| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "skcms.h" |
| #include "skcms_internal.h" |
| #include <assert.h> |
| #include <float.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #if defined(__ARM_NEON) |
| #include <arm_neon.h> |
| #elif defined(__SSE__) |
| #include <immintrin.h> |
| |
| #if defined(__clang__) |
| // That #include <immintrin.h> is usually enough, but Clang's headers |
| // "helpfully" skip including the whole kitchen sink when _MSC_VER is |
| // defined, because lots of programs on Windows would include that and |
| // it'd be a lot slower. But we want all those headers included so we |
| // can use their features after runtime checks later. |
| #include <smmintrin.h> |
| #include <avxintrin.h> |
| #include <avx2intrin.h> |
| #include <avx512fintrin.h> |
| #include <avx512dqintrin.h> |
| #endif |
| #endif |
| |
| // sizeof(x) will return size_t, which is 32-bit on some machines and 64-bit on others. |
| // We have better testing on 64-bit machines, so force 32-bit machines to behave like 64-bit. |
| // |
| // Please do not use sizeof() directly, and size_t only when required. |
| // (We have no way of enforcing these requests...) |
| #define SAFE_SIZEOF(x) ((uint64_t)sizeof(x)) |
| |
| // Same sort of thing for _Layout structs with a variable sized array at the end (named "variable"). |
| #define SAFE_FIXED_SIZE(type) ((uint64_t)offsetof(type, variable)) |
| |
| static const union { |
| uint32_t bits; |
| float f; |
| } inf_ = { 0x7f800000 }; |
| #define INFINITY_ inf_.f |
| |
| #if defined(__clang__) || defined(__GNUC__) |
| #define small_memcpy __builtin_memcpy |
| #else |
| #define small_memcpy memcpy |
| #endif |
| |
| static float log2f_(float x) { |
| // The first approximation of log2(x) is its exponent 'e', minus 127. |
| int32_t bits; |
| small_memcpy(&bits, &x, sizeof(bits)); |
| |
| float e = (float)bits * (1.0f / (1<<23)); |
| |
| // If we use the mantissa too we can refine the error signficantly. |
| int32_t m_bits = (bits & 0x007fffff) | 0x3f000000; |
| float m; |
| small_memcpy(&m, &m_bits, sizeof(m)); |
| |
| return (e - 124.225514990f |
| - 1.498030302f*m |
| - 1.725879990f/(0.3520887068f + m)); |
| } |
| static float logf_(float x) { |
| const float ln2 = 0.69314718f; |
| return ln2*log2f_(x); |
| } |
| |
| static float exp2f_(float x) { |
| float fract = x - floorf_(x); |
| |
| float fbits = (1.0f * (1<<23)) * (x + 121.274057500f |
| - 1.490129070f*fract |
| + 27.728023300f/(4.84252568f - fract)); |
| |
| // Before we cast fbits to int32_t, check for out of range values to pacify UBSAN. |
| // INT_MAX is not exactly representable as a float, so exclude it as effectively infinite. |
| // INT_MIN is a power of 2 and exactly representable as a float, so it's fine. |
| if (fbits >= (float)INT_MAX) { |
| return INFINITY_; |
| } else if (fbits < (float)INT_MIN) { |
| return -INFINITY_; |
| } |
| |
| int32_t bits = (int32_t)fbits; |
| small_memcpy(&x, &bits, sizeof(x)); |
| return x; |
| } |
| |
| // Not static, as it's used by some test tools. |
| float powf_(float x, float y) { |
| assert (x >= 0); |
| return (x == 0) || (x == 1) ? x |
| : exp2f_(log2f_(x) * y); |
| } |
| |
| static float expf_(float x) { |
| const float log2_e = 1.4426950408889634074f; |
| return exp2f_(log2_e * x); |
| } |
| |
| static float fmaxf_(float x, float y) { return x > y ? x : y; } |
| static float fminf_(float x, float y) { return x < y ? x : y; } |
| |
| static bool isfinitef_(float x) { return 0 == x*0; } |
| |
| static float minus_1_ulp(float x) { |
| int32_t bits; |
| memcpy(&bits, &x, sizeof(bits)); |
| bits = bits - 1; |
| memcpy(&x, &bits, sizeof(bits)); |
| return x; |
| } |
| |
| // Most transfer functions we work with are sRGBish. |
| // For exotic HDR transfer functions, we encode them using a tf.g that makes no sense, |
| // and repurpose the other fields to hold the parameters of the HDR functions. |
| enum TFKind { Bad, sRGBish, PQish, HLGish, HLGinvish }; |
| struct TF_PQish { float A,B,C,D,E,F; }; |
| struct TF_HLGish { float R,G,a,b,c; }; |
| |
| static float TFKind_marker(TFKind kind) { |
| // We'd use different NaNs, but those aren't guaranteed to be preserved by WASM. |
| return -(float)kind; |
| } |
| |
| static TFKind classify(const skcms_TransferFunction& tf, TF_PQish* pq = nullptr |
| , TF_HLGish* hlg = nullptr) { |
| if (tf.g < 0 && (int)tf.g == tf.g) { |
| // TODO: sanity checks for PQ/HLG like we do for sRGBish. |
| switch ((int)tf.g) { |
| case -PQish: if (pq ) { memcpy(pq , &tf.a, sizeof(*pq )); } return PQish; |
| case -HLGish: if (hlg) { memcpy(hlg, &tf.a, sizeof(*hlg)); } return HLGish; |
| case -HLGinvish: if (hlg) { memcpy(hlg, &tf.a, sizeof(*hlg)); } return HLGinvish; |
| } |
| return Bad; |
| } |
| |
| // Basic sanity checks for sRGBish transfer functions. |
| if (isfinitef_(tf.a + tf.b + tf.c + tf.d + tf.e + tf.f + tf.g) |
| // a,c,d,g should be non-negative to make any sense. |
| && tf.a >= 0 |
| && tf.c >= 0 |
| && tf.d >= 0 |
| && tf.g >= 0 |
| // Raising a negative value to a fractional tf->g produces complex numbers. |
| && tf.a * tf.d + tf.b >= 0) { |
| return sRGBish; |
| } |
| |
| return Bad; |
| } |
| |
| bool skcms_TransferFunction_makePQish(skcms_TransferFunction* tf, |
| float A, float B, float C, |
| float D, float E, float F) { |
| *tf = { TFKind_marker(PQish), A,B,C,D,E,F }; |
| assert(classify(*tf) == PQish); |
| return true; |
| } |
| |
| bool skcms_TransferFunction_makeHLGish(skcms_TransferFunction* tf, |
| float R, float G, |
| float a, float b, float c) { |
| *tf = { TFKind_marker(HLGish), R,G, a,b,c, 0 }; |
| assert(classify(*tf) == HLGish); |
| return true; |
| } |
| |
| float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) { |
| float sign = x < 0 ? -1.0f : 1.0f; |
| x *= sign; |
| |
| TF_PQish pq; |
| TF_HLGish hlg; |
| switch (classify(*tf, &pq, &hlg)) { |
| case Bad: break; |
| |
| case HLGish: return sign * (x*hlg.R <= 1 ? powf_(x*hlg.R, hlg.G) |
| : expf_((x-hlg.c)*hlg.a) + hlg.b); |
| |
| // skcms_TransferFunction_invert() inverts R, G, and a for HLGinvish so this math is fast. |
| case HLGinvish: return sign * (x <= 1 ? hlg.R * powf_(x, hlg.G) |
| : hlg.a * logf_(x - hlg.b) + hlg.c); |
| |
| |
| case sRGBish: return sign * (x < tf->d ? tf->c * x + tf->f |
| : powf_(tf->a * x + tf->b, tf->g) + tf->e); |
| |
| case PQish: return sign * powf_(fmaxf_(pq.A + pq.B * powf_(x, pq.C), 0) |
| / (pq.D + pq.E * powf_(x, pq.C)), |
| pq.F); |
| } |
| return 0; |
| } |
| |
| |
| static float eval_curve(const skcms_Curve* curve, float x) { |
| if (curve->table_entries == 0) { |
| return skcms_TransferFunction_eval(&curve->parametric, x); |
| } |
| |
| float ix = fmaxf_(0, fminf_(x, 1)) * (curve->table_entries - 1); |
| int lo = (int) ix , |
| hi = (int)(float)minus_1_ulp(ix + 1.0f); |
| float t = ix - (float)lo; |
| |
| float l, h; |
| if (curve->table_8) { |
| l = curve->table_8[lo] * (1/255.0f); |
| h = curve->table_8[hi] * (1/255.0f); |
| } else { |
| uint16_t be_l, be_h; |
| memcpy(&be_l, curve->table_16 + 2*lo, 2); |
| memcpy(&be_h, curve->table_16 + 2*hi, 2); |
| uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff; |
| uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff; |
| l = le_l * (1/65535.0f); |
| h = le_h * (1/65535.0f); |
| } |
| return l + (h-l)*t; |
| } |
| |
| float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) { |
| uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256; |
| const float dx = 1.0f / (N - 1); |
| float err = 0; |
| for (uint32_t i = 0; i < N; i++) { |
| float x = i * dx, |
| y = eval_curve(curve, x); |
| err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y))); |
| } |
| return err; |
| } |
| |
| bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) { |
| return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f); |
| } |
| |
| // Additional ICC signature values that are only used internally |
| enum { |
| // File signature |
| skcms_Signature_acsp = 0x61637370, |
| |
| // Tag signatures |
| skcms_Signature_rTRC = 0x72545243, |
| skcms_Signature_gTRC = 0x67545243, |
| skcms_Signature_bTRC = 0x62545243, |
| skcms_Signature_kTRC = 0x6B545243, |
| |
| skcms_Signature_rXYZ = 0x7258595A, |
| skcms_Signature_gXYZ = 0x6758595A, |
| skcms_Signature_bXYZ = 0x6258595A, |
| |
| skcms_Signature_A2B0 = 0x41324230, |
| skcms_Signature_A2B1 = 0x41324231, |
| skcms_Signature_mAB = 0x6D414220, |
| |
| skcms_Signature_CHAD = 0x63686164, |
| skcms_Signature_WTPT = 0x77747074, |
| |
