, y0 + dy), choosing one of four possible routes: clockwise or
|
| counterclockwise, and smaller or larger. If Path is empty, the start Arc Point
|
| is (0, 0).
|
|
|
| Arc sweep is always less than 360 degrees. arcTo appends Line to xy if either
|
| radii are zero, or if last Path Point equals (x, y). arcTo scales radii r to fit
|
| last Path Point and xy if both are greater than zero but too small.
|
|
|
| arcTo appends up to four Conic curves.
|
| arcTo implements the functionatlity of SVG_Arc, although SVG sweep-flag value is
|
| opposite the integer value of sweep; SVG sweep-flag uses 1 for clockwise, while
|
| kCW_Direction cast to int is zero.
|
|
|
| #Param rx radius in x before x-axis rotation. ##
|
| #Param ry radius in y before x-axis rotation. ##
|
| #Param xAxisRotate x-axis rotation in degrees; positve values are clockwise. ##
|
| #Param largeArc chooses smaller or larger Arc. ##
|
| #Param sweep chooses clockwise or counterclockwise Arc. ##
|
| #Param dx x offset end of Arc from last Path Point. ##
|
| #Param dy y offset end of Arc from last Path Point. ##
|
|
|
| #Example
|
| #Height 108
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| SkPath path;
|
| const SkPoint starts[] = {{20, 20}, {120, 20}, {70, 60}};
|
| for (auto start : starts) {
|
| path.moveTo(start.fX, start.fY);
|
| path.rArcTo(20, 20, 0, SkPath::kSmall_ArcSize, SkPath::kCCW_Direction, 60, 0);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso arcTo ArcSize Direction
|
|
|
| ##
|
|
|
| #Topic Arc ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void close()
|
|
|
| Append kClose_Verb to Path. A closed Contour connects the first and last Point
|
| with Line, forming a continous loop. Open and closed Contour draw the same
|
| with SkPaint::kFill_Style. With SkPaint::kStroke_Style, open Contour draws
|
| Paint_Stroke_Cap at Contour start and end; closed Contour draws
|
| Paint_Stroke_Join at Contour start and end.
|
|
|
| close() has no effect if Path is empty or last Path Verb is kClose_Verb.
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStrokeWidth(15);
|
| paint.setStrokeCap(SkPaint::kRound_Cap);
|
| SkPath path;
|
| const SkPoint points[] = {{20, 20}, {70, 20}, {40, 90}};
|
| path.addPoly(points, SK_ARRAY_COUNT(points), false);
|
| for (int loop = 0; loop < 2; ++loop) {
|
| for (auto style : {SkPaint::kStroke_Style, SkPaint::kFill_Style,
|
| SkPaint::kStrokeAndFill_Style} ) {
|
| paint.setStyle(style);
|
| canvas->drawPath(path, paint);
|
| canvas->translate(85, 0);
|
| }
|
| path.close();
|
| canvas->translate(-255, 128);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static bool IsInverseFillType(FillType fill)
|
|
|
| Returns true if fill is inverted and Path with fill represents area outside
|
| of its geometric bounds.
|
|
|
| #Table
|
| #Legend
|
| # FillType # is inverse ##
|
| ##
|
| # kWinding_FillType # false ##
|
| # kEvenOdd_FillType # false ##
|
| # kInverseWinding_FillType # true ##
|
| # kInverseEvenOdd_FillType # true ##
|
| ##
|
|
|
| #Param fill one of: kWinding_FillType, kEvenOdd_FillType,
|
| kInverseWinding_FillType, kInverseEvenOdd_FillType.
|
| ##
|
|
|
| #Return true if Path fills outside its bounds. ##
|
|
|
| #Example
|
| #Function
|
| #define nameValue(fill) { SkPath::fill, #fill }
|
|
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| struct {
|
| SkPath::FillType fill;
|
| const char* name;
|
| } fills[] = {
|
| nameValue(kWinding_FillType),
|
| nameValue(kEvenOdd_FillType),
|
| nameValue(kInverseWinding_FillType),
|
| nameValue(kInverseEvenOdd_FillType),
|
| };
|
| for (auto fill: fills ) {
|
| SkDebugf("IsInverseFillType(%s) == %s\n", fill.name, SkPath::IsInverseFillType(fill.fill) ?
|
| "true" : "false");
|
| }
|
| }
|
| #StdOut
|
| IsInverseFillType(kWinding_FillType) == false
|
| IsInverseFillType(kEvenOdd_FillType) == false
|
| IsInverseFillType(kInverseWinding_FillType) == true
|
| IsInverseFillType(kInverseEvenOdd_FillType) == true
|
| ##
|
| ##
|
|
|
| #SeeAlso FillType getFillType setFillType ConvertToNonInverseFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static FillType ConvertToNonInverseFillType(FillType fill)
|
|
|
| Returns equivalent Fill_Type representing Path fill inside its bounds.
|
| .
|
|
|
| #Table
|
| #Legend
|
| # FillType # inside FillType ##
|
| ##
|
| # kWinding_FillType # kWinding_FillType ##
|
| # kEvenOdd_FillType # kEvenOdd_FillType ##
|
| # kInverseWinding_FillType # kWinding_FillType ##
|
| # kInverseEvenOdd_FillType # kEvenOdd_FillType ##
|
| ##
|
|
|
| #Param fill one of: kWinding_FillType, kEvenOdd_FillType,
|
| kInverseWinding_FillType, kInverseEvenOdd_FillType.
|
| ##
|
|
|
| #Return fill, or kWinding_FillType or kEvenOdd_FillType if fill is inverted. ##
|
|
|
| #Example
|
| #Function
|
| #define nameValue(fill) { SkPath::fill, #fill }
|
|
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| struct {
|
| SkPath::FillType fill;
|
| const char* name;
|
| } fills[] = {
|
| nameValue(kWinding_FillType),
|
| nameValue(kEvenOdd_FillType),
|
| nameValue(kInverseWinding_FillType),
|
| nameValue(kInverseEvenOdd_FillType),
|
| };
|
| for (unsigned i = 0; i < SK_ARRAY_COUNT(fills); ++i) {
|
| if (fills[i].fill != (SkPath::FillType) i) {
|
| SkDebugf("fills array order does not match FillType enum order");
|
| break;
|
| }
|
| SkDebugf("ConvertToNonInverseFillType(%s) == %s\n", fills[i].name,
|
| fills[(int) SkPath::ConvertToNonInverseFillType(fills[i].fill)].name);
|
| }
|
| }
|
| #StdOut
|
| ConvertToNonInverseFillType(kWinding_FillType) == kWinding_FillType
|
| ConvertToNonInverseFillType(kEvenOdd_FillType) == kEvenOdd_FillType
|
| ConvertToNonInverseFillType(kInverseWinding_FillType) == kWinding_FillType
|
| ConvertToNonInverseFillType(kInverseEvenOdd_FillType) == kEvenOdd_FillType
|
| ##
|
| ##
|
|
|
| #SeeAlso FillType getFillType setFillType IsInverseFillType
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method static int ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
|
| SkScalar w, SkPoint pts[], int pow2)
|
|
|
| Approximates Conic with Quad array. Conic is constructed from start Point p0,
|
| control Point p1, end Point p2, and weight w.
|
| Quad array is stored in pts; this storage is supplied by caller.
|
| Maximum Quad count is 2 to the pow2.
|
| Every third point in array shares last Point of previous Quad and first Point of
|
| next Quad. Maximum pts storage size is given by:
|
| #Formula
|
| (1 + 2 * (1 << pow2)) * sizeof(SkPoint)
|
| ##
|
| ConvertConicToQuads returns Quad count used the approximation, which may be smaller
|
| than the number requested.
|
|
|
| Conic_Weight determines the amount of influence Conic control point has on the curve.
|
| w less than one represents an elliptical section. w greater than one represents
|
| a hyperbolic section. w equal to one represents a parabolic section.
|
|
|
| Two Quad curves are sufficient to approximate an elliptical Conic with a sweep
|
| of up to 90 degrees; in this case, set pow2 to one.
|
|
|
| #Param p0 Conic start Point. ##
|
| #Param p1 Conic control Point. ##
|
| #Param p2 Conic end Point. ##
|
| #Param w Conic weight. ##
|
| #Param pts storage for Quad array. ##
|
| #Param pow2 Quad count, as power of two, normally 0 to 5 (1 to 32 Quad curves). ##
|
|
|
| #Return Number of Quad curves written to pts. ##
|
|
|
| #Example
|
| #Description
|
| A pair of Quad curves are drawn in red on top of the elliptical Conic curve in black.
|
| The middle curve is nearly circular. The top-right curve is parabolic, which can
|
| be drawn exactly with a single Quad.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint conicPaint;
|
| conicPaint.setAntiAlias(true);
|
| conicPaint.setStyle(SkPaint::kStroke_Style);
|
| SkPaint quadPaint(conicPaint);
|
| quadPaint.setColor(SK_ColorRED);
|
| SkPoint conic[] = { {20, 170}, {80, 170}, {80, 230} };
|
| for (auto weight : { .25f, .5f, .707f, .85f, 1.f } ) {
|
| SkPoint quads[5];
|
| SkPath::ConvertConicToQuads(conic[0], conic[1], conic[2], weight, quads, 1);
|
| SkPath path;
|
| path.moveTo(conic[0]);
|
| path.conicTo(conic[1], conic[2], weight);
|
| canvas->drawPath(path, conicPaint);
|
| path.rewind();
|
| path.moveTo(quads[0]);
|
| path.quadTo(quads[1], quads[2]);
|
| path.quadTo(quads[3], quads[4]);
|
| canvas->drawPath(path, quadPaint);
|
| canvas->translate(50, -50);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso Conic Quad
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isRect(SkRect* rect, bool* isClosed = NULL, Direction* direction = NULL) const
|
|
|
| Returns true if Path is eqivalent to Rect when filled.
