|  | 
 | /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "gm.h" | 
 | #include "SkRandom.h" | 
 | #include "SkTArray.h" | 
 |  | 
 | class SkDoOnce : SkNoncopyable { | 
 | public: | 
 |     SkDoOnce() { fDidOnce = false; } | 
 |  | 
 |     bool needToDo() const { return !fDidOnce; } | 
 |     bool alreadyDone() const { return fDidOnce; } | 
 |     void accomplished() { | 
 |         SkASSERT(!fDidOnce); | 
 |         fDidOnce = true; | 
 |     } | 
 |  | 
 | private: | 
 |     bool fDidOnce; | 
 | }; | 
 |  | 
 | namespace skiagm { | 
 |  | 
 | class ConvexPathsGM : public GM { | 
 |     SkDoOnce fOnce; | 
 | public: | 
 |     ConvexPathsGM() { | 
 |         this->setBGColor(0xFF000000); | 
 |     } | 
 |  | 
 | protected: | 
 |     virtual uint32_t onGetFlags() const SK_OVERRIDE { | 
 |         return kSkipTiled_Flag; | 
 |     } | 
 |  | 
 |     virtual SkString onShortName() { | 
 |         return SkString("convexpaths"); | 
 |     } | 
 |  | 
 |  | 
 |     virtual SkISize onISize() { | 
 |         return SkISize::Make(1200, 1100); | 
 |     } | 
 |  | 
 |     void makePaths() { | 
 |         if (fOnce.alreadyDone()) { | 
 |             return; | 
 |         } | 
 |         fOnce.accomplished(); | 
 |  | 
 |         fPaths.push_back().moveTo(0, 0); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                              0, 100 * SK_Scalar1); | 
 |         fPaths.back().lineTo(0, 0); | 
 |  | 
 |         fPaths.push_back().moveTo(0, 50 * SK_Scalar1); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 0, | 
 |                              100 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                              0, 50 * SK_Scalar1); | 
 |  | 
 |         fPaths.push_back().addRect(0, 0, | 
 |                                    100 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                                    SkPath::kCW_Direction); | 
 |  | 
 |         fPaths.push_back().addRect(0, 0, | 
 |                                    100 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                                    SkPath::kCCW_Direction); | 
 |  | 
 |         fPaths.push_back().addCircle(50  * SK_Scalar1, 50  * SK_Scalar1, | 
 |                                      50  * SK_Scalar1, SkPath::kCW_Direction); | 
 |  | 
 |  | 
 |         fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, | 
 |                                                     50 * SK_Scalar1, | 
 |                                                     100 * SK_Scalar1), | 
 |                                    SkPath::kCW_Direction); | 
 |  | 
 |         fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, | 
 |                                                     100 * SK_Scalar1, | 
 |                                                     5 * SK_Scalar1), | 
 |                                    SkPath::kCCW_Direction); | 
 |  | 
 |         fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, | 
 |                                                     SK_Scalar1, | 
 |                                                     100 * SK_Scalar1), | 
 |                                                     SkPath::kCCW_Direction); | 
 |  | 
 |         fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0, | 
 |                                                          SK_Scalar1 * 100, | 
 |                                                          SK_Scalar1 * 100), | 
 |                                         40 * SK_Scalar1, 20 * SK_Scalar1, | 
 |                                         SkPath::kCW_Direction); | 
 |  | 
 |         // large number of points | 
 |         enum { | 
 |             kLength = 100, | 
 |             kPtsPerSide = (1 << 12), | 
 |         }; | 
 |         fPaths.push_back().moveTo(0, 0); | 
 |         for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo. | 
 |             fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0); | 
 |         } | 
 |         for (int i = 0; i < kPtsPerSide; ++i) { | 
 |             fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide); | 
 |         } | 
 |         for (int i = kPtsPerSide; i > 0; --i) { | 
 |             fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength); | 
 |         } | 
 |         for (int i = kPtsPerSide; i > 0; --i) { | 
 |             fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide); | 
 |         } | 
 |  | 
 |         // shallow diagonals | 
 |         fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1); | 
 |         fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1); | 
 |         fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1); | 
 |  | 
 |         fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0, | 
 |                                                   50 * SK_Scalar1, | 
 |                                                   100 * SK_Scalar1), | 
 |                                                   25 * SK_Scalar1,  130 * SK_Scalar1, false); | 
 |  | 
 |         // cubics | 
 |         fPaths.push_back().cubicTo( 1 * SK_Scalar1,  1 * SK_Scalar1, | 
 |                                    10 * SK_Scalar1,  90 * SK_Scalar1, | 
 |                                     0 * SK_Scalar1, 100 * SK_Scalar1); | 
 |         fPaths.push_back().cubicTo(100 * SK_Scalar1,  50 * SK_Scalar1, | 
 |                                     20 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                                      0 * SK_Scalar1,   0 * SK_Scalar1); | 
 |  | 
 |         // path that has a cubic with a repeated first control point and | 
 |         // a repeated last control point. | 
 |         fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); | 
 |         fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1, | 
 |                               10 * SK_Scalar1, 0, | 
 |                               20 * SK_Scalar1, 0); | 
 |         fPaths.back().lineTo(40 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(40 * SK_Scalar1, 0, | 
 |                               50 * SK_Scalar1, 0, | 
 |                               50 * SK_Scalar1, 10 * SK_Scalar1); | 
 |  | 
 |         // path that has two cubics with repeated middle control points. | 
 |         fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); | 
 |         fPaths.back().cubicTo(10 * SK_Scalar1, 0, | 
 |                               10 * SK_Scalar1, 0, | 
 |                               20 * SK_Scalar1, 0); | 