| // Type signatures |
| skcms_Signature_curv = 0x63757276, |
| skcms_Signature_mft1 = 0x6D667431, |
| skcms_Signature_mft2 = 0x6D667432, |
| skcms_Signature_para = 0x70617261, |
| skcms_Signature_sf32 = 0x73663332, |
| // XYZ is also a PCS signature, so it's defined in skcms.h |
| // skcms_Signature_XYZ = 0x58595A20, |
| }; |
| |
| static uint16_t read_big_u16(const uint8_t* ptr) { |
| uint16_t be; |
| memcpy(&be, ptr, sizeof(be)); |
| #if defined(_MSC_VER) |
| return _byteswap_ushort(be); |
| #else |
| return __builtin_bswap16(be); |
| #endif |
| } |
| |
| static uint32_t read_big_u32(const uint8_t* ptr) { |
| uint32_t be; |
| memcpy(&be, ptr, sizeof(be)); |
| #if defined(_MSC_VER) |
| return _byteswap_ulong(be); |
| #else |
| return __builtin_bswap32(be); |
| #endif |
| } |
| |
| static int32_t read_big_i32(const uint8_t* ptr) { |
| return (int32_t)read_big_u32(ptr); |
| } |
| |
| static float read_big_fixed(const uint8_t* ptr) { |
| return read_big_i32(ptr) * (1.0f / 65536.0f); |
| } |
| |
| // Maps to an in-memory profile so that fields line up to the locations specified |
| // in ICC.1:2010, section 7.2 |
| typedef struct { |
| uint8_t size [ 4]; |
| uint8_t cmm_type [ 4]; |
| uint8_t version [ 4]; |
| uint8_t profile_class [ 4]; |
| uint8_t data_color_space [ 4]; |
| uint8_t pcs [ 4]; |
| uint8_t creation_date_time [12]; |
| uint8_t signature [ 4]; |
| uint8_t platform [ 4]; |
| uint8_t flags [ 4]; |
| uint8_t device_manufacturer [ 4]; |
| uint8_t device_model [ 4]; |
| uint8_t device_attributes [ 8]; |
| uint8_t rendering_intent [ 4]; |
| uint8_t illuminant_X [ 4]; |
| uint8_t illuminant_Y [ 4]; |
| uint8_t illuminant_Z [ 4]; |
| uint8_t creator [ 4]; |
| uint8_t profile_id [16]; |
| uint8_t reserved [28]; |
| uint8_t tag_count [ 4]; // Technically not part of header, but required |
| } header_Layout; |
| |
| typedef struct { |
| uint8_t signature [4]; |
| uint8_t offset [4]; |
| uint8_t size [4]; |
| } tag_Layout; |
| |
| static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) { |
| return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout)); |
| } |
| |
| // s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid |
| // use of the type is for the CHAD tag that stores exactly nine values. |
| typedef struct { |
| uint8_t type [ 4]; |
| uint8_t reserved [ 4]; |
| uint8_t values [36]; |
| } sf32_Layout; |
| |
| bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) { |
| skcms_ICCTag tag; |
| if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) { |
| return false; |
| } |
| |
| if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) { |
| return false; |
| } |
| |
| const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf; |
| const uint8_t* values = sf32Tag->values; |
| for (int r = 0; r < 3; ++r) |
| for (int c = 0; c < 3; ++c, values += 4) { |
| m->vals[r][c] = read_big_fixed(values); |
| } |
| return true; |
| } |
| |
| // XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of |
| // the type are for tags/data that store exactly one triple. |
| typedef struct { |
| uint8_t type [4]; |
| uint8_t reserved [4]; |
| uint8_t X [4]; |
| uint8_t Y [4]; |
| uint8_t Z [4]; |
| } XYZ_Layout; |
| |
| static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) { |
| if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) { |
| return false; |
| } |
| |
| const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf; |
| |
| *x = read_big_fixed(xyzTag->X); |
| *y = read_big_fixed(xyzTag->Y); |
| *z = read_big_fixed(xyzTag->Z); |
| return true; |
| } |
| |
| bool skcms_GetWTPT(const skcms_ICCProfile* profile, float xyz[3]) { |
| skcms_ICCTag tag; |
| return skcms_GetTagBySignature(profile, skcms_Signature_WTPT, &tag) && |
| read_tag_xyz(&tag, &xyz[0], &xyz[1], &xyz[2]); |
| } |
| |
| static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ, |
| const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) { |
| return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) && |
| read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) && |
| read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]); |
| } |
| |
| typedef struct { |
| uint8_t type [4]; |
| uint8_t reserved_a [4]; |
| uint8_t function_type [2]; |
| uint8_t reserved_b [2]; |
| uint8_t variable [1/*variable*/]; // 1, 3, 4, 5, or 7 s15.16, depending on function_type |
| } para_Layout; |
| |
| static bool read_curve_para(const uint8_t* buf, uint32_t size, |
| skcms_Curve* curve, uint32_t* curve_size) { |
| if (size < SAFE_FIXED_SIZE(para_Layout)) { |
| return false; |
| } |
| |
| const para_Layout* paraTag = (const para_Layout*)buf; |
| |
| enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 }; |
| uint16_t function_type = read_big_u16(paraTag->function_type); |
| if (function_type > kGABCDEF) { |
| return false; |
| } |
| |
| static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 }; |
| if (size < SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]) { |
| return false; |
| } |
| |
| if (curve_size) { |
| *curve_size = SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]; |
| } |
| |
| curve->table_entries = 0; |
| curve->parametric.a = 1.0f; |
| curve->parametric.b = 0.0f; |
| curve->parametric.c = 0.0f; |
| curve->parametric.d = 0.0f; |
| curve->parametric.e = 0.0f; |
| curve->parametric.f = 0.0f; |
| curve->parametric.g = read_big_fixed(paraTag->variable); |
| |
| switch (function_type) { |
| case kGAB: |
| curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
| curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
| if (curve->parametric.a == 0) { |
| return false; |
| } |
| curve->parametric.d = -curve->parametric.b / curve->parametric.a; |
| break; |
| case kGABC: |
| curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
| curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
| curve->parametric.e = read_big_fixed(paraTag->variable + 12); |
| if (curve->parametric.a == 0) { |
| return false; |
| } |
| curve->parametric.d = -curve->parametric.b / curve->parametric.a; |
| curve->parametric.f = curve->parametric.e; |
| break; |
| case kGABCD: |
| curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
| curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
| curve->parametric.c = read_big_fixed(paraTag->variable + 12); |
| curve->parametric.d = read_big_fixed(paraTag->variable + 16); |
| break; |
| case kGABCDEF: |
| curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
| curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
| curve->parametric.c = read_big_fixed(paraTag->variable + 12); |
| curve->parametric.d = read_big_fixed(paraTag->variable + 16); |
| curve->parametric.e = read_big_fixed(paraTag->variable + 20); |
| curve->parametric.f = read_big_fixed(paraTag->variable + 24); |
| break; |
| } |
| return classify(curve->parametric) == sRGBish; |
| } |
| |
| typedef struct { |
| uint8_t type [4]; |
| uint8_t reserved [4]; |
| uint8_t value_count [4]; |
| uint8_t variable [1/*variable*/]; // value_count, 8.8 if 1, uint16 (n*65535) if > 1 |
| } curv_Layout; |
| |
| static bool read_curve_curv(const uint8_t* buf, uint32_t size, |
| skcms_Curve* curve, uint32_t* curve_size) { |
| if (size < SAFE_FIXED_SIZE(curv_Layout)) { |
| return false; |
| } |
| |
| const curv_Layout* curvTag = (const curv_Layout*)buf; |
| |
| uint32_t value_count = read_big_u32(curvTag->value_count); |
| if (size < SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) { |
| return false; |
| } |
| |
| if (curve_size) { |
| *curve_size = SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t); |
| } |
| |
| if (value_count < 2) { |
| curve->table_entries = 0; |
| curve->parametric.a = 1.0f; |
| curve->parametric.b = 0.0f; |
| curve->parametric.c = 0.0f; |
| curve->parametric.d = 0.0f; |
| curve->parametric.e = 0.0f; |
| curve->parametric.f = 0.0f; |
| if (value_count == 0) { |
| // Empty tables are a shorthand for an identity curve |
| curve->parametric.g = 1.0f; |
| } else { |
| // Single entry tables are a shorthand for simple gamma |
| curve->parametric.g = read_big_u16(curvTag->variable) * (1.0f / 256.0f); |
| } |
| } else { |
| curve->table_8 = nullptr; |
| curve->table_16 = curvTag->variable; |
| curve->table_entries = value_count; |
| } |
| |
| return true; |
| } |
| |
| // Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read. |
| // If curve_size is not nullptr, writes the number of bytes used by the curve in (*curve_size). |
| static bool read_curve(const uint8_t* buf, uint32_t size, |