|
| If isRect returns false: rect, isClosed, and direction are unchanged.
|
| If isRect returns true: rect, isClosed, and direction are written to if not nullptr.
|
|
|
| rect may be smaller than the Path bounds. Path bounds may include kMove_Verb points
|
| that do not alter the area drawn by the returned rect.
|
|
|
| #Param rect storage for bounds of Rect; may be nullptr. ##
|
| #Param isClosed storage set to true if Path is closed; may be nullptr ##
|
| #Param direction storage set to Rect direction; may be nullptr. ##
|
|
|
| #Return true if Path contains Rect. ##
|
|
|
| #Example
|
| #Description
|
| After addRect, isRect returns true. Following moveTo permits isRect to return true, but
|
| following lineTo does not. addPoly returns true even though rect is not closed, and one
|
| side of rect is made up of consecutive line segments.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path) -> void {
|
| SkRect rect;
|
| SkPath::Direction direction;
|
| bool isClosed;
|
| path.isRect(&rect, &isClosed, &direction) ?
|
| SkDebugf("%s is rect (%g, %g, %g, %g); is %s" "closed; direction %s\n", prefix,
|
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, isClosed ? "" : "not ",
|
| SkPath::kCW_Direction == direction ? "CW" : "CCW") :
|
| SkDebugf("%s is not rect\n", prefix);
|
| };
|
| SkPath path;
|
| debugster("empty", path);
|
| path.addRect({10, 20, 30, 40});
|
| debugster("addRect", path);
|
| path.moveTo(60, 70);
|
| debugster("moveTo", path);
|
| path.lineTo(60, 70);
|
| debugster("lineTo", path);
|
| path.reset();
|
| const SkPoint pts[] = { {0, 0}, {0, 80}, {80, 80}, {80, 0}, {40, 0}, {20, 0} };
|
| path.addPoly(pts, SK_ARRAY_COUNT(pts), false);
|
| debugster("addPoly", path);
|
| }
|
| #StdOut
|
| empty is not rect
|
| addRect is rect (10, 20, 30, 40); is closed; direction CW
|
| moveTo is rect (10, 20, 30, 40); is closed; direction CW
|
| lineTo is not rect
|
| addPoly is rect (0, 0, 80, 80); is not closed; direction CCW
|
| ##
|
| ##
|
|
|
| #SeeAlso computeTightBounds conservativelyContainsRect getBounds isConvex isLastContourClosed isNestedFillRects
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool isNestedFillRects(SkRect rect[2], Direction dirs[2] = NULL) const
|
|
|
| Returns true if Path is equivalent to nested Rect pair when filled.
|
| If isNestedFillRects returns false, rect and dirs are unchanged.
|
| If isNestedFillRects returns true, rect and dirs are written to if not nullptr:
|
| setting rect[0] to outer Rect, and rect[1] to inner Rect;
|
| setting dirs[0] to Direction of outer Rect, and dirs[1] to Direction of inner
|
| Rect.
|
|
|
| #Param rect storage for Rect pair; may be nullptr. ##
|
| #Param dirs storage for Direction pair; may be nullptr. ##
|
|
|
| #Return true if Path contains nested Rect pair. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(5);
|
| SkPath path;
|
| path.addRect({10, 20, 30, 40});
|
| paint.getFillPath(path, &path);
|
| SkRect rects[2];
|
| SkPath::Direction directions[2];
|
| if (path.isNestedFillRects(rects, directions)) {
|
| for (int i = 0; i < 2; ++i) {
|
| SkDebugf("%s (%g, %g, %g, %g); direction %s\n", i ? "inner" : "outer",
|
| rects[i].fLeft, rects[i].fTop, rects[i].fRight, rects[i].fBottom,
|
| SkPath::kCW_Direction == directions[i] ? "CW" : "CCW");
|
| }
|
| } else {
|
| SkDebugf("is not nested rectangles\n");
|
| }
|
| }
|
| #StdOut
|
| outer (7.5, 17.5, 32.5, 42.5); direction CW
|
| inner (12.5, 22.5, 27.5, 37.5); direction CCW
|
| ##
|
| ##
|
|
|
| #SeeAlso computeTightBounds conservativelyContainsRect getBounds isConvex isLastContourClosed isRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRect(const SkRect& rect, Direction dir = kCW_Direction)
|
|
|
| Add Rect to Path, appending kMove_Verb, three kLine_Verb, and kClose_Verb,
|
| starting with top-left corner of Rect; followed by top-right, bottom-right,
|
| and bottom-left if dir is kCW_Direction; or followed by bottom-left,
|
| bottom-right, and top-right if dir is kCCW_Direction.
|
|
|
| #Param rect Rect to add as a closed contour. ##
|
| #Param dir Direction to wind added contour. ##
|
|
|
| #Example
|
| #Description
|
| The left Rect dashes starting at the top-left corner, to the right.
|
| The right Rect dashes starting at the top-left corner, towards the bottom.
|
| ##
|
| #Height 128
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStrokeWidth(15);
|
| paint.setStrokeCap(SkPaint::kSquare_Cap);
|
| float intervals[] = { 5, 21.75f };
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setPathEffect(SkDashPathEffect::Make(intervals, SK_ARRAY_COUNT(intervals), 0));
|
| SkPath path;
|
| path.addRect({20, 20, 100, 100}, SkPath::kCW_Direction);
|
| canvas->drawPath(path, paint);
|
| path.rewind();
|
| path.addRect({140, 20, 220, 100}, SkPath::kCCW_Direction);
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawRect Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRect(const SkRect& rect, Direction dir, unsigned start)
|
|
|
| Add Rect to Path, appending kMove_Verb, three kLine_Verb, and kClose_Verb.
|
| If dir is kCW_Direction, Rect corners are added clockwise; if dir is
|
| kCCW_Direction, Rect corners are added counterclockwise.
|
| start determines the first corner added.
|
|
|
| #Table
|
| #Legend
|
| # start # first corner ##
|
| #Legend ##
|
| # 0 # top-left ##
|
| # 1 # top-right ##
|
| # 2 # bottom-right ##
|
| # 3 # bottom-left ##
|
| #Table ##
|
|
|
| #Param rect Rect to add as a closed contour. ##
|
| #Param dir Direction to wind added contour. ##
|
| #Param start Initial corner of Rect to add. ##
|
|
|
| #Example
|
| #Height 128
|
| #Description
|
| The arrow is just after the initial corner and points towards the next
|
| corner appended to Path.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| const SkPoint arrow[] = { {5, -5}, {15, -5}, {20, 0}, {15, 5}, {5, 5}, {10, 0} };
|
| const SkRect rect = {10, 10, 54, 54};
|
| SkPaint rectPaint;
|
| rectPaint.setAntiAlias(true);
|
| rectPaint.setStyle(SkPaint::kStroke_Style);
|
| SkPaint arrowPaint(rectPaint);
|
| SkPath arrowPath;
|
| arrowPath.addPoly(arrow, SK_ARRAY_COUNT(arrow), true);
|
| arrowPaint.setPathEffect(SkPath1DPathEffect::Make(arrowPath, 176, 0,
|
| SkPath1DPathEffect::kRotate_Style));
|
| for (auto direction : { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| for (unsigned start : { 0, 1, 2, 3 } ) {
|
| SkPath path;
|
| path.addRect(rect, direction, start);
|
| canvas->drawPath(path, rectPaint);
|
| canvas->drawPath(path, arrowPaint);
|
| canvas->translate(64, 0);
|
| }
|
| canvas->translate(-256, 64);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawRect Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom,
|
| Direction dir = kCW_Direction)
|
|
|
| Add Rect (left, top, right, bottom) to Path,
|
| appending kMove_Verb, three kLine_Verb, and kClose_Verb,
|
| starting with top-left corner of Rect; followed by top-right, bottom-right,
|
| and bottom-left if dir is kCW_Direction; or followed by bottom-left,
|
| bottom-right, and top-right if dir is kCCW_Direction.
|
|
|
| #Param left smaller x of Rect. ##
|
| #Param top smaller y of Rect. ##
|
| #Param right larger x of Rect. ##
|
| #Param bottom larger y of Rect. ##
|
| #Param dir Direction to wind added contour. ##
|
|
|
| #Example
|
| #Description
|
| The left Rect dashes start at the top-left corner, and continue to the right.
|
| The right Rect dashes start at the top-left corner, and continue down.
|
| ##
|
| #Height 128
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStrokeWidth(15);
|
| paint.setStrokeCap(SkPaint::kSquare_Cap);
|
| float intervals[] = { 5, 21.75f };
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setPathEffect(SkDashPathEffect::Make(intervals, SK_ARRAY_COUNT(intervals), 0));
|
| for (auto direction : { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| SkPath path;
|
| path.addRect(20, 20, 100, 100, direction);
|
| canvas->drawPath(path, paint);
|
| canvas->translate(128, 0);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawRect Direction
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addOval(const SkRect& oval, Direction dir = kCW_Direction)
|
|
|
| Add Oval to path, appending kMove_Verb, four kConic_Verb, and kClose_Verb.
|
| Oval is upright ellipse bounded by Rect oval with radii equal to half oval width
|
| and half oval height. Oval begins at (oval.fRight, oval.centerY()) and continues
|
| clockwise if dir is kCW_Direction, counterclockwise if dir is kCCW_Direction.