 |         fPaths.back().lineTo(40 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(50 * SK_Scalar1, 0, | 
 |                               50 * SK_Scalar1, 0, | 
 |                               50 * SK_Scalar1, 10 * SK_Scalar1); | 
 |  | 
 |         // cubic where last three points are almost a line | 
 |         fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8); | 
 |         fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8, | 
 |                               1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8, | 
 |                               1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8); | 
 |  | 
 |         // flat cubic where the at end point tangents both point outward. | 
 |         fPaths.push_back().moveTo(10 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(0, SK_Scalar1, | 
 |                               30 * SK_Scalar1, SK_Scalar1, | 
 |                               20 * SK_Scalar1, 0); | 
 |  | 
 |         // flat cubic where initial tangent is in, end tangent out | 
 |         fPaths.push_back().moveTo(0, 0 * SK_Scalar1); | 
 |         fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1, | 
 |                               30 * SK_Scalar1, SK_Scalar1, | 
 |                               20 * SK_Scalar1, 0); | 
 |  | 
 |         // flat cubic where initial tangent is out, end tangent in | 
 |         fPaths.push_back().moveTo(10 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(0, SK_Scalar1, | 
 |                               20 * SK_Scalar1, SK_Scalar1, | 
 |                               30 * SK_Scalar1, 0); | 
 |  | 
 |         // triangle where one edge is a degenerate quad | 
 |         fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1); | 
 |         fPaths.back().quadTo(16.9921875f,   45 * SK_Scalar1, | 
 |                              31.25f,        45 * SK_Scalar1); | 
 |         fPaths.back().lineTo(100 * SK_Scalar1,              100 * SK_Scalar1); | 
 |         fPaths.back().lineTo(8.59375f,      45 * SK_Scalar1); | 
 |  | 
 |         // triangle where one edge is a quad with a repeated point | 
 |         fPaths.push_back().moveTo(0, 25 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 0); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // triangle where one edge is a cubic with a 2x repeated point | 
 |         fPaths.push_back().moveTo(0, 25 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(50 * SK_Scalar1, 0, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // triangle where one edge is a quad with a nearly repeated point | 
 |         fPaths.push_back().moveTo(0, 25 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 0); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 49.95f, | 
 |                              50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // triangle where one edge is a cubic with a 3x nearly repeated point | 
 |         fPaths.push_back().moveTo(0, 25 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 0); | 
 |         fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f, | 
 |                               50 * SK_Scalar1, 49.97f, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // triangle where there is a point degenerate cubic at one corner | 
 |         fPaths.push_back().moveTo(0, 25 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 0); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // point line | 
 |         fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // point quad | 
 |         fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                              50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // point cubic | 
 |         fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                               50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |  | 
 |         // moveTo only paths | 
 |         fPaths.push_back().moveTo(0, 0); | 
 |         fPaths.back().moveTo(0, 0); | 
 |         fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); | 
 |         fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); | 
 |         fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1); | 
 |  | 
 |         fPaths.push_back().moveTo(0, 0); | 
 |         fPaths.back().moveTo(0, 0); | 
 |  | 
 |         // line degenerate | 
 |         fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1); | 
 |         fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0); | 
 |         fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, | 
 |                                   50 * SK_Scalar1, 50 * SK_Scalar1); | 
 |         fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, | 
 |                                   100 * SK_Scalar1, 100 * SK_Scalar1); | 
 |         fPaths.push_back().cubicTo(0, 0, | 
 |                                    0, 0, | 
 |                                    100 * SK_Scalar1, 100 * SK_Scalar1); | 
 |  | 
 |         // small circle. This is listed last so that it has device coords far | 
 |         // from the origin (small area relative to x,y values). | 
 |         fPaths.push_back().addCircle(0, 0, 1.2f); | 
 |     } | 
 |  | 
 |     virtual void onDraw(SkCanvas* canvas) { | 
 |         this->makePaths(); | 
 |  | 
 |     SkPaint paint; | 
 |     paint.setAntiAlias(true); | 
 |     SkLCGRandom rand; | 
 |     canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1); | 
 |  | 
 |     // As we've added more paths this has gotten pretty big. Scale the whole thing down. | 
 |     canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3); | 
 |  | 
 |     for (int i = 0; i < fPaths.count(); ++i) { | 
 |         canvas->save(); | 
 |         // position the path, and make it at off-integer coords. | 
 |         canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10, | 
 |                           SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10); | 
 |         SkColor color = rand.nextU(); | 
 |         color |= 0xff000000; | 
 |         paint.setColor(color); | 
 | #if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is | 
 |       // debugged. | 
 |         SkASSERT(fPaths[i].isConvex()); | 
 | #endif | 
 |         canvas->drawPath(fPaths[i], paint); | 
 |         canvas->restore(); | 
 |     } | 
 |     } | 
 |  | 
 | private: | 
 |     typedef GM INHERITED; | 
 |     SkTArray<SkPath> fPaths; | 
 | }; | 
 |  | 
 | ////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static GM* MyFactory(void*) { return new ConvexPathsGM; } | 
 | static GMRegistry reg(MyFactory); | 
 |  | 
 | } |