| skcms_Curve* curve, uint32_t* curve_size) { |
| if (!buf || size < 4 || !curve) { |
| return false; |
| } |
| |
| uint32_t type = read_big_u32(buf); |
| if (type == skcms_Signature_para) { |
| return read_curve_para(buf, size, curve, curve_size); |
| } else if (type == skcms_Signature_curv) { |
| return read_curve_curv(buf, size, curve, curve_size); |
| } |
| |
| return false; |
| } |
| |
| // mft1 and mft2 share a large chunk of data |
| typedef struct { |
| uint8_t type [ 4]; |
| uint8_t reserved_a [ 4]; |
| uint8_t input_channels [ 1]; |
| uint8_t output_channels [ 1]; |
| uint8_t grid_points [ 1]; |
| uint8_t reserved_b [ 1]; |
| uint8_t matrix [36]; |
| } mft_CommonLayout; |
| |
| typedef struct { |
| mft_CommonLayout common [1]; |
| |
| uint8_t variable [1/*variable*/]; |
| } mft1_Layout; |
| |
| typedef struct { |
| mft_CommonLayout common [1]; |
| |
| uint8_t input_table_entries [2]; |
| uint8_t output_table_entries [2]; |
| uint8_t variable [1/*variable*/]; |
| } mft2_Layout; |
| |
| static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) { |
| // MFT matrices are applied before the first set of curves, but must be identity unless the |
| // input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the |
| // matrix in skcms_A2B is applied later in the pipe, so supporting this would require another |
| // field/flag. |
| a2b->matrix_channels = 0; |
| |
| a2b->input_channels = mftTag->input_channels[0]; |
| a2b->output_channels = mftTag->output_channels[0]; |
| |
| // We require exactly three (ie XYZ/Lab/RGB) output channels |
| if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) { |
| return false; |
| } |
| // We require at least one, and no more than four (ie CMYK) input channels |
| if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) { |
| return false; |
| } |
| |
| for (uint32_t i = 0; i < a2b->input_channels; ++i) { |
| a2b->grid_points[i] = mftTag->grid_points[0]; |
| } |
| // The grid only makes sense with at least two points along each axis |
| if (a2b->grid_points[0] < 2) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool init_a2b_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width, |
| uint32_t input_table_entries, uint32_t output_table_entries, |
| skcms_A2B* a2b) { |
| // byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow |
| uint32_t byte_len_per_input_table = input_table_entries * byte_width; |
| uint32_t byte_len_per_output_table = output_table_entries * byte_width; |
| |
| // [input|output]_channels are <= 4, so still no overflow |
| uint32_t byte_len_all_input_tables = a2b->input_channels * byte_len_per_input_table; |
| uint32_t byte_len_all_output_tables = a2b->output_channels * byte_len_per_output_table; |
| |
| uint64_t grid_size = a2b->output_channels * byte_width; |
| for (uint32_t axis = 0; axis < a2b->input_channels; ++axis) { |
| grid_size *= a2b->grid_points[axis]; |
| } |
| |
| if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) { |
| return false; |
| } |
| |
| for (uint32_t i = 0; i < a2b->input_channels; ++i) { |
| a2b->input_curves[i].table_entries = input_table_entries; |
| if (byte_width == 1) { |
| a2b->input_curves[i].table_8 = table_base + i * byte_len_per_input_table; |
| a2b->input_curves[i].table_16 = nullptr; |
| } else { |
| a2b->input_curves[i].table_8 = nullptr; |
| a2b->input_curves[i].table_16 = table_base + i * byte_len_per_input_table; |
| } |
| } |
| |
| if (byte_width == 1) { |
| a2b->grid_8 = table_base + byte_len_all_input_tables; |
| a2b->grid_16 = nullptr; |
| } else { |
| a2b->grid_8 = nullptr; |
| a2b->grid_16 = table_base + byte_len_all_input_tables; |
| } |
| |
| const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size; |
| for (uint32_t i = 0; i < a2b->output_channels; ++i) { |
| a2b->output_curves[i].table_entries = output_table_entries; |
| if (byte_width == 1) { |
| a2b->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table; |
| a2b->output_curves[i].table_16 = nullptr; |
| } else { |
| a2b->output_curves[i].table_8 = nullptr; |
| a2b->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool read_tag_mft1(const skcms_ICCTag* tag, skcms_A2B* a2b) { |
| if (tag->size < SAFE_FIXED_SIZE(mft1_Layout)) { |
| return false; |
| } |
| |
| const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf; |
| if (!read_mft_common(mftTag->common, a2b)) { |
| return false; |
| } |
| |
| uint32_t input_table_entries = 256; |
| uint32_t output_table_entries = 256; |
| |
| return init_a2b_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft1_Layout), 1, |
| input_table_entries, output_table_entries, a2b); |
| } |
| |
| static bool read_tag_mft2(const skcms_ICCTag* tag, skcms_A2B* a2b) { |
| if (tag->size < SAFE_FIXED_SIZE(mft2_Layout)) { |
| return false; |
| } |
| |
| const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf; |
| if (!read_mft_common(mftTag->common, a2b)) { |
| return false; |
| } |
| |
| uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries); |
| uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries); |
| |
| // ICC spec mandates that 2 <= table_entries <= 4096 |
| if (input_table_entries < 2 || input_table_entries > 4096 || |
| output_table_entries < 2 || output_table_entries > 4096) { |
| return false; |
| } |
| |
| return init_a2b_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft2_Layout), 2, |
| input_table_entries, output_table_entries, a2b); |
| } |
| |
| static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset, |
| uint32_t num_curves, skcms_Curve* curves) { |
| for (uint32_t i = 0; i < num_curves; ++i) { |
| if (curve_offset > size) { |
| return false; |
| } |
| |
| uint32_t curve_bytes; |
| if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) { |
| return false; |
| } |
| |
| if (curve_bytes > UINT32_MAX - 3) { |
| return false; |
| } |
| curve_bytes = (curve_bytes + 3) & ~3U; |
| |
| uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes; |
| curve_offset = (uint32_t)new_offset_64; |
| if (new_offset_64 != curve_offset) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| typedef struct { |
| uint8_t type [ 4]; |
| uint8_t reserved_a [ 4]; |
| uint8_t input_channels [ 1]; |
| uint8_t output_channels [ 1]; |
| uint8_t reserved_b [ 2]; |
| uint8_t b_curve_offset [ 4]; |
| uint8_t matrix_offset [ 4]; |
| uint8_t m_curve_offset [ 4]; |
| uint8_t clut_offset [ 4]; |
| uint8_t a_curve_offset [ 4]; |
| } mAB_Layout; |
| |
| typedef struct { |
| uint8_t grid_points [16]; |
| uint8_t grid_byte_width [ 1]; |
| uint8_t reserved [ 3]; |
| uint8_t variable [1/*variable*/]; |
| } mABCLUT_Layout; |
| |
| static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) { |
| if (tag->size < SAFE_SIZEOF(mAB_Layout)) { |
| return false; |
| } |
| |
| const mAB_Layout* mABTag = (const mAB_Layout*)tag->buf; |
| |
| a2b->input_channels = mABTag->input_channels[0]; |
| a2b->output_channels = mABTag->output_channels[0]; |
| |
| // We require exactly three (ie XYZ/Lab/RGB) output channels |
| if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) { |
| return false; |
| } |
| // We require no more than four (ie CMYK) input channels |
| if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) { |
| return false; |
| } |
| |
| uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset); |
| uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset); |
| uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset); |
| uint32_t clut_offset = read_big_u32(mABTag->clut_offset); |
| uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset); |
| |
| // "B" curves must be present |
| if (0 == b_curve_offset) { |
| return false; |
| } |
| |
| if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels, |
| a2b->output_curves)) { |
| return false; |
| } |
| |
| // "M" curves and Matrix must be used together |
| if (0 != m_curve_offset) { |
| if (0 == matrix_offset) { |
| return false; |
| } |
| a2b->matrix_channels = a2b->output_channels; |
| if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels, |
| a2b->matrix_curves)) { |
| return false; |
| } |
| |
| // Read matrix, which is stored as a row-major 3x3, followed by the fourth column |
| if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) { |
| return false; |
| } |
| float encoding_factor = pcs_is_xyz ? 65535 / 32768.0f : 1.0f; |
| const uint8_t* mtx_buf = tag->buf + matrix_offset; |
| a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0); |
| a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4); |