|
|
|
| This form is identical to addOval(oval, dir, 1).
|
|
|
| #Param oval bounds of ellipse added. ##
|
| #Param dir Direction to wind ellipse. ##
|
|
|
| #Example
|
| #Height 120
|
| SkPaint paint;
|
| SkPath oval;
|
| oval.addOval({20, 20, 160, 80});
|
| canvas->drawPath(oval, paint);
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawOval Direction Oval
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addOval(const SkRect& oval, Direction dir, unsigned start)
|
|
|
| Add Oval to Path, appending kMove_Verb, four kConic_Verb, and kClose_Verb.
|
| Oval is upright ellipse bounded by Rect oval with radii equal to half oval width
|
| and half oval height. Oval begins at start and continues
|
| clockwise if dir is kCW_Direction, counterclockwise if dir is kCCW_Direction.
|
|
|
| #Table
|
| #Legend
|
| # start # Point ##
|
| #Legend ##
|
| # 0 # oval.centerX(), oval.fTop ##
|
| # 1 # oval.fRight, oval.centerY() ##
|
| # 2 # oval.centerX(), oval.fBottom ##
|
| # 3 # oval.fLeft, oval.centerY() ##
|
| #Table ##
|
|
|
| #Param oval bounds of ellipse added. ##
|
| #Param dir Direction to wind ellipse. ##
|
| #Param start index of initial point of ellipse. ##
|
|
|
| #Example
|
| #Height 160
|
| void draw(SkCanvas* canvas) {
|
| const SkPoint arrow[] = { {0, -5}, {10, 0}, {0, 5} };
|
| const SkRect rect = {10, 10, 54, 54};
|
| SkPaint ovalPaint;
|
| ovalPaint.setAntiAlias(true);
|
| SkPaint textPaint(ovalPaint);
|
| textPaint.setTextAlign(SkPaint::kCenter_Align);
|
| ovalPaint.setStyle(SkPaint::kStroke_Style);
|
| SkPaint arrowPaint(ovalPaint);
|
| SkPath arrowPath;
|
| arrowPath.addPoly(arrow, SK_ARRAY_COUNT(arrow), true);
|
| arrowPaint.setPathEffect(SkPath1DPathEffect::Make(arrowPath, 176, 0,
|
| SkPath1DPathEffect::kRotate_Style));
|
| for (auto direction : { SkPath::kCW_Direction, SkPath::kCCW_Direction } ) {
|
| for (unsigned start : { 0, 1, 2, 3 } ) {
|
| SkPath path;
|
| path.addOval(rect, direction, start);
|
| canvas->drawPath(path, ovalPaint);
|
| canvas->drawPath(path, arrowPaint);
|
| canvas->drawText(&"0123"[start], 1, rect.centerX(), rect.centerY() + 5, textPaint);
|
| canvas->translate(64, 0);
|
| }
|
| canvas->translate(-256, 72);
|
| canvas->drawString(SkPath::kCW_Direction == direction ? "clockwise" : "counterclockwise",
|
| 128, 0, textPaint);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawOval Direction Oval
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addCircle(SkScalar x, SkScalar y, SkScalar radius,
|
| Direction dir = kCW_Direction)
|
|
|
| Add Circle centered at (x, y) of size radius to Path, appending kMove_Verb,
|
| four kConic_Verb, and kClose_Verb. Circle begins at (x + radius, y) and
|
| continues clockwise if dir is kCW_Direction, counterclockwise if dir is
|
| kCCW_Direction.
|
|
|
| addCircle has no effect if radius is zero or negative.
|
|
|
| #Param x center of Circle. ##
|
| #Param y center of Circle. ##
|
| #Param radius distance from center to edge. ##
|
| #Param dir Direction to wind Circle. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setStyle(SkPaint::kStroke_Style);
|
| paint.setStrokeWidth(10);
|
| for (int size = 10; size < 300; size += 20) {
|
| SkPath path;
|
| path.addCircle(128, 128, size, SkPath::kCW_Direction);
|
| canvas->drawPath(path, paint);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawCircle Direction Circle
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle)
|
|
|
| Append Arc to Path, as the start of new Contour. Arc added is part of ellipse
|
| bounded by oval, from startAngle through sweepAngle. Both startAngle and
|
| sweepAngle are measured in degrees, where zero degrees is aligned with the
|
| positive x-axis, and positive sweeps extends Arc clockwise.
|
|
|
| If sweepAngle <= -360, or sweepAngle >= 360; and startAngle modulo 90 is nearly
|
| zero, append Oval instead of Arc. Otherwise, sweepAngle values are treated
|
| modulo 360, and Arc may or may not draw depending on numeric rounding.
|
|
|
| #Param oval bounds of ellipse containing Arc. ##
|
| #Param startAngle starting angle of Arc in degrees. ##
|
| #Param sweepAngle sweep, in degrees. Positive is clockwise; treated modulo 360. ##
|
|
|
| #Example
|
| #Description
|
| The middle row of the left and right columns draw differently from the entries
|
| above and below because sweepAngle is outside of the range of +/-360,
|
| and startAngle modulo 90 is not zero.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| for (auto start : { 0, 90, 135, 180, 270 } ) {
|
| for (auto sweep : { -450.f, -180.f, -90.f, 90.f, 180.f, 360.1f } ) {
|
| SkPath path;
|
| path.addArc({10, 10, 35, 45}, start, sweep);
|
| canvas->drawPath(path, paint);
|
| canvas->translate(252 / 6, 0);
|
| }
|
| canvas->translate(-252, 255 / 5);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso Arc arcTo SkCanvas::drawArc
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry,
|
| Direction dir = kCW_Direction)
|
|
|
| Append Round_Rect to Path, creating a new closed Contour. Round_Rect has bounds
|
| equal to rect; each corner is 90 degrees of an ellipse with radii (rx, ry). If
|
| dir is kCW_Direction, Round_Rect starts at top-left of the lower-left corner and
|
| winds clockwise. If dir is kCCW_Direction, Round_Rect starts at the bottom-left
|
| of the upper-left corner and winds counterclockwise.
|
|
|
| If either rx or ry is too large, rx and ry are scaled uniformly until the
|
| corners fit. If rx or ry is less than or equal to zero, addRoundRect appends
|
| Rect rect to Path.
|
|
|
| After appending, Path may be empty, or may contain: Rect, Oval, or RoundRect.
|
|
|
| #Param rect bounds of Round_Rect. ##
|
| #Param rx x-radius of rounded corners on the Round_Rect ##
|
| #Param ry y-radius of rounded corners on the Round_Rect ##
|
| #Param dir Direction to wind Round_Rect. ##
|
|
|
| #Example
|
| #Description
|
| If either radius is zero, path contains Rect and is drawn red.
|
| If sides are only radii, path contains Oval and is drawn blue.
|
| All remaining path draws are convex, and are drawn in gray; no
|
| paths constructed from addRoundRect are concave, so none are
|
| drawn in green.
|
| ##
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| for (auto xradius : { 0, 7, 13, 20 } ) {
|
| for (auto yradius : { 0, 9, 18, 40 } ) {
|
| SkPath path;
|
| path.addRoundRect({10, 10, 36, 46}, xradius, yradius);
|
| paint.setColor(path.isRect(nullptr) ? SK_ColorRED : path.isOval(nullptr) ?
|
| SK_ColorBLUE : path.isConvex() ? SK_ColorGRAY : SK_ColorGREEN);
|
| canvas->drawPath(path, paint);
|
| canvas->translate(64, 0);
|
| }
|
| canvas->translate(-256, 64);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso addRRect SkCanvas::drawRoundRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRoundRect(const SkRect& rect, const SkScalar radii[],
|
| Direction dir = kCW_Direction)
|
|
|
| Append Round_Rect to Path, creating a new closed Contour. Round_Rect has bounds
|
| equal to rect; each corner is 90 degrees of an ellipse with radii from the
|
| array.
|
|
|
| #Table
|
| #Legend
|
| # radii index # location ##
|
| #Legend ##
|
| # 0 # x-radius of top-left corner ##
|
| # 1 # y-radius of top-left corner ##
|
| # 2 # x-radius of top-right corner ##
|
| # 3 # y-radius of top-right corner ##
|
| # 4 # x-radius of bottom-right corner ##
|
| # 5 # y-radius of bottom-right corner ##
|
| # 6 # x-radius of bottom-left corner ##
|
| # 7 # y-radius of bottom-left corner ##
|
| #Table ##
|
|
|
| If dir is kCW_Direction, Round_Rect starts at top-left of the lower-left corner
|
| and winds clockwise. If dir is kCCW_Direction, Round_Rect starts at the
|
| bottom-left of the upper-left corner and winds counterclockwise.
|
|
|
| If both radii on any side of rect exceed its length, all radii are scaled
|
| uniformly until the corners fit. If either radius of a corner is less than or
|
| equal to zero, both are treated as zero.
|
|
|
| After appending, Path may be empty, or may contain: Rect, Oval, or RoundRect.
|
|
|
| #Param rect bounds of Round_Rect. ##
|
| #Param radii array of 8 SkScalar values, a radius pair for each corner. ##
|
| #Param dir Direction to wind Round_Rect. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkScalar radii[] = { 80, 100, 0, 0, 40, 60, 0, 0 };
|
| SkPath path;
|
| SkMatrix rotate90;
|
| rotate90.setRotate(90, 128, 128);
|
| for (int i = 0; i < 4; ++i) {
|
| path.addRoundRect({10, 10, 110, 110}, radii);
|
| path.transform(rotate90);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso addRRect SkCanvas::drawRoundRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRRect(const SkRRect& rrect, Direction dir = kCW_Direction)
|
|
|
| Add rrect to Path, creating a new closed Contour. If
|
| dir is kCW_Direction, rrect starts at top-left of the lower-left corner and
|
| winds clockwise. If dir is kCCW_Direction, rrect starts at the bottom-left
|
| of the upper-left corner and winds counterclockwise.