| a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8); |
| a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12); |
| a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16); |
| a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20); |
| a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24); |
| a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28); |
| a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32); |
| a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36); |
| a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40); |
| a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44); |
| } else { |
| if (0 != matrix_offset) { |
| return false; |
| } |
| a2b->matrix_channels = 0; |
| } |
| |
| // "A" curves and CLUT must be used together |
| if (0 != a_curve_offset) { |
| if (0 == clut_offset) { |
| return false; |
| } |
| if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels, |
| a2b->input_curves)) { |
| return false; |
| } |
| |
| if (tag->size < clut_offset + SAFE_FIXED_SIZE(mABCLUT_Layout)) { |
| return false; |
| } |
| const mABCLUT_Layout* clut = (const mABCLUT_Layout*)(tag->buf + clut_offset); |
| |
| if (clut->grid_byte_width[0] == 1) { |
| a2b->grid_8 = clut->variable; |
| a2b->grid_16 = nullptr; |
| } else if (clut->grid_byte_width[0] == 2) { |
| a2b->grid_8 = nullptr; |
| a2b->grid_16 = clut->variable; |
| } else { |
| return false; |
| } |
| |
| uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0]; |
| for (uint32_t i = 0; i < a2b->input_channels; ++i) { |
| a2b->grid_points[i] = clut->grid_points[i]; |
| // The grid only makes sense with at least two points along each axis |
| if (a2b->grid_points[i] < 2) { |
| return false; |
| } |
| grid_size *= a2b->grid_points[i]; |
| } |
| if (tag->size < clut_offset + SAFE_FIXED_SIZE(mABCLUT_Layout) + grid_size) { |
| return false; |
| } |
| } else { |
| if (0 != clut_offset) { |
| return false; |
| } |
| |
| // If there is no CLUT, the number of input and output channels must match |
| if (a2b->input_channels != a2b->output_channels) { |
| return false; |
| } |
| |
| // Zero out the number of input channels to signal that we're skipping this stage |
| a2b->input_channels = 0; |
| } |
| |
| return true; |
| } |
| |
| // If you pass f, we'll fit a possibly-non-zero value for *f. |
| // If you pass nullptr, we'll assume you want *f to be treated as zero. |
| static int fit_linear(const skcms_Curve* curve, int N, float tol, |
| float* c, float* d, float* f = nullptr) { |
| assert(N > 1); |
| // We iteratively fit the first points to the TF's linear piece. |
| // We want the cx + f line to pass through the first and last points we fit exactly. |
| // |
| // As we walk along the points we find the minimum and maximum slope of the line before the |
| // error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes |
| // emtpy, when we definitely can't add any more points. |
| // |
| // Some points' error intervals may intersect the running interval but not lie fully |
| // within it. So we keep track of the last point we saw that is a valid end point candidate, |
| // and once the search is done, back up to build the line through *that* point. |
| const float dx = 1.0f / (N - 1); |
| |
| int lin_points = 1; |
| |
| float f_zero = 0.0f; |
| if (f) { |
| *f = eval_curve(curve, 0); |
| } else { |
| f = &f_zero; |
| } |
| |
| |
| float slope_min = -INFINITY_; |
| float slope_max = +INFINITY_; |
| for (int i = 1; i < N; ++i) { |
| float x = i * dx; |
| float y = eval_curve(curve, x); |
| |
| float slope_max_i = (y + tol - *f) / x, |
| slope_min_i = (y - tol - *f) / x; |
| if (slope_max_i < slope_min || slope_max < slope_min_i) { |
| // Slope intervals would no longer overlap. |
| break; |
| } |
| slope_max = fminf_(slope_max, slope_max_i); |
| slope_min = fmaxf_(slope_min, slope_min_i); |
| |
| float cur_slope = (y - *f) / x; |
| if (slope_min <= cur_slope && cur_slope <= slope_max) { |
| lin_points = i + 1; |
| *c = cur_slope; |
| } |
| } |
| |
| // Set D to the last point that met our tolerance. |
| *d = (lin_points - 1) * dx; |
| return lin_points; |
| } |
| |
| static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) { |
| bool ok = false; |
| if (tag->type == skcms_Signature_mft1) { |
| ok = read_tag_mft1(tag, a2b); |
| } else if (tag->type == skcms_Signature_mft2) { |
| ok = read_tag_mft2(tag, a2b); |
| } else if (tag->type == skcms_Signature_mAB) { |
| ok = read_tag_mab(tag, a2b, pcs_is_xyz); |
| } |
| if (!ok) { |
| return false; |
| } |
| |
| // Detect and canonicalize identity tables. |
| skcms_Curve* curves[] = { |
| a2b->input_channels > 0 ? a2b->input_curves + 0 : nullptr, |
| a2b->input_channels > 1 ? a2b->input_curves + 1 : nullptr, |
| a2b->input_channels > 2 ? a2b->input_curves + 2 : nullptr, |
| a2b->input_channels > 3 ? a2b->input_curves + 3 : nullptr, |
| a2b->matrix_channels > 0 ? a2b->matrix_curves + 0 : nullptr, |
| a2b->matrix_channels > 1 ? a2b->matrix_curves + 1 : nullptr, |
| a2b->matrix_channels > 2 ? a2b->matrix_curves + 2 : nullptr, |
| a2b->output_channels > 0 ? a2b->output_curves + 0 : nullptr, |
| a2b->output_channels > 1 ? a2b->output_curves + 1 : nullptr, |
| a2b->output_channels > 2 ? a2b->output_curves + 2 : nullptr, |
| }; |
| |
| for (int i = 0; i < ARRAY_COUNT(curves); i++) { |
| skcms_Curve* curve = curves[i]; |
| |
| if (curve && curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) { |
| int N = (int)curve->table_entries; |
| |
| float c = 0.0f, d = 0.0f, f = 0.0f; |
| if (N == fit_linear(curve, N, 1.0f/(2*N), &c,&d,&f) |
| && c == 1.0f |
| && f == 0.0f) { |
| curve->table_entries = 0; |
| curve->table_8 = nullptr; |
| curve->table_16 = nullptr; |
| curve->parametric = skcms_TransferFunction{1,1,0,0,0,0,0}; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) { |
| if (!profile || !profile->buffer || !tag) { return; } |
| if (idx > profile->tag_count) { return; } |
| const tag_Layout* tags = get_tag_table(profile); |
| tag->signature = read_big_u32(tags[idx].signature); |
| tag->size = read_big_u32(tags[idx].size); |
| tag->buf = read_big_u32(tags[idx].offset) + profile->buffer; |
| tag->type = read_big_u32(tag->buf); |
| } |
| |
| bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) { |
| if (!profile || !profile->buffer || !tag) { return false; } |
| const tag_Layout* tags = get_tag_table(profile); |
| for (uint32_t i = 0; i < profile->tag_count; ++i) { |
| if (read_big_u32(tags[i].signature) == sig) { |
| tag->signature = sig; |
| tag->size = read_big_u32(tags[i].size); |
| tag->buf = read_big_u32(tags[i].offset) + profile->buffer; |
| tag->type = read_big_u32(tag->buf); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool usable_as_src(const skcms_ICCProfile* profile) { |
| return profile->has_A2B |
| || (profile->has_trc && profile->has_toXYZD50); |
| } |
| |
| bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) { |
| assert(SAFE_SIZEOF(header_Layout) == 132); |
| |
| if (!profile) { |
| return false; |
| } |
| memset(profile, 0, SAFE_SIZEOF(*profile)); |
| |
| if (len < SAFE_SIZEOF(header_Layout)) { |
| return false; |
| } |
| |
| // Byte-swap all header fields |
| const header_Layout* header = (const header_Layout*)buf; |
| profile->buffer = (const uint8_t*)buf; |
| profile->size = read_big_u32(header->size); |
| uint32_t version = read_big_u32(header->version); |
| profile->data_color_space = read_big_u32(header->data_color_space); |
| profile->pcs = read_big_u32(header->pcs); |
| uint32_t signature = read_big_u32(header->signature); |
| float illuminant_X = read_big_fixed(header->illuminant_X); |
| float illuminant_Y = read_big_fixed(header->illuminant_Y); |
| float illuminant_Z = read_big_fixed(header->illuminant_Z); |
| profile->tag_count = read_big_u32(header->tag_count); |
| |
| // Validate signature, size (smaller than buffer, large enough to hold tag table), |
| // and major version |
| uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout); |
| if (signature != skcms_Signature_acsp || |
| profile->size > len || |
| profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size || |
| (version >> 24) > 4) { |
| return false; |
| } |
| |
| // Validate that illuminant is D50 white |
| if (fabsf_(illuminant_X - 0.9642f) > 0.0100f || |
| fabsf_(illuminant_Y - 1.0000f) > 0.0100f || |
| fabsf_(illuminant_Z - 0.8249f) > 0.0100f) { |
| return false; |
| } |
| |
| // Validate that all tag entries have sane offset + size |
| const tag_Layout* tags = get_tag_table(profile); |