|
|
|
| After appending, Path may be empty, or may contain: Rect, Oval, or RRect.
|
|
|
| #Param rrect bounds and radii of rounded rectangle. ##
|
| #Param dir Direction to wind Round_Rect. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkRRect rrect;
|
| SkVector radii[] = {{50, 50}, {0, 0}, {0, 0}, {50, 50}};
|
| rrect.setRectRadii({10, 10, 110, 110}, radii);
|
| SkPath path;
|
| SkMatrix rotate90;
|
| rotate90.setRotate(90, 128, 128);
|
| for (int i = 0; i < 4; ++i) {
|
| path.addRRect(rrect);
|
| path.transform(rotate90);
|
| }
|
| canvas->drawPath(path, paint);
|
| }
|
| ##
|
|
|
| #SeeAlso addRoundRect SkCanvas::drawRRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addRRect(const SkRRect& rrect, Direction dir, unsigned start)
|
|
|
| Add rrect to Path, creating a new closed Contour. If dir is kCW_Direction, rrect
|
| winds clockwise; if dir is kCCW_Direction, rrect winds counterclockwise.
|
| start determines the first point of rrect to add.
|
|
|
| #Table
|
| #Legend
|
| # start # location ##
|
| #Legend ##
|
| # 0 # right of top-left corner ##
|
| # 1 # left of top-right corner ##
|
| # 2 # bottom of top-right corner ##
|
| # 3 # top of bottom-right corner ##
|
| # 4 # left of bottom-right corner ##
|
| # 5 # right of bottom-left corner ##
|
| # 6 # top of bottom-left corner ##
|
| # 7 # bottom of top-left corner ##
|
| #Table ##
|
|
|
| After appending, Path may be empty, or may contain: Rect, Oval, or RRect.
|
|
|
| #Param rrect bounds and radii of rounded rectangle. ##
|
| #Param dir Direction to wind RRect. ##
|
| #Param start Index of initial point of RRect. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| SkRRect rrect;
|
| rrect.setRectXY({40, 40, 215, 215}, 50, 50);
|
| SkPath path;
|
| path.addRRect(rrect);
|
| canvas->drawPath(path, paint);
|
| for (int start = 0; start < 8; ++start) {
|
| SkPath textPath;
|
| textPath.addRRect(rrect, SkPath::kCW_Direction, start);
|
| canvas->drawTextOnPathHV(&"01234567"[start], 1, textPath, 0, -5, paint);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso addRoundRect SkCanvas::drawRRect
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addPoly(const SkPoint pts[], int count, bool close)
|
|
|
| Add Contour created from Line Array. Given count pts, addPoly adds
|
| count - 1 Line segments. Contour added starts at pt[0], then adds a line
|
| for every additional Point in pts array. If close is true, addPoly
|
| appends kClose_Verb to Path, connecting pts[count - 1] and pts[0].
|
|
|
| If count is zero, append kMove_Verb to path.
|
| addPoly has no effect if count is less than one.
|
|
|
| #Param pts Array of Line sharing end and start Point. ##
|
| #Param count Length of Point array. ##
|
| #Param close true to add Line connecting Contour end and start. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setStrokeWidth(15);
|
| paint.setStrokeCap(SkPaint::kRound_Cap);
|
| const SkPoint points[] = {{20, 20}, {70, 20}, {40, 90}};
|
| for (bool close : { false, true } ) {
|
| SkPath path;
|
| path.addPoly(points, SK_ARRAY_COUNT(points), close);
|
| for (auto style : {SkPaint::kStroke_Style, SkPaint::kFill_Style,
|
| SkPaint::kStrokeAndFill_Style} ) {
|
| paint.setStyle(style);
|
| canvas->drawPath(path, paint);
|
| canvas->translate(85, 0);
|
| }
|
| canvas->translate(-255, 128);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso SkCanvas::drawPoints
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Enum AddPathMode
|
|
|
| #Code
|
| enum AddPathMode {
|
| kAppend_AddPathMode
|
| kExtend_AddPathMode
|
| };
|
| ##
|
|
|
| AddPathMode chooses how addPath appends. Adding one Path to another can extend
|
| the last Contour or start a new Contour.
|
|
|
| #Const kAppend_AddPathMode
|
| Path Verbs, Points, and Weights are appended to destination unaltered.
|
| Since Path Verb_Array begins with kMove_Verb if src is not empty, this
|
| starts a new Contour.
|
| ##
|
| #Const kExtend_AddPathMode
|
| If destination is closed or empty, start a new Contour. If destination
|
| is not empty, add Line from Last_Point to added Path first Point. Skip added
|
| Path initial kMove_Verb, then append remining Verbs, Points, and Weights.
|
| ##
|
|
|
| #Example
|
| #Description
|
| test is built from path, open on the top row, and closed on the bottom row.
|
| The left column uses kAppend_AddPathMode; the right uses kExtend_AddPathMode.
|
| The top right composition is made up of one contour; the other three have two.
|
| ##
|
| #Height 180
|
| SkPath path, path2; |
| path.moveTo(20, 20); |
| path.lineTo(20, 40); |
| path.lineTo(40, 20); |
| path2.moveTo(60, 60); |
| path2.lineTo(80, 60); |
| path2.lineTo(80, 40); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 2; i++) { |
| for (auto addPathMode : { SkPath::kAppend_AddPathMode, SkPath::kExtend_AddPathMode } ) { |
| SkPath test(path); |
| test.addPath(path2, addPathMode); |
| canvas->drawPath(test, paint); |
| canvas->translate(100, 0); |
| } |
| canvas->translate(-200, 100); |
| path.close(); |
| } |
| ##
|
|
|
| #SeeAlso addPath reverseAddPath
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addPath(const SkPath& src, SkScalar dx, SkScalar dy,
|
| AddPathMode mode = kAppend_AddPathMode)
|
|
|
| Append src to Path, offset by (dx, dy).
|
|
|
| If mode is kAppend_AddPathMode, src Verb_Array, Point_Array, and Weights are
|
| added unaltered. If mode is kExtend_AddPathMode, add Line before appending
|
| Verbs, Points, and Weights.
|
|
|
| #Param src Path Verbs, Points, and Weights to add. ##
|
| #Param dx offset added to src Point_Array x coordinates. ##
|
| #Param dy offset added to src Point_Array y coordinates. ##
|
| #Param mode kAppend_AddPathMode or kExtend_AddPathMode. ##
|
|
|
| #Example
|
| #Height 180
|
| SkPaint paint; |
| paint.setTextSize(128); |
| paint.setFakeBoldText(true); |
| SkPath dest, text; |
| paint.getTextPath("O", 1, 50, 120, &text); |
| for (int i = 0; i < 3; i++) { |
| dest.addPath(text, i * 20, i * 20); |
| } |
| Simplify(dest, &dest); |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setStrokeWidth(3); |
| canvas->drawPath(dest, paint); |
| ##
|
|
|
| #SeeAlso AddPathMode offset() reverseAddPath
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addPath(const SkPath& src, AddPathMode mode = kAppend_AddPathMode)
|
|
|
| Append src to Path.
|
|
|
| If mode is kAppend_AddPathMode, src Verb_Array, Point_Array, and Weights are
|
| added unaltered. If mode is kExtend_AddPathMode, add Line before appending
|
| Verbs, Points, and Weights.
|
|
|
| #Param src Path Verbs, Points, and Weights to add. ##
|
| #Param mode kAppend_AddPathMode or kExtend_AddPathMode. ##
|
|
|
| #Example
|
| #Height 80
|
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| SkPath dest, path; |
| path.addOval({-80, 20, 0, 60}, SkPath::kCW_Direction, 1); |
| for (int i = 0; i < 2; i++) { |
| dest.addPath(path, SkPath::kExtend_AddPathMode); |
| dest.offset(100, 0); |
| } |
| canvas->drawPath(dest, paint);
|
| ##
|
|
|
| #SeeAlso AddPathMode reverseAddPath
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void addPath(const SkPath& src, const SkMatrix& matrix, AddPathMode mode = kAppend_AddPathMode)
|
|
|
| Append src to Path, transformed by matrix. Transformed curves may have different
|
| Verbs, Points, and Weights.
|
|
|
| If mode is kAppend_AddPathMode, src Verb_Array, Point_Array, and Weights are
|
| added unaltered. If mode is kExtend_AddPathMode, add Line before appending
|
| Verbs, Points, and Weights.
|
|
|
| #Param src Path Verbs, Points, and Weights to add. ##
|
| #Param matrix Transform applied to src. ##
|
| #Param mode kAppend_AddPathMode or kExtend_AddPathMode. ##
|
|
|
| #Example
|
| #Height 160
|
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| SkPath dest, path; |
| path.addOval({20, 20, 200, 120}, SkPath::kCW_Direction, 1); |
| for (int i = 0; i < 6; i++) { |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.setPerspX(i / 400.f); |
| dest.addPath(path, matrix); |
| } |
| canvas->drawPath(dest, paint); |
| ##
|
|
|
| #SeeAlso AddPathMode transform() offset() reverseAddPath
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void reverseAddPath(const SkPath& src)
|
|
|
| Append src to Path, from back to front.
|
| Reversed src always appends a new Contour to Path.