| for (uint32_t i = 0; i < profile->tag_count; ++i) { |
| uint32_t tag_offset = read_big_u32(tags[i].offset); |
| uint32_t tag_size = read_big_u32(tags[i].size); |
| uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size; |
| if (tag_size < 4 || tag_end > profile->size) { |
| return false; |
| } |
| } |
| |
| if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) { |
| return false; |
| } |
| |
| bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ; |
| |
| // Pre-parse commonly used tags. |
| skcms_ICCTag kTRC; |
| if (profile->data_color_space == skcms_Signature_Gray && |
| skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) { |
| if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], nullptr)) { |
| // Malformed tag |
| return false; |
| } |
| profile->trc[1] = profile->trc[0]; |
| profile->trc[2] = profile->trc[0]; |
| profile->has_trc = true; |
| |
| if (pcs_is_xyz) { |
| profile->toXYZD50.vals[0][0] = illuminant_X; |
| profile->toXYZD50.vals[1][1] = illuminant_Y; |
| profile->toXYZD50.vals[2][2] = illuminant_Z; |
| profile->has_toXYZD50 = true; |
| } |
| } else { |
| skcms_ICCTag rTRC, gTRC, bTRC; |
| if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) && |
| skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) && |
| skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) { |
| if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], nullptr) || |
| !read_curve(gTRC.buf, gTRC.size, &profile->trc[1], nullptr) || |
| !read_curve(bTRC.buf, bTRC.size, &profile->trc[2], nullptr)) { |
| // Malformed TRC tags |
| return false; |
| } |
| profile->has_trc = true; |
| } |
| |
| skcms_ICCTag rXYZ, gXYZ, bXYZ; |
| if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) && |
| skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) && |
| skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) { |
| if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) { |
| // Malformed XYZ tags |
| return false; |
| } |
| profile->has_toXYZD50 = true; |
| } |
| } |
| |
| skcms_ICCTag a2b_tag; |
| |
| // For now, we're preferring A2B0, like Skia does and the ICC spec tells us to. |
| // TODO: prefer A2B1 (relative colormetric) over A2B0 (perceptual)? |
| // This breaks with the ICC spec, but we think it's a good idea, given that TRC curves |
| // and all our known users are thinking exclusively in terms of relative colormetric. |
| const uint32_t sigs[] = { skcms_Signature_A2B0, skcms_Signature_A2B1 }; |
| for (int i = 0; i < ARRAY_COUNT(sigs); i++) { |
| if (skcms_GetTagBySignature(profile, sigs[i], &a2b_tag)) { |
| if (!read_a2b(&a2b_tag, &profile->A2B, pcs_is_xyz)) { |
| // Malformed A2B tag |
| return false; |
| } |
| profile->has_A2B = true; |
| break; |
| } |
| } |
| |
| return usable_as_src(profile); |
| } |
| |
| |
| const skcms_ICCProfile* skcms_sRGB_profile() { |
| static const skcms_ICCProfile sRGB_profile = { |
| nullptr, // buffer, moot here |
| |
| 0, // size, moot here |
| skcms_Signature_RGB, // data_color_space |
| skcms_Signature_XYZ, // pcs |
| 0, // tag count, moot here |
| |
| // We choose to represent sRGB with its canonical transfer function, |
| // and with its canonical XYZD50 gamut matrix. |
| true, // has_trc, followed by the 3 trc curves |
| { |
| {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
| {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
| {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
| }, |
| |
| true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix |
| {{ |
| { 0.436065674f, 0.385147095f, 0.143066406f }, |
| { 0.222488403f, 0.716873169f, 0.060607910f }, |
| { 0.013916016f, 0.097076416f, 0.714096069f }, |
| }}, |
| |
| false, // has_A2B, followed by a2b itself which we don't care about. |
| { |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| {0,0,0,0}, |
| nullptr, |
| nullptr, |
| |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| {{ |
| { 0,0,0,0 }, |
| { 0,0,0,0 }, |
| { 0,0,0,0 }, |
| }}, |
| |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| }, |
| }; |
| return &sRGB_profile; |
| } |
| |
| const skcms_ICCProfile* skcms_XYZD50_profile() { |
| // Just like sRGB above, but with identity transfer functions and toXYZD50 matrix. |
| static const skcms_ICCProfile XYZD50_profile = { |
| nullptr, // buffer, moot here |
| |
| 0, // size, moot here |
| skcms_Signature_RGB, // data_color_space |
| skcms_Signature_XYZ, // pcs |
| 0, // tag count, moot here |
| |
| true, // has_trc, followed by the 3 trc curves |
| { |
| {{0, {1,1, 0,0,0,0,0}}}, |
| {{0, {1,1, 0,0,0,0,0}}}, |
| {{0, {1,1, 0,0,0,0,0}}}, |
| }, |
| |
| true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix |
| {{ |
| { 1,0,0 }, |
| { 0,1,0 }, |
| { 0,0,1 }, |
| }}, |
| |
| false, // has_A2B, followed by a2b itself which we don't care about. |
| { |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| {0,0,0,0}, |
| nullptr, |
| nullptr, |
| |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| {{ |
| { 0,0,0,0 }, |
| { 0,0,0,0 }, |
| { 0,0,0,0 }, |
| }}, |
| |
| 0, |
| { |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| {{0, {0,0, 0,0,0,0,0}}}, |
| }, |
| }, |
| }; |
| |
| return &XYZD50_profile; |
| } |
| |
| const skcms_TransferFunction* skcms_sRGB_TransferFunction() { |
| return &skcms_sRGB_profile()->trc[0].parametric; |
| } |
| |
| const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() { |
| static const skcms_TransferFunction sRGB_inv = |
| {0.416666657f, 1.137283325f, -0.0f, 12.920000076f, 0.003130805f, -0.054969788f, -0.0f}; |
| return &sRGB_inv; |
| } |
| |
| const skcms_TransferFunction* skcms_Identity_TransferFunction() { |
| static const skcms_TransferFunction identity = {1,1,0,0,0,0,0}; |
| return &identity; |
| } |
| |
| const uint8_t skcms_252_random_bytes[] = { |
| 8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215, |
| 119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30, |
| 154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191, |
| 194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57, |
| 108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211, |
| 70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164, |
| 137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225, |
| 9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214, |
| 129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232, |
| 140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54, |
| 219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63, |
| 123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193, |
| 189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133, |
| 174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4, |
| 2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88, |
| 112, 36, 224, 136, 202, 76, 94, 98, 175, 213 |
| }; |
| |
| bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) { |
| // Test for exactly equal profiles first. |
| if (A == B || 0 == memcmp(A,B, sizeof(skcms_ICCProfile))) { |
| return true; |
| } |
| |
| // For now this is the essentially the same strategy we use in test_only.c |
| // for our skcms_Transform() smoke tests: |
| // 1) transform A to XYZD50 |
| // 2) transform B to XYZD50 |
| // 3) return true if they're similar enough |
| // Our current criterion in 3) is maximum 1 bit error per XYZD50 byte. |
| |
| // skcms_252_random_bytes are 252 of a random shuffle of all possible bytes. |
| // 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing. |
| |
| if (A->data_color_space != B->data_color_space) { |
| return false; |
| } |
| |
| // Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK. |
| // TODO: working with RGBA_8888 either way is probably fastest. |
| skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888; |
| size_t npixels = 84; |
| if (A->data_color_space == skcms_Signature_CMYK) { |
| fmt = skcms_PixelFormat_RGBA_8888; |
| npixels = 63; |
| } |
| |
| // TODO: if A or B is a known profile (skcms_sRGB_profile, skcms_XYZD50_profile), |
| // use pre-canned results and skip that skcms_Transform() call? |
| uint8_t dstA[252], |
| dstB[252]; |
| if (!skcms_Transform( |
| skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A, |
| dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(), |
| npixels)) { |
| return false; |
| } |
| if (!skcms_Transform( |
| skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B, |
| dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(), |
| npixels)) { |
| return false; |
| } |
| |