|
|
|
| #Param src Path Verbs, Points, and Weights to add. ##
|
|
|
| #Example
|
| #Height 200
|
| SkPath path; |
| path.moveTo(20, 20); |
| path.lineTo(20, 40); |
| path.lineTo(40, 20); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 2; i++) { |
| SkPath path2; |
| path2.moveTo(60, 60); |
| path2.lineTo(80, 60); |
| path2.lineTo(80, 40); |
| for (int j = 0; j < 2; j++) { |
| SkPath test(path); |
| test.reverseAddPath(path2); |
| canvas->drawPath(test, paint); |
| canvas->translate(100, 0); |
| path2.close(); |
| } |
| canvas->translate(-200, 100); |
| path.close(); |
| } |
| ##
|
|
|
| #SeeAlso AddPathMode transform() offset() addPath
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void offset(SkScalar dx, SkScalar dy, SkPath* dst) const
|
|
|
| Offset Point_Array by (dx, dy). Offset Path replaces dst.
|
| If dst is nullptr, Path is replaced by offset data.
|
|
|
| #Param dx offset added to Point_Array x coordinates. ##
|
| #Param dy offset added to Point_Array y coordinates. ##
|
| #Param dst overwritten, translated copy of Path; may be nullptr. ##
|
|
|
| #Example
|
| #Height 60
|
| SkPath pattern; |
| pattern.moveTo(20, 20); |
| pattern.lineTo(20, 40); |
| pattern.lineTo(40, 20); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 10; i++) { |
| SkPath path; |
| pattern.offset(20 * i, 0, &path); |
| canvas->drawPath(path, paint); |
| } |
| ##
|
|
|
| #SeeAlso addPath transform
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void offset(SkScalar dx, SkScalar dy)
|
|
|
| Offset Point_Array by (dx, dy). Path is replaced by offset data.
|
|
|
| #Param dx offset added to Point_Array x coordinates. ##
|
| #Param dy offset added to Point_Array y coordinates. ##
|
|
|
| #Example
|
| #Height 60
|
| SkPath path; |
| path.moveTo(20, 20); |
| path.lineTo(20, 40); |
| path.lineTo(40, 20); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 10; i++) { |
| canvas->drawPath(path, paint); |
| path.offset(20, 0); |
| } |
| ##
|
|
|
| #SeeAlso addPath transform SkCanvas::translate()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void transform(const SkMatrix& matrix, SkPath* dst) const
|
|
|
| Transform Verb_Array, Point_Array, and weight by matrix.
|
| transform may change Verbs and increase their number.
|
| Transformed Path replaces dst; if dst is nullptr, original data
|
| is replaced.
|
|
|
| #Param matrix Matrix to apply to Path. ##
|
| #Param dst overwritten, transformed copy of Path; may be nullptr. ##
|
|
|
| #Example
|
| #Height 200 |
| SkPath pattern; |
| pattern.moveTo(100, 100); |
| pattern.lineTo(100, 20); |
| pattern.lineTo(20, 100); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 10; i++) { |
| SkPath path; |
| SkMatrix matrix; |
| matrix.setRotate(36 * i, 100, 100); |
| pattern.transform(matrix, &path); |
| canvas->drawPath(path, paint); |
| }
|
| ##
|
|
|
| #SeeAlso addPath offset SkCanvas::concat() SkMatrix
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void transform(const SkMatrix& matrix)
|
|
|
| Transform Verb_Array, Point_Array, and weight by matrix.
|
| transform may change Verbs and increase their number.
|
| Path is replaced by transformed data.
|
|
|
| #Param matrix Matrix to apply to Path. ##
|
|
|
| #Example
|
| #Height 200 |
| SkPath path; |
| path.moveTo(100, 100); |
| path.quadTo(100, 20, 20, 100); |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| for (int i = 0; i < 10; i++) { |
| SkMatrix matrix; |
| matrix.setRotate(36, 100, 100); |
| path.transform(matrix); |
| canvas->drawPath(path, paint); |
| }
|
| ##
|
|
|
| #SeeAlso addPath offset SkCanvas::concat() SkMatrix
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Subtopic Last_Point |
| |
| Path is defined cumulatively, often by adding a segment to the end of last |
| Contour. Last_Point of Contour is shared as first Point of added Line or Curve. |
| Last_Point can be read and written directly with getLastPt and setLastPt. |
| |
| #Method bool getLastPt(SkPoint* lastPt) const
|
|
|
| Returns Last_Point on Path in lastPt. Returns false if Point_Array is empty,
|
| storing (0, 0) if lastPt is not nullptr.
|
|
|
| #Param lastPt storage for final Point in Point_Array; may be nullptr. ##
|
|
|
| #Return true if Point_Array contains one or more Points. ##
|
|
|
| #Example
|
| SkPath path; |
| path.moveTo(100, 100); |
| path.quadTo(100, 20, 20, 100); |
| SkMatrix matrix; |
| matrix.setRotate(36, 100, 100); |
| path.transform(matrix); |
| SkPoint last; |
| path.getLastPt(&last); |
| SkDebugf("last point: %g, %g\n", last.fX, last.fY);
|
| #StdOut
|
| last point: 35.2786, 52.9772
|
| ##
|
| ##
|
|
|
| #SeeAlso setLastPt
|
|
|
| ##
|
|
|
| #Method void setLastPt(SkScalar x, SkScalar y)
|
|
|
| Set Last_Point to (x, y). If Point_Array is empty, append kMove_Verb to
|
| Verb_Array and (x, y) to Point_Array.
|
|
|
| #Param x set x-coordinate of Last_Point. ##
|
| #Param y set y-coordinate of Last_Point. ##
|
|
|
| #Example
|
| #Height 128
|
| SkPaint paint; |
| paint.setTextSize(128); |
| SkPath path; |
| paint.getTextPath("@", 1, 60, 100, &path); |
| path.setLastPt(20, 120); |
| canvas->drawPath(path, paint);
|
| ##
|
|
|
| #SeeAlso getLastPt
|
|
|
| ##
|
|
|
| #Method void setLastPt(const SkPoint& p)
|
|
|
| Set the last point on the path. If no points have been added, moveTo(p)
|
| is automatically called.
|
|
|
| #Param p set value of Last_Point. ##
|
|
|
| #Example
|
| #Height 128
|
| SkPaint paint; |
| paint.setTextSize(128); |
| SkPath path, path2; |
| paint.getTextPath("A", 1, 60, 100, &path); |
| paint.getTextPath("Z", 1, 60, 100, &path2); |
| SkPoint pt, pt2; |
| path.getLastPt(&pt); |
| path2.getLastPt(&pt2); |
| path.setLastPt(pt2); |
| path2.setLastPt(pt); |
| canvas->drawPath(path, paint); |
| canvas->drawPath(path2, paint); |
| ##
|
|
|
| #SeeAlso getLastPt
|
|
|
| ##
|
|
|
| #Subtopic Last_Point ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Enum SegmentMask
|
|
|
| #Code
|
| enum SegmentMask {
|
| kLine_SegmentMask = 1 << 0
|
| kQuad_SegmentMask = 1 << 1
|
| kConic_SegmentMask = 1 << 2
|
| kCubic_SegmentMask = 1 << 3
|
| };
|
| ##
|
|
|
| SegmentMask constants correspond to each drawing Verb type in Path; for
|
| instance, if Path only contains Lines, only the kLine_SegmentMask bit is set.
|
|
|
| #Bug 6785 ##
|
| #Const kLine_SegmentMask 1
|
| Set if Verb_Array contains kLine_Verb.
|
| ##
|
| #Const kQuad_SegmentMask 2
|
| Set if Verb_Array contains kQuad_Verb. Note that conicTo may add a Quad.
|
| ##
|
| #Const kConic_SegmentMask 4
|
| Set if Verb_Array contains kConic_Verb.
|
| ##
|
| #Const kCubic_SegmentMask 8
|
| Set if Verb_Array contains kCubic_Verb.
|
| ##
|
|
|
| #Example
|
| #Description
|
| When conicTo has a weight of one, Quad is added to Path.
|
| ##
|
| SkPath path;
|
| path.conicTo(10, 10, 20, 30, 1);
|
| SkDebugf("Path kConic_SegmentMask is %s\n", path.getSegmentMasks() &
|
| SkPath::kConic_SegmentMask ? "set" : "clear");
|
| SkDebugf("Path kQuad_SegmentMask is %s\n", path.getSegmentMasks() &
|
| SkPath::kQuad_SegmentMask ? "set" : "clear");
|
| #StdOut
|
| Path kConic_SegmentMask is clear
|
| Path kQuad_SegmentMask is set
|
| ##
|
| ##
|
|
|
| #SeeAlso getSegmentMasks Verb
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method uint32_t getSegmentMasks() const
|
|
|
| Returns a mask, where each set bit corresponds to a SegmentMask constant
|
| if Path contains one or more Verbs of that type.
|
| Returns zero if Path contains no Lines, Quads, Conics, or Cubics.
|
|
|
| getSegmentMasks() returns a cached result; it is very fast.
|
|
|
| #Return SegmentMask bits or zero. ##
|
|
|
| #Example
|
| SkPath path;
|
| path.quadTo(20, 30, 40, 50);
|
| path.close();
|
| const char* masks[] = { "line", "quad", "conic", "cubic" };
|
| int index = 0;
|
| for (auto mask : { SkPath::kLine_SegmentMask, SkPath::kQuad_SegmentMask,
|
| SkPath::kConic_SegmentMask, SkPath::kCubic_SegmentMask } ) {
|
| if (mask & path.getSegmentMasks()) {
|
| SkDebugf("mask %s set\n", masks[index]);
|
| }
|
| ++index;
|
| }
|
| #StdOut
|
| mask quad set
|
| ##
|
| ##
|
|
|
| #SeeAlso getSegmentMasks Verb
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method bool contains(SkScalar x, SkScalar y) const
|
|
|
| Returns true if the point (x, y) is contained by Path, taking into
|
| account FillType.
|
|
|
| #Table
|
| #Legend
|
| # FillType # contains() returns true if Point is enclosed by ##
|
| ##
|
| # kWinding_FillType # a non-zero sum of Contour Directions. ##
|
| # kEvenOdd_FillType # an odd number of Contours. ##
|
| # kInverseWinding_FillType # a zero sum of Contour Directions. ##
|
| # kInverseEvenOdd_FillType # and even number of Contours. ##
|
| ##
|
|
|
| #Param x x-coordinate of containment test. ##
|
| #Param y y-coordinate of containment test. ##
|
|
|
| #Return true if Point is in Path. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkPaint paint;
|
| paint.setTextSize(256);
|
| paint.getTextPath("&", 1, 30, 220, &path);
|
| for (int y = 2; y < 256; y += 9) {
|
| for (int x = 2; x < 256; x += 9) {
|
| int coverage = 0;
|
| for (int iy = -4; iy <= 4; iy += 2) {
|
| for (int ix = -4; ix <= 4; ix += 2) {
|
| coverage += path.contains(x + ix, y + iy);
|
| }
|
| }
|
| paint.setColor(SkColorSetARGB(0x5f, 0xff * coverage / 25, 0, 0xff * (25 - coverage) / 25));
|
| canvas->drawCircle(x, y, 8, paint);
|
| }
|
| }
|
| ##
|
|
|
| #SeeAlso conservativelyContainsRect Fill_Type Op
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void dump(SkWStream* stream, bool forceClose, bool dumpAsHex) const
|
|
|
| Writes text representation of Path to stream. If stream is nullptr, dump() writes to
|
| stdout. Set forceClose to true to get
|
| edges used to fill Path. Set dumpAsHex true to get exact binary representations
|
| of floating point numbers used in Point_Array and Weights.
|
|
|
| #Param stream writable Stream receiving Path text representation; may be nullptr. ##
|
| #Param forceClose true if missing kClose_Verb is output. ##
|
| #Param dumpAsHex true if SkScalar values are written as hexidecimal. ##
|
|
|
| #Example
|
| SkPath path;
|
| path.quadTo(20, 30, 40, 50);
|
| for (bool forceClose : { false, true } ) {
|
| for (bool dumpAsHex : { false, true } ) {
|
| path.dump(nullptr, forceClose, dumpAsHex);
|
| SkDebugf("\n");
|
| }
|
| }
|
| #StdOut
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(0, 0);
|
| path.quadTo(20, 30, 40, 50);
|
|
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
| path.quadTo(SkBits2Float(0x41a00000), SkBits2Float(0x41f00000), SkBits2Float(0x42200000), SkBits2Float(0x42480000)); // 20, 30, 40, 50
|
|
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(0, 0);
|
| path.quadTo(20, 30, 40, 50);
|
| path.lineTo(0, 0);
|
| path.close();
|
|
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
| path.quadTo(SkBits2Float(0x41a00000), SkBits2Float(0x41f00000), SkBits2Float(0x42200000), SkBits2Float(0x42480000)); // 20, 30, 40, 50
|
| path.lineTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
| path.close();
|
| ##
|
| ##
|
|
|
| #SeeAlso SkRect::dump() SkRRect::dump() SkPathMeasure::dump()
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void dump() const
|
|
|
| Writes text representation of Path to stdout. The representation may be
|
| directly compiled as C++ code. Floating point values are written
|
| with limited precision; it may not be possible to reconstruct original Path
|
| from output.
|
|
|
| #Example
|
| SkPath path, copy;
|
| path.lineTo(6.f / 7, 2.f / 3);
|
| path.dump();
|
| copy.setFillType(SkPath::kWinding_FillType);
|
| copy.moveTo(0, 0);
|
| copy.lineTo(0.857143f, 0.666667f);
|
| SkDebugf("path is " "%s" "equal to copy\n", path == copy ? "" : "not ");
|
| #StdOut
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(0, 0);
|
| path.lineTo(0.857143f, 0.666667f);
|
| path is not equal to copy
|
| ##
|
| ##
|
|
|
| #SeeAlso dumpHex SkRect::dump() SkRRect::dump() SkPathMeasure::dump() writeToMemory
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void dumpHex() const
|
|
|
| Writes text representation of Path to stdout. The representation may be
|
| directly compiled as C++ code. Floating point values are written
|
| in hexadecimal to preserve their exact bit pattern. The output reconstructs the
|
| original Path.
|
|
|
| Use dumpHex when submitting #A bug reports against Skia # http://bug.skia.org ##.
|
| Slight value changes in Point_Array may cause the bug to disappear.
|
|
|
| #Example
|
| SkPath path, copy;
|
| path.lineTo(6.f / 7, 2.f / 3);
|
| path.dumpHex();
|
| copy.setFillType(SkPath::kWinding_FillType);
|
| copy.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
| copy.lineTo(SkBits2Float(0x3f5b6db7), SkBits2Float(0x3f2aaaab)); // 0.857143f, 0.666667f
|
| SkDebugf("path is " "%s" "equal to copy\n", path == copy ? "" : "not ");
|
| #StdOut
|
| path.setFillType(SkPath::kWinding_FillType);
|
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
| path.lineTo(SkBits2Float(0x3f5b6db7), SkBits2Float(0x3f2aaaab)); // 0.857143f, 0.666667f
|
| path is equal to copy
|
| ##
|
| ##
|
|
|
| #SeeAlso dump SkRect::dumpHex() SkRRect::dumpHex() writeToMemory
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method size_t writeToMemory(void* buffer) const
|
|
|
| Write Path to buffer, returning the number of bytes written.
|
| Pass nullptr to obtain the storage size.
|
|
|
| writeToMemory writes Fill_Type, Verb_Array, Point_Array, Conic_Weight, and
|
| additionally writes computed information like Convexity and bounds.
|
|
|
| writeToMemory should only be used in concert with readFromMemory.
|
| The format used for Path in memory is not guaranteed.
|
|
|
| #Param buffer storage for Path; may be nullptr. ##
|
|
|
| #Return size of storage required for Path; always a multiple of 4. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPath path, copy;
|
| path.lineTo(6.f / 7, 2.f / 3);
|
| size_t size = path.writeToMemory(nullptr);
|
| SkTDArray<char> storage;
|
| storage.setCount(size);
|
| path.writeToMemory(storage.begin());
|
| copy.readFromMemory(storage.begin(), size);
|
| SkDebugf("path is " "%s" "equal to copy\n", path == copy ? "" : "not ");
|
| }
|
| ##
|
|
|
| #SeeAlso readFromMemory dump dumpHex
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method size_t readFromMemory(const void* buffer, size_t length)
|
|
|
| Initializes Path from buffer of size length. Returns zero if the buffer is
|
| data is inconsistent, or the length is too small.
|
|
|
| readFromMemory reads Fill_Type, Verb_Array, Point_Array, Conic_Weight, and
|
| additionally reads computed information like Convexity and bounds.
|
|
|
| readFromMemory should only be used in concert with writeToMemory.
|
| The format used for Path in memory is not guaranteed.
|
|
|
| #Param buffer storage for Path. ##
|
| #Param length buffer size in bytes; must be multiple of 4. ##
|
|
|
| #Return number of bytes read, or zero on failure. ##
|
|
|
| #Example
|
| void draw(SkCanvas* canvas) {
|
| SkPath path, copy;
|
| path.lineTo(6.f / 7, 2.f / 3);
|
| size_t size = path.writeToMemory(nullptr);
|
| SkTDArray<char> storage;
|
| storage.setCount(size);
|
| path.writeToMemory(storage.begin());
|
| size_t wrongSize = size - 4;
|
| size_t bytesRead = copy.readFromMemory(storage.begin(), wrongSize);
|
| SkDebugf("length = %u; returned by readFromMemory = %u\n", wrongSize, bytesRead);
|
| size_t largerSize = size + 4;
|
| bytesRead = copy.readFromMemory(storage.begin(), largerSize);
|
| SkDebugf("length = %u; returned by readFromMemory = %u\n", largerSize, bytesRead);
|
| }
|
| #StdOut
|
| length = 60; returned by readFromMemory = 0
|
| length = 68; returned by readFromMemory = 64
|
| ##
|
| ##
|
|
|
| #SeeAlso writeToMemory
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
| #Topic Generation_ID
|
| #Alias Generation_IDs
|
|
|
| Generation_ID provides a quick way to check if Verb_Array, Point_Array, or
|
| Conic_Weight has changed. Generation_ID is not a hash; identical Paths will
|
| not necessarily have matching Generation_IDs.
|
|
|
| Empty Paths have a Generation_ID of one.
|
|
|
| #Method uint32_t getGenerationID() const
|
|
|
| Returns a non-zero, globally unique value. A different value is returned
|
| if Verb_Array, Point_Array, or Conic_Weight changes.
|
|
|
| Setting Fill_Type does not change Generation_ID.
|
|
|
| Each time the path is modified, a different Generation_ID will be returned.
|
|
|
| #Bug 1762
|
| Fill_Type does affect Generation_ID on Android framework.