| // TODO: make sure this final check has reasonable codegen. |
| for (size_t i = 0; i < 252; i++) { |
| if (abs((int)dstA[i] - (int)dstB[i]) > 1) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile, |
| const skcms_TransferFunction* inv_tf) { |
| if (!profile || !profile->has_trc) { |
| return false; |
| } |
| |
| return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) && |
| skcms_AreApproximateInverses(&profile->trc[1], inv_tf) && |
| skcms_AreApproximateInverses(&profile->trc[2], inv_tf); |
| } |
| |
| static bool is_zero_to_one(float x) { |
| return 0 <= x && x <= 1; |
| } |
| |
| typedef struct { float vals[3]; } skcms_Vector3; |
| |
| static skcms_Vector3 mv_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) { |
| skcms_Vector3 dst = {{0,0,0}}; |
| for (int row = 0; row < 3; ++row) { |
| dst.vals[row] = m->vals[row][0] * v->vals[0] |
| + m->vals[row][1] * v->vals[1] |
| + m->vals[row][2] * v->vals[2]; |
| } |
| return dst; |
| } |
| |
| bool skcms_AdaptToXYZD50(float wx, float wy, |
| skcms_Matrix3x3* toXYZD50) { |
| if (!is_zero_to_one(wx) || !is_zero_to_one(wy) || |
| !toXYZD50) { |
| return false; |
| } |
| |
| // Assumes that Y is 1.0f. |
| skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } }; |
| |
| // Now convert toXYZ matrix to toXYZD50. |
| skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } }; |
| |
| // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus |
| // the matrices below. The Bradford method is used by Adobe and is widely considered |
| // to be the best. |
| skcms_Matrix3x3 xyz_to_lms = {{ |
| { 0.8951f, 0.2664f, -0.1614f }, |
| { -0.7502f, 1.7135f, 0.0367f }, |
| { 0.0389f, -0.0685f, 1.0296f }, |
| }}; |
| skcms_Matrix3x3 lms_to_xyz = {{ |
| { 0.9869929f, -0.1470543f, 0.1599627f }, |
| { 0.4323053f, 0.5183603f, 0.0492912f }, |
| { -0.0085287f, 0.0400428f, 0.9684867f }, |
| }}; |
| |
| skcms_Vector3 srcCone = mv_mul(&xyz_to_lms, &wXYZ); |
| skcms_Vector3 dstCone = mv_mul(&xyz_to_lms, &wXYZD50); |
| |
| *toXYZD50 = {{ |
| { dstCone.vals[0] / srcCone.vals[0], 0, 0 }, |
| { 0, dstCone.vals[1] / srcCone.vals[1], 0 }, |
| { 0, 0, dstCone.vals[2] / srcCone.vals[2] }, |
| }}; |
| *toXYZD50 = skcms_Matrix3x3_concat(toXYZD50, &xyz_to_lms); |
| *toXYZD50 = skcms_Matrix3x3_concat(&lms_to_xyz, toXYZD50); |
| |
| return true; |
| } |
| |
| bool skcms_PrimariesToXYZD50(float rx, float ry, |
| float gx, float gy, |
| float bx, float by, |
| float wx, float wy, |
| skcms_Matrix3x3* toXYZD50) { |
| if (!is_zero_to_one(rx) || !is_zero_to_one(ry) || |
| !is_zero_to_one(gx) || !is_zero_to_one(gy) || |
| !is_zero_to_one(bx) || !is_zero_to_one(by) || |
| !is_zero_to_one(wx) || !is_zero_to_one(wy) || |
| !toXYZD50) { |
| return false; |
| } |
| |
| // First, we need to convert xy values (primaries) to XYZ. |
| skcms_Matrix3x3 primaries = {{ |
| { rx, gx, bx }, |
| { ry, gy, by }, |
| { 1 - rx - ry, 1 - gx - gy, 1 - bx - by }, |
| }}; |
| skcms_Matrix3x3 primaries_inv; |
| if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) { |
| return false; |
| } |
| |
| // Assumes that Y is 1.0f. |
| skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } }; |
| skcms_Vector3 XYZ = mv_mul(&primaries_inv, &wXYZ); |
| |
| skcms_Matrix3x3 toXYZ = {{ |
| { XYZ.vals[0], 0, 0 }, |
| { 0, XYZ.vals[1], 0 }, |
| { 0, 0, XYZ.vals[2] }, |
| }}; |
| toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ); |
| |
| skcms_Matrix3x3 DXtoD50; |
| if (!skcms_AdaptToXYZD50(wx, wy, &DXtoD50)) { |
| return false; |
| } |
| |
| *toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ); |
| return true; |
| } |
| |
| |
| bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) { |
| double a00 = src->vals[0][0], |
| a01 = src->vals[1][0], |
| a02 = src->vals[2][0], |
| a10 = src->vals[0][1], |
| a11 = src->vals[1][1], |
| a12 = src->vals[2][1], |
| a20 = src->vals[0][2], |
| a21 = src->vals[1][2], |
| a22 = src->vals[2][2]; |
| |
| double b0 = a00*a11 - a01*a10, |
| b1 = a00*a12 - a02*a10, |
| b2 = a01*a12 - a02*a11, |
| b3 = a20, |
| b4 = a21, |
| b5 = a22; |
| |
| double determinant = b0*b5 |
| - b1*b4 |
| + b2*b3; |
| |
| if (determinant == 0) { |
| return false; |
| } |
| |
| double invdet = 1.0 / determinant; |
| if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) { |
| return false; |
| } |
| |
| b0 *= invdet; |
| b1 *= invdet; |
| b2 *= invdet; |
| b3 *= invdet; |
| b4 *= invdet; |
| b5 *= invdet; |
| |
| dst->vals[0][0] = (float)( a11*b5 - a12*b4 ); |
| dst->vals[1][0] = (float)( a02*b4 - a01*b5 ); |
| dst->vals[2][0] = (float)( + b2 ); |
| dst->vals[0][1] = (float)( a12*b3 - a10*b5 ); |
| dst->vals[1][1] = (float)( a00*b5 - a02*b3 ); |
| dst->vals[2][1] = (float)( - b1 ); |
| dst->vals[0][2] = (float)( a10*b4 - a11*b3 ); |
| dst->vals[1][2] = (float)( a01*b3 - a00*b4 ); |
| dst->vals[2][2] = (float)( + b0 ); |
| |
| for (int r = 0; r < 3; ++r) |
| for (int c = 0; c < 3; ++c) { |
| if (!isfinitef_(dst->vals[r][c])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) { |
| skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } }; |
| for (int r = 0; r < 3; r++) |
| for (int c = 0; c < 3; c++) { |
| m.vals[r][c] = A->vals[r][0] * B->vals[0][c] |
| + A->vals[r][1] * B->vals[1][c] |
| + A->vals[r][2] * B->vals[2][c]; |
| } |
| return m; |
| } |
| |
| #if defined(__clang__) |
| [[clang::no_sanitize("float-divide-by-zero")]] // Checked for by classify() on the way out. |
| #endif |
| bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) { |
| TF_PQish pq; |
| TF_HLGish hlg; |
| switch (classify(*src, &pq, &hlg)) { |
| case Bad: return false; |
| case sRGBish: break; // handled below |
| |
| case PQish: |
| *dst = { TFKind_marker(PQish), -pq.A, pq.D, 1.0f/pq.F |
| , pq.B, -pq.E, 1.0f/pq.C}; |
| return true; |
| |
| case HLGish: |
| *dst = { TFKind_marker(HLGinvish), 1.0f/hlg.R, 1.0f/hlg.G |
| , 1.0f/hlg.a, hlg.b, hlg.c, 0 }; |
| return true; |
| |
| case HLGinvish: |
| *dst = { TFKind_marker(HLGish), 1.0f/hlg.R, 1.0f/hlg.G |
| , 1.0f/hlg.a, hlg.b, hlg.c, 0 }; |
| return true; |
| } |
| |
| assert (classify(*src) == sRGBish); |
| |
| // We're inverting this function, solving for x in terms of y. |
| // y = (cx + f) x < d |
| // (ax + b)^g + e x ≥ d |
| // The inverse of this function can be expressed in the same piecewise form. |
| skcms_TransferFunction inv = {0,0,0,0,0,0,0}; |
| |
| // We'll start by finding the new threshold inv.d. |
| // In principle we should be able to find that by solving for y at x=d from either side. |
| // (If those two d values aren't the same, it's a discontinuous transfer function.) |
| float d_l = src->c * src->d + src->f, |
| d_r = powf_(src->a * src->d + src->b, src->g) + src->e; |
| if (fabsf_(d_l - d_r) > 1/512.0f) { |
| return false; |
| } |
| inv.d = d_l; // TODO(mtklein): better in practice to choose d_r? |
| |
| // When d=0, the linear section collapses to a point. We leave c,d,f all zero in that case. |
| if (inv.d > 0) { |
| // Inverting the linear section is pretty straightfoward: |
| // y = cx + f |
| // y - f = cx |
| // (1/c)y - f/c = x |
| inv.c = 1.0f/src->c; |
| inv.f = -src->f/src->c; |
| } |
| |
| // The interesting part is inverting the nonlinear section: |
| // y = (ax + b)^g + e. |
| // y - e = (ax + b)^g |
| // (y - e)^1/g = ax + b |
| // (y - e)^1/g - b = ax |
| // (1/a)(y - e)^1/g - b/a = x |
| // |
| // To make that fit our form, we need to move the (1/a) term inside the exponentiation: |
| // let k = (1/a)^g |
| // (1/a)( y - e)^1/g - b/a = x |
| // (ky - ke)^1/g - b/a = x |
| |
| float k = powf_(src->a, -src->g); // (1/a)^g == a^-g |
| inv.g = 1.0f / src->g; |
| inv.a = k; |
| inv.b = -k * src->e; |
| inv.e = -src->b / src->a; |
| |
| // We need to enforce the same constraints here that we do when fitting a curve, |
| // a >= 0 and ad+b >= 0. These constraints are checked by classify(), so they're true |
| // of the source function if we're here. |
| |
| // Just like when fitting the curve, there's really no way to rescue a < 0. |
| if (inv.a < 0) { |
| return false; |
| } |
| // On the other hand we can rescue an ad+b that's gone slightly negative here. |
| if (inv.a * inv.d + inv.b < 0) { |
| inv.b = -inv.a * inv.d; |
| } |
| |
| // That should usually make classify(inv) == sRGBish true, but there are a couple situations |
| // where we might still fail here, like non-finite parameter values. |
| if (classify(inv) != sRGBish) { |
| return false; |
| } |
| |
| assert (inv.a >= 0); |
| assert (inv.a * inv.d + inv.b >= 0); |
| |
| // Now in principle we're done. |