|
| ##
|
|
|
| #Return non-zero, globally unique value. ##
|
|
|
| #Example
|
| SkPath path;
|
| SkDebugf("empty genID = %u\n", path.getGenerationID());
|
| path.lineTo(1, 2);
|
| SkDebugf("1st lineTo genID = %u\n", path.getGenerationID());
|
| path.rewind();
|
| SkDebugf("empty genID = %u\n", path.getGenerationID());
|
| path.lineTo(1, 2);
|
| SkDebugf("2nd lineTo genID = %u\n", path.getGenerationID());
|
| #StdOut
|
| empty genID = 1
|
| 1st lineTo genID = 2
|
| empty genID = 1
|
| 2nd lineTo genID = 3
|
| ##
|
| ##
|
|
|
| #SeeAlso operator==(const SkPath& a, const SkPath& b)
|
|
|
| ##
|
|
|
| #Topic ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void validate() const
|
|
|
| Debugging check to see if Path data is consistent.
|
| Not currently maintained.
|
|
|
| #NoExample
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Method void experimentalValidateRef() const
|
|
|
| #Private
|
| Debugging check to see if Path data is consistent.
|
| Not ready for public use.
|
| ##
|
|
|
| ##
|
|
|
| # ------------------------------------------------------------------------------
|
|
|
| #Class Iter |
| |
| Iterates through Verb_Array, and associated Point_Array and Conic_Weight. |
| Provides options to treat open Contours as closed, and to ignore |
| degenerate data. |
| |
| #Example |
| #Height 128 |
| #Description |
| Ignoring the actual Verbs and replacing them with quads rounds the |
| path of the glyph. |
| ## |
| void draw(SkCanvas* canvas) {
|
| SkPaint paint;
|
| paint.setAntiAlias(true);
|
| paint.setTextSize(256);
|
| SkPath asterisk, path;
|
| paint.getTextPath("*", 1, 50, 192, &asterisk);
|
| SkPath::Iter iter(asterisk, true);
|
| SkPoint start[4], pts[4];
|
| iter.next(start); // skip moveTo
|
| iter.next(start); // first quadTo
|
| path.moveTo((start[0] + start[1]) * 0.5f);
|
| while (SkPath::kClose_Verb != iter.next(pts)) {
|
| path.quadTo(pts[0], (pts[0] + pts[1]) * 0.5f);
|
| }
|
| path.quadTo(start[0], (start[0] + start[1]) * 0.5f);
|
| canvas->drawPath(path, paint);
|
| } |
| ## |
| |
| #SeeAlso RawIter |
| |
| #Method Iter() |
| |
| Initializes Iter with an empty Path. next() on Iter returns kDone_Verb. |
| Call setPath to initialize Iter at a later time. |
| |
| #Return Iter of empty Path. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| SkPath::Iter iter;
|
| SkPoint points[4];
|
| SkDebugf("iter is " "%s" "done\n", SkPath::kDone_Verb == iter.next(points) ? "" : "not ");
|
| SkPath path;
|
| iter.setPath(path, false);
|
| SkDebugf("iter is " "%s" "done\n", SkPath::kDone_Verb == iter.next(points) ? "" : "not ");
|
| } |
| #StdOut
|
| iter is done
|
| iter is done
|
| ##
|
| ## |
| |
| #SeeAlso setPath |
| |
| ## |
| |
| #Method Iter(const SkPath& path, bool forceClose) |
| |
| Sets Iter to return elements of Verb_Array, Point_Array, and Conic_Weight in path. |
| If forceClose is true, Iter will add kLine_Verb and kClose_Verb after each |
| open Contour. path is not altered. |
| |
| #Param path Path to iterate. ## |
| #Param forceClose true if open Contours generate kClose_Verb. ## |
| |
| #Return Iter of path. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, SkPath::Iter& iter) -> void {
|
| SkDebugf("%s:\n", prefix);
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close", "Done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("k%s_Verb ", verbStr[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%g, %g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| SkDebugf("\n");
|
| };
|
|
|
| SkPath path;
|
| path.quadTo(10, 20, 30, 40);
|
| SkPath::Iter openIter(path, false);
|
| debugster("open", openIter);
|
| SkPath::Iter closedIter(path, true);
|
| debugster("closed", closedIter);
|
| } |
| #StdOut |
| open: |
| kMove_Verb {0, 0},
|
| kQuad_Verb {0, 0}, {10, 20}, {30, 40},
|
| kDone_Verb
|
|
|
| closed:
|
| kMove_Verb {0, 0},
|
| kQuad_Verb {0, 0}, {10, 20}, {30, 40},
|
| kLine_Verb {30, 40}, {0, 0},
|
| kClose_Verb {0, 0},
|
| kDone_Verb |
| ## |
| ## |
| |
| #SeeAlso setPath |
| |
| ## |
| |
| #Method void setPath(const SkPath& path, bool forceClose) |
| |
| Sets Iter to return elements of Verb_Array, Point_Array, and Conic_Weight in path. |
| If forceClose is true, Iter will add kLine_Verb and kClose_Verb after each |
| open Contour. path is not altered. |
| |
| #Param path Path to iterate. ## |
| #Param forceClose true if open Contours generate kClose_Verb. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, SkPath::Iter& iter) -> void {
|
| SkDebugf("%s:\n", prefix);
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close", "Done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("k%s_Verb ", verbStr[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%g, %g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| SkDebugf("\n");
|
| };
|
|
|
| SkPath path;
|
| path.quadTo(10, 20, 30, 40);
|
| SkPath::Iter iter(path, false);
|
| debugster("quad open", iter);
|
| SkPath path2;
|
| path2.conicTo(1, 2, 3, 4, .5f);
|
| iter.setPath(path2, true);
|
| debugster("conic closed", iter);
|
| } |
| #StdOut |
| quad open:
|
| kMove_Verb {0, 0},
|
| kQuad_Verb {0, 0}, {10, 20}, {30, 40},
|
| kDone_Verb
|
|
|
| conic closed:
|
| kMove_Verb {0, 0},
|
| kConic_Verb {0, 0}, {1, 2}, {3, 4}, weight = 0.5
|
| kLine_Verb {3, 4}, {0, 0},
|
| kClose_Verb {0, 0},
|
| kDone_Verb |
| ## |
| ## |
| |
| #SeeAlso Iter(const SkPath& path, bool forceClose) |
| |
| ## |
| |
| #Method Verb next(SkPoint pts[4], bool doConsumeDegenerates = true, bool exact = false) |
| |
| Returns next Verb in Verb_Array, and advances Iter. |
| When Verb_Array is exhausted, returns kDone_Verb. |
| Zero to four Points are stored in pts, depending on the returned Verb. |
| If doConsumeDegenerates is true, skip consecutive kMove_Verb entries, returning |
| only the last in the series; and skip very small Lines, Quads, and Conics; and |
| skip kClose_Verb following kMove_Verb. |
| if doConsumeDegenerates is true and exact is true, only skip Lines, Quads, and |
| Conics with zero lengths. |
| |
| #Param pts Storage for Point data describing returned Verb. ## |
| #Param doConsumeDegenerates If true, skip degenerate Verbs. ## |
| #Param exact If true, skip zero length curves. Has no effect if doConsumeDegenerates |
| is false. |
| ## |
| |
| #Return next Verb from Verb_Array. ## |
| |
| #Example |
| #Description |
| skip degenerate skips the first in a kMove_Verb pair, the kMove_Verb |
| followed by the kClose_Verb, the zero length Line and the very small Line. |
| |
| skip degenerate if exact skips the same as skip degenerate, but shows |
| the very small Line. |
| |
| skip none shows all of the Verbs and Points in Path. |
| ## |
| void draw(SkCanvas* canvas) {
|
| auto debugster = [](const char* prefix, const SkPath& path, bool degen, bool exact) -> void {
|
| SkPath::Iter iter(path, false);
|
| SkDebugf("%s:\n", prefix);
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close", "Done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points, degen, exact);
|
| SkDebugf("k%s_Verb ", verbStr[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%1.8g, %1.8g}, ", points[i].fX, points[i].fY);
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| SkDebugf("\n");
|
| };
|
|
|
| SkPath path;
|
| path.moveTo(10, 10);
|
| path.moveTo(20, 20);
|
| path.quadTo(10, 20, 30, 40);
|
| path.moveTo(1, 1);
|
| path.close();
|
| path.moveTo(30, 30);
|
| path.lineTo(30, 30);
|
| path.moveTo(30, 30);
|
| path.lineTo(30.00001f, 30);
|
| debugster("skip degenerate", path, true, false);
|
| debugster("skip degenerate if exact", path, true, true);
|
| debugster("skip none", path, false, false);
|
| } |
| #StdOut |
| skip degenerate:
|
| kMove_Verb {20, 20},
|
| kQuad_Verb {20, 20}, {10, 20}, {30, 40},
|
| kDone_Verb
|
|
|
| skip degenerate if exact:
|
| kMove_Verb {20, 20},
|
| kQuad_Verb {20, 20}, {10, 20}, {30, 40},
|
| kMove_Verb {30, 30},
|
| kLine_Verb {30, 30}, {30.00001, 30},
|
| kDone_Verb
|
|
|
| skip none:
|
| kMove_Verb {10, 10},
|
| kMove_Verb {20, 20},
|
| kQuad_Verb {20, 20}, {10, 20}, {30, 40},
|
| kMove_Verb {1, 1},
|
| kClose_Verb {1, 1},
|
| kMove_Verb {30, 30},
|
| kLine_Verb {30, 30}, {30, 30},
|
| kMove_Verb {30, 30},
|
| kLine_Verb {30, 30}, {30.00001, 30},
|
| kDone_Verb
|
| ## |
| ## |
| |
| #SeeAlso Verb IsLineDegenerate IsCubicDegenerate IsQuadDegenerate |
| |
| ## |
| |
| #Method SkScalar conicWeight() const |
| |
| Returns Conic_Weight if next() returned kConic_Verb. |
| |
| If next() has not been called, or next() did not return kConic_Verb, |
| result is undefined. |
| |
| #Return Conic_Weight for Conic Points returned by next(). ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| SkPath::Iter iter(path, false);
|
| SkPoint p[4];
|
| SkDebugf("first verb is " "%s" "move\n", SkPath::kMove_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("next verb is " "%s" "conic\n", SkPath::kConic_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("conic points: {%g,%g}, {%g,%g}, {%g,%g}\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY,
|
| p[2].fX, p[2].fY);
|
| SkDebugf("conic weight: %g\n", iter.conicWeight());
|
| } |
| #StdOut |
| first verb is move
|
| next verb is conic
|
| conic points: {0,0}, {1,2}, {3,4}
|
| conic weight: 0.5 |
| ## |
| ## |
| |
| #SeeAlso Conic_Weight |
| |
| ## |
| |
| #Method bool isCloseLine() const |
| |
| Returns true if last kLine_Verb returned by next() was generated |
| by kClose_Verb. When true, the end point returned by next() is |
| also the start point of Contour. |
| |
| If next() has not been called, or next() did not return kLine_Verb, |
| result is undefined. |
| |
| #Return true if last kLine_Verb was generated by kClose_Verb. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.moveTo(6, 7);
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| path.close();
|
| SkPath::Iter iter(path, false);
|
| SkPoint p[4];
|
| SkDebugf("1st verb is " "%s" "move\n", SkPath::kMove_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("moveTo point: {%g,%g}\n", p[0].fX, p[0].fY);
|
| SkDebugf("2nd verb is " "%s" "conic\n", SkPath::kConic_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("3rd verb is " "%s" "line\n", SkPath::kLine_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("line points: {%g,%g}, {%g,%g}\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY);
|
| SkDebugf("line " "%s" "generated by close\n", iter.isCloseLine() ? "" : "not ");
|
| SkDebugf("4th verb is " "%s" "close\n", SkPath::kClose_Verb == iter.next(p) ? "" : "not ");
|
| } |
| #StdOut |
| 1st verb is move
|
| moveTo point: {6,7}
|
| 2nd verb is conic
|
| 3rd verb is line
|
| line points: {3,4}, {6,7}
|
| line generated by close
|
| 4th verb is close |
| ## |
| ## |
| |
| #SeeAlso close() |
| ## |
| |
| #Method bool isClosedContour() const |
| |
| Returns true if subsequent calls to next() return kClose_Verb before returning |
| kMove_Verb. if true, Contour Iter is processing may end with kClose_Verb, or |
| Iter may have been initialized with force close set to true. |
| |
| #Return true if Contour is closed. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| for (bool forceClose : { false, true } ) {
|
| SkPath path;
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| SkPath::Iter iter(path, forceClose);
|
| SkDebugf("without close(), forceClose is %s: isClosedContour returns %s\n",
|
| forceClose ? "true " : "false", iter.isClosedContour() ? "true" : "false");
|
| path.close();
|
| iter.setPath(path, forceClose);
|
| SkDebugf("with close(), forceClose is %s: isClosedContour returns %s\n",
|
| forceClose ? "true " : "false", iter.isClosedContour() ? "true" : "false");
|
| }
|
| } |
| #StdOut |
| without close(), forceClose is false: isClosedContour returns false
|
| with close(), forceClose is false: isClosedContour returns true
|
| without close(), forceClose is true : isClosedContour returns true
|
| with close(), forceClose is true : isClosedContour returns true |
| ## |
| ## |
| |
| #SeeAlso Iter(const SkPath& path, bool forceClose) |
| |
| ## |
|
|
| #Class Iter ##
|
|
|
| #Class RawIter |
| |
| Iterates through Verb_Array, and associated Point_Array and Conic_Weight. |
| Verb_Array, Point_Array, and Conic_Weight are returned unaltered. |
| |
| #Method RawIter() |
| |
| Initializes RawIter with an empty Path. next() on RawIter returns kDone_Verb. |
| Call setPath to initialize Iter at a later time. |
| |
| #Return RawIter of empty Path. ##
|
|
|
| #NoExample
|
| ##
|
| ##
|
| |
| #Method RawIter(const SkPath& path) |
| |
| |
| Sets RawIter to return elements of Verb_Array, Point_Array, and Conic_Weight in path. |
| |
| #Param path Path to iterate. ## |
| |
| #Return RawIter of path. ## |
|
|
| #NoExample
|
| ##
|
| ##
|
| |
| #Method void setPath(const SkPath& path) |
| |
| Sets Iter to return elements of Verb_Array, Point_Array, and Conic_Weight in path. |
| |
| #Param path Path to iterate. ## |
|
|
| #NoExample
|
| ##
|
| ##
|
| |
| #Method Verb next(SkPoint pts[4]) |
| |
| Returns next Verb in Verb_Array, and advances RawIter. |
| When Verb_Array is exhausted, returns kDone_Verb. |
| Zero to four Points are stored in pts, depending on the returned Verb. |
| |
| #Param pts Storage for Point data describing returned Verb. ## |
| |
| #Return next Verb from Verb_Array. ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.moveTo(50, 60);
|
| path.quadTo(10, 20, 30, 40);
|
| path.close();
|
| path.lineTo(30, 30);
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| path.cubicTo(-1, -2, -3, -4, -5, -6);
|
| SkPath::RawIter iter(path);
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close", "Done" };
|
| const int pointCount[] = { 1 , 2 , 3 , 3 , 4 , 1 , 0 };
|
| SkPath::Verb verb;
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("k%s_Verb ", verbStr[(int) verb]);
|
| for (int i = 0; i < pointCount[(int) verb]; ++i) {
|
| SkDebugf("{%1.8g, %1.8g}, ", points[i].fX, points[i].fY);
|
| }
|
| if (SkPath::kConic_Verb == verb) {
|
| SkDebugf("weight = %g", iter.conicWeight());
|
| }
|
| SkDebugf("\n");
|
| } while (SkPath::kDone_Verb != verb);
|
| } |
| #StdOut |
| kMove_Verb {50, 60},
|
| kQuad_Verb {50, 60}, {10, 20}, {30, 40},
|
| kClose_Verb {50, 60},
|
| kMove_Verb {50, 60},
|
| kLine_Verb {50, 60}, {30, 30},
|
| kConic_Verb {30, 30}, {1, 2}, {3, 4}, weight = 0.5
|
| kCubic_Verb {3, 4}, {-1, -2}, {-3, -4}, {-5, -6},
|
| kDone_Verb |
| ## |
| ## |
| |
| #SeeAlso peek() |
| |
| ##
|
| |
| #Method Verb peek() const |
| |
| Returns next Verb, but does not advance RawIter. |
| |
| #Return next Verb from Verb_Array. ## |
| |
| #Example |
| SkPath path;
|
| path.quadTo(10, 20, 30, 40);
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| path.cubicTo(1, 2, 3, 4, .5, 6);
|
| SkPath::RawIter iter(path);
|
| SkPath::Verb verb, peek = iter.peek();
|
| const char* verbStr[] = { "Move", "Line", "Quad", "Conic", "Cubic", "Close", "Done" };
|
| do {
|
| SkPoint points[4];
|
| verb = iter.next(points);
|
| SkDebugf("peek %s %c= verb %s\n", verbStr[peek], peek == verb ? '=' : '!', verbStr[verb]);
|
| peek = iter.peek();
|
| } while (SkPath::kDone_Verb != verb); |
| SkDebugf("peek %s %c= verb %s\n", verbStr[peek], peek == verb ? '=' : '!', verbStr[verb]);
|
| #StdOut
|
| #Volatile
|
| peek Move == verb Move
|
| peek Quad == verb Quad
|
| peek Conic == verb Conic
|
| peek Cubic == verb Cubic
|
| peek Done == verb Done
|
| peek Done == verb Done
|
| ##
|
| ## |
| |
| #Bug 6832 |
| StdOut isn't really volatile, it just produces the wrong result. |
| A simple fix changes the output of hairlines and needs to be |
| investigated to see if the change is correct or not. |
| https://skia-review.googlesource.com/c/21340/ |
| ## |
| |
| #SeeAlso next() |
| |
| ##
|
| |
| #Method SkScalar conicWeight() const
|
|
|
| Returns Conic_Weight if next() returned kConic_Verb. |
| |
| If next() has not been called, or next() did not return kConic_Verb, |
| result is undefined. |
|
|
| #Return Conic_Weight for Conic Points returned by next(). ## |
| |
| #Example |
| void draw(SkCanvas* canvas) {
|
| SkPath path;
|
| path.conicTo(1, 2, 3, 4, .5f);
|
| SkPath::RawIter iter(path);
|
| SkPoint p[4];
|
| SkDebugf("first verb is " "%s" "move\n", SkPath::kMove_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("next verb is " "%s" "conic\n", SkPath::kConic_Verb == iter.next(p) ? "" : "not ");
|
| SkDebugf("conic points: {%g,%g}, {%g,%g}, {%g,%g}\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY,
|
| p[2].fX, p[2].fY);
|
| SkDebugf("conic weight: %g\n", iter.conicWeight());
|
| } |
| #StdOut |
| first verb is move
|
| next verb is conic
|
| conic points: {0,0}, {1,2}, {3,4}
|
| conic weight: 0.5 |
| ## |
| ## |
| |
| #SeeAlso Conic_Weight |
|
|
| ##
|
|
|
| #Class RawIter ##
|
|
|
| #Class SkPath ##
|
|
|
| #Topic Path ##
|