| // But to preserve the valuable invariant inv(src(1.0f)) == 1.0f, we'll tweak |
| // e or f of the inverse, depending on which segment contains src(1.0f). |
| float s = skcms_TransferFunction_eval(src, 1.0f); |
| if (!isfinitef_(s)) { |
| return false; |
| } |
| |
| float sign = s < 0 ? -1.0f : 1.0f; |
| s *= sign; |
| if (s < inv.d) { |
| inv.f = 1.0f - sign * inv.c * s; |
| } else { |
| inv.e = 1.0f - sign * powf_(inv.a * s + inv.b, inv.g); |
| } |
| |
| *dst = inv; |
| return classify(*dst) == sRGBish; |
| } |
| |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
| |
| // From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}: |
| // |
| // tf(x) = cx + f x < d |
| // tf(x) = (ax + b)^g + e x ≥ d |
| // |
| // When fitting, we add the additional constraint that both pieces meet at d: |
| // |
| // cd + f = (ad + b)^g + e |
| // |
| // Solving for e and folding it through gives an alternate formulation of the non-linear piece: |
| // |
| // tf(x) = cx + f x < d |
| // tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d |
| // |
| // Our overall strategy is then: |
| // For a couple tolerances, |
| // - fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows |
| // - invert c,d,f |
| // - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f |
| // (and by constraint, inverted e) to the inverse of the table. |
| // Return the parameters with least maximum error. |
| // |
| // To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals |
| // of round-trip f_inv(x), the inverse of the non-linear piece of f(x). |
| // |
| // let y = Table(x) |
| // r(x) = x - f_inv(y) |
| // |
| // ∂r/∂g = ln(ay + b)*(ay + b)^g |
| // - ln(ad + b)*(ad + b)^g |
| // ∂r/∂a = yg(ay + b)^(g-1) |
| // - dg(ad + b)^(g-1) |
| // ∂r/∂b = g(ay + b)^(g-1) |
| // - g(ad + b)^(g-1) |
| |
| // Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P, |
| // and fill out the gradient of the residual into dfdP. |
| static float rg_nonlinear(float x, |
| const skcms_Curve* curve, |
| const skcms_TransferFunction* tf, |
| float dfdP[3]) { |
| const float y = eval_curve(curve, x); |
| |
| const float g = tf->g, a = tf->a, b = tf->b, |
| c = tf->c, d = tf->d, f = tf->f; |
| |
| const float Y = fmaxf_(a*y + b, 0.0f), |
| D = a*d + b; |
| assert (D >= 0); |
| |
| // The gradient. |
| dfdP[0] = logf_(Y)*powf_(Y, g) |
| - logf_(D)*powf_(D, g); |
| dfdP[1] = y*g*powf_(Y, g-1) |
| - d*g*powf_(D, g-1); |
| dfdP[2] = g*powf_(Y, g-1) |
| - g*powf_(D, g-1); |
| |
| // The residual. |
| const float f_inv = powf_(Y, g) |
| - powf_(D, g) |
| + c*d + f; |
| return x - f_inv; |
| } |
| |
| static bool gauss_newton_step(const skcms_Curve* curve, |
| skcms_TransferFunction* tf, |
| float x0, float dx, int N) { |
| // We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing. |
| // |
| // Let P = [ tf->g, tf->a, tf->b ] (the three terms that we're adjusting). |
| // |
| // We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P), |
| // where r(P) is the residual vector |
| // and Jf is the Jacobian matrix of f(), ∂r/∂P. |
| // |
| // Let's review the shape of each of these expressions: |
| // r(P) is [N x 1], a column vector with one entry per value of x tested |
| // Jf is [N x 3], a matrix with an entry for each (x,P) pair |
| // Jf^T is [3 x N], the transpose of Jf |
| // |
| // Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix, |
| // and so is its inverse (Jf^T Jf)^-1 |
| // Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P |
| // |
| // Our implementation strategy to get to the final ∆P is |
| // 1) evaluate Jf^T Jf, call that lhs |
| // 2) evaluate Jf^T r(P), call that rhs |
| // 3) invert lhs |
| // 4) multiply inverse lhs by rhs |
| // |
| // This is a friendly implementation strategy because we don't have to have any |
| // buffers that scale with N, and equally nice don't have to perform any matrix |
| // operations that are variable size. |
| // |
| // Other implementation strategies could trade this off, e.g. evaluating the |
| // pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by |
| // the residuals. That would probably require implementing singular value |
| // decomposition, and would create a [3 x N] matrix to be multiplied by the |
| // [N x 1] residual vector, but on the upside I think that'd eliminate the |
| // possibility of this gauss_newton_step() function ever failing. |
| |
| // 0) start off with lhs and rhs safely zeroed. |
| skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }}; |
| skcms_Vector3 rhs = { {0,0,0} }; |
| |
| // 1,2) evaluate lhs and evaluate rhs |
| // We want to evaluate Jf only once, but both lhs and rhs involve Jf^T, |
| // so we'll have to update lhs and rhs at the same time. |
| for (int i = 0; i < N; i++) { |
| float x = x0 + i*dx; |
| |
| float dfdP[3] = {0,0,0}; |
| float resid = rg_nonlinear(x,curve,tf, dfdP); |
| |
| for (int r = 0; r < 3; r++) { |
| for (int c = 0; c < 3; c++) { |
| lhs.vals[r][c] += dfdP[r] * dfdP[c]; |
| } |
| rhs.vals[r] += dfdP[r] * resid; |
| } |
| } |
| |
| // If any of the 3 P parameters are unused, this matrix will be singular. |
| // Detect those cases and fix them up to indentity instead, so we can invert. |
| for (int k = 0; k < 3; k++) { |
| if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 && |
| lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) { |
| lhs.vals[k][k] = 1; |
| } |
| } |
| |
| // 3) invert lhs |
| skcms_Matrix3x3 lhs_inv; |
| if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) { |
| return false; |
| } |
| |
| // 4) multiply inverse lhs by rhs |
| skcms_Vector3 dP = mv_mul(&lhs_inv, &rhs); |
| tf->g += dP.vals[0]; |
| tf->a += dP.vals[1]; |
| tf->b += dP.vals[2]; |
| return isfinitef_(tf->g) && isfinitef_(tf->a) && isfinitef_(tf->b); |
| } |
| |
| static float max_roundtrip_error_checked(const skcms_Curve* curve, |
| const skcms_TransferFunction* tf_inv) { |
| skcms_TransferFunction tf; |
| if (!skcms_TransferFunction_invert(tf_inv, &tf) || sRGBish != classify(tf)) { |
| return INFINITY_; |
| } |
| |
| skcms_TransferFunction tf_inv_again; |
| if (!skcms_TransferFunction_invert(&tf, &tf_inv_again)) { |
| return INFINITY_; |
| } |
| |
| return skcms_MaxRoundtripError(curve, &tf_inv_again); |
| } |
| |
| // Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't. |
| static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) { |
| // This enforces a few constraints that are not modeled in gauss_newton_step()'s optimization. |
| auto fixup_tf = [tf]() { |
| // a must be non-negative. That ensures the function is monotonically increasing. |
| // We don't really know how to fix up a if it goes negative. |
| if (tf->a < 0) { |
| return false; |
| } |
| // ad+b must be non-negative. That ensures we don't end up with complex numbers in powf. |
| // We feel just barely not uneasy enough to tweak b so ad+b is zero in this case. |
| if (tf->a * tf->d + tf->b < 0) { |
| tf->b = -tf->a * tf->d; |
| } |
| assert (tf->a >= 0 && |
| tf->a * tf->d + tf->b >= 0); |
| |
| // cd+f must be ~= (ad+b)^g+e. That ensures the function is continuous. We keep e as a free |
| // parameter so we can guarantee this. |
| tf->e = tf->c*tf->d + tf->f |
| - powf_(tf->a*tf->d + tf->b, tf->g); |
| |
| return true; |
| }; |
| |
| if (!fixup_tf()) { |
| return false; |
| } |
| |
| // No matter where we start, dx should always represent N even steps from 0 to 1. |
| const float dx = 1.0f / (N-1); |
| |
| skcms_TransferFunction best_tf = *tf; |
| float best_max_error = INFINITY_; |
| |
| // Need this or several curves get worse... *sigh* |
| float init_error = max_roundtrip_error_checked(curve, tf); |
| if (init_error < best_max_error) { |
| best_max_error = init_error; |
| best_tf = *tf; |
| } |
| |
| // As far as we can tell, 1 Gauss-Newton step won't converge, and 3 steps is no better than 2. |
| for (int j = 0; j < 8; j++) { |
| if (!gauss_newton_step(curve, tf, L*dx, dx, N-L) || !fixup_tf()) { |
| *tf = best_tf; |
| return isfinitef_(best_max_error); |
| } |
| |
| float max_error = max_roundtrip_error_checked(curve, tf); |
| if (max_error < best_max_error) { |
| best_max_error = max_error; |
| best_tf = *tf; |
| } |
| } |
| |
| *tf = best_tf; |
| return isfinitef_(best_max_error); |
| } |
| |
| bool skcms_ApproximateCurve(const skcms_Curve* curve, |
| skcms_TransferFunction* approx, |
| float* max_error) { |
| if (!curve || !approx || !max_error) { |
| return false; |
| } |
| |
| if (curve->table_entries == 0) { |
| // No point approximating an skcms_TransferFunction with an skcms_TransferFunction! |
| return false; |
| } |
| |
| if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) { |
| // We need at least two points, and must put some reasonable cap on the maximum number. |
| return false; |
| } |
| |
| int N = (int)curve->table_entries; |
| const float dx = 1.0f / (N - 1); |
| |
| *max_error = INFINITY_; |
| const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f }; |
| for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) { |
| skcms_TransferFunction tf, |
| tf_inv; |
| |
| // It's problematic to fit curves with non-zero f, so always force it to zero explicitly. |
| tf.f = 0.0f; |
| int L = fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d); |
| |
| if (L == N) { |
| // If the entire data set was linear, move the coefficients to the nonlinear portion |
| // with G == 1. This lets use a canonical representation with d == 0. |
| tf.g = 1; |
| tf.a = tf.c; |
| tf.b = tf.f; |
| tf.c = tf.d = tf.e = tf.f = 0; |
| } else if (L == N - 1) { |
| // Degenerate case with only two points in the nonlinear segment. Solve directly. |
| tf.g = 1; |
| tf.a = (eval_curve(curve, (N-1)*dx) - |
| eval_curve(curve, (N-2)*dx)) |
| / dx; |
| tf.b = eval_curve(curve, (N-2)*dx) |
| - tf.a * (N-2)*dx; |
| tf.e = 0; |
| } else { |
| // Start by guessing a gamma-only curve through the midpoint. |
| int mid = (L + N) / 2; |
| float mid_x = mid / (N - 1.0f); |
| float mid_y = eval_curve(curve, mid_x); |
| tf.g = log2f_(mid_y) / log2f_(mid_x); |
| tf.a = 1; |
| tf.b = 0; |
| tf.e = tf.c*tf.d + tf.f |
| - powf_(tf.a*tf.d + tf.b, tf.g); |
| |
| |
| if (!skcms_TransferFunction_invert(&tf, &tf_inv) || |
| !fit_nonlinear(curve, L,N, &tf_inv)) { |
| continue; |
| } |
| |
| // We fit tf_inv, so calculate tf to keep in sync. |
| // fit_nonlinear() should guarantee invertibility. |
| if (!skcms_TransferFunction_invert(&tf_inv, &tf)) { |
| assert(false); |
| continue; |
| } |
| } |
| |
| // We'd better have a sane, sRGB-ish TF by now. |
| // Other non-Bad TFs would be fine, but we know we've only ever tried to fit sRGBish; |
| // anything else is just some accident of math and the way we pun tf.g as a type flag. |
| // fit_nonlinear() should guarantee this, but the special cases may fail this test. |
| if (sRGBish != classify(tf)) { |
| continue; |
| } |
| |
| // We find our error by roundtripping the table through tf_inv. |
| // |
| // (The most likely use case for this approximation is to be inverted and |
| // used as the transfer function for a destination color space.) |
| // |
| // We've kept tf and tf_inv in sync above, but we can't guarantee that tf is |
| // invertible, so re-verify that here (and use the new inverse for testing). |
| // fit_nonlinear() should guarantee this, but the special cases that don't use |
| // it may fail this test. |
| if (!skcms_TransferFunction_invert(&tf, &tf_inv)) { |
| continue; |
| } |
| |
| float err = skcms_MaxRoundtripError(curve, &tf_inv); |
| if (*max_error > err) { |
| *max_error = err; |
| *approx = tf; |
| } |
| } |
| return isfinitef_(*max_error); |
| } |
| |
| // ~~~~ Impl. of skcms_Transform() ~~~~ |
| |
| typedef enum { |
| Op_load_a8, |
| Op_load_g8, |
| Op_load_8888_palette8, |
| Op_load_4444, |
| Op_load_565, |
| Op_load_888, |
| Op_load_8888, |
| Op_load_1010102, |
| Op_load_161616LE, |
| Op_load_16161616LE, |
| Op_load_161616BE, |
| Op_load_16161616BE, |
| Op_load_hhh, |
| Op_load_hhhh, |
| Op_load_fff, |
| Op_load_ffff, |
| |
| Op_swap_rb, |
| Op_clamp, |
| Op_invert, |
| Op_force_opaque, |
| Op_premul, |
| Op_unpremul, |
| Op_matrix_3x3, |
| Op_matrix_3x4, |
| Op_lab_to_xyz, |
| |
| Op_tf_r, |
| Op_tf_g, |
| Op_tf_b, |
| Op_tf_a, |
| |
| Op_pq_r, |
| Op_pq_g, |
| Op_pq_b, |
| Op_pq_a, |
| |
| Op_hlg_r, |
| Op_hlg_g, |
| Op_hlg_b, |
| Op_hlg_a, |
| |
| Op_hlginv_r, |
| Op_hlginv_g, |
| Op_hlginv_b, |
| Op_hlginv_a, |
| |
| Op_table_r, |
| Op_table_g, |
| Op_table_b, |
| Op_table_a, |
| |
| Op_clut, |
| |
| Op_store_a8, |
| Op_store_g8, |
| Op_store_4444, |
| Op_store_565, |
| Op_store_888, |
| Op_store_8888, |
| Op_store_1010102, |
| Op_store_161616LE, |
| Op_store_16161616LE, |
| Op_store_161616BE, |
| Op_store_16161616BE, |
| Op_store_hhh, |
| Op_store_hhhh, |
| Op_store_fff, |
| Op_store_ffff, |
| } Op; |
| |
| #if defined(__clang__) |
| template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N))); |
| #elif defined(__GNUC__) |
| // For some reason GCC accepts this nonsense, but not the more straightforward version, |
| // template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T)))); |
| template <int N, typename T> |
| struct VecHelper { typedef T __attribute__((vector_size(N*sizeof(T)))) V; }; |
| |
| template <int N, typename T> using Vec = typename VecHelper<N,T>::V; |
| #endif |
| |
| // First, instantiate our default exec_ops() implementation using the default compiliation target. |
| |
| namespace baseline { |
| #if defined(SKCMS_PORTABLE) || !(defined(__clang__) || defined(__GNUC__)) \ |
| || (defined(__EMSCRIPTEN_major__) && !defined(__wasm_simd128__)) |
| #define N 1 |
| template <typename T> using V = T; |
| using Color = float; |
| #elif defined(__AVX512F__) |
| #define N 16 |
| template <typename T> using V = Vec<N,T>; |
| using Color = float; |
| #elif defined(__AVX__) |
| #define N 8 |
| template <typename T> using V = Vec<N,T>; |
| using Color = float; |
| #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(SKCMS_OPT_INTO_NEON_FP16) |
| #define N 8 |
| template <typename T> using V = Vec<N,T>; |
| using Color = _Float16; |
| #else |
| #define N 4 |
| template <typename T> using V = Vec<N,T>; |
| using Color = float; |
| #endif |
| |
| #include "src/Transform_inl.h" |
| #undef N |
| } |
| |
| // Now, instantiate any other versions of run_program() we may want for runtime detection. |
| #if !defined(SKCMS_PORTABLE) && \ |
| !defined(SKCMS_NO_RUNTIME_CPU_DETECTION) && \ |
| (( defined(__clang__) && __clang_major__ >= 5) || \ |
| (!defined(__clang__) && defined(__GNUC__))) \ |
| && defined(__x86_64__) |
| |
| #if !defined(__AVX2__) |
| #if defined(__clang__) |
| #pragma clang attribute push(__attribute__((target("avx2,f16c"))), apply_to=function) |
| #elif defined(__GNUC__) |
| #pragma GCC push_options |
| #pragma GCC target("avx2,f16c") |
| #endif |
| |
| namespace hsw { |
| #define USING_AVX |
| #define USING_AVX_F16C |
| #define USING_AVX2 |
| #define N 8 |
| template <typename T> using V = Vec<N,T>; |
| using Color = float; |
| |
| #include "src/Transform_inl.h" |
| |
| // src/Transform_inl.h will undefine USING_* for us. |
| #undef N |
| } |
| |
| #if defined(__clang__) |
| #pragma clang attribute pop |
| #elif defined(__GNUC__) |
| #pragma GCC pop_options |
| #endif |
| |
| #define TEST_FOR_HSW |
| #endif |
| |
| #if !defined(__AVX512F__) |
| #if defined(__clang__) |
| #pragma clang attribute push(__attribute__((target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl"))), apply_to=function) |
| #elif defined(__GNUC__) |
| #pragma GCC push_options |
| #pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl") |
| #endif |
| |
| namespace skx { |
| #define USING_AVX512F |
| #define N 16 |
| template <typename T> using V = Vec<N,T>; |
| using Color = float; |
| |
| #include "src/Transform_inl.h" |
| |
| // src/Transform_inl.h will undefine USING_* for us. |
| #undef N |
| } |
| |
| #if defined(__clang__) |
| #pragma clang attribute pop |
| #elif defined(__GNUC__) |
| #pragma GCC pop_options |
| #endif |
| |
| #define TEST_FOR_SKX |
| #endif |
| |
| #if defined(TEST_FOR_HSW) || defined(TEST_FOR_SKX) |
| enum class CpuType { None, HSW, SKX }; |
| static CpuType cpu_type() { |
| static const CpuType type = []{ |
| // See http://www.sandpile.org/x86/cpuid.htm |
| |
| // First, a basic cpuid(1) lets us check prerequisites for HSW, SKX. |
| uint32_t eax, ebx, ecx, edx; |
| __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) |
| : "0"(1), "2"(0)); |
| if ((edx & (1u<<25)) && // SSE |
| (edx & (1u<<26)) && // SSE2 |
| (ecx & (1u<< 0)) && // SSE3 |
| (ecx & (1u<< 9)) && // SSSE3 |
| (ecx & (1u<<12)) && // FMA (N.B. not used, avoided even) |
| (ecx & (1u<<19)) && // SSE4.1 |
| (ecx & (1u<<20)) && // SSE4.2 |
| (ecx & (1u<<26)) && // XSAVE |
| (ecx & (1u<<27)) && // OSXSAVE |
| (ecx & (1u<<28)) && // AVX |
| (ecx & (1u<<29))) { // F16C |
| |
| // Call cpuid(7) to check for AVX2 and AVX-512 bits. |
| __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) |
| : "0"(7), "2"(0)); |
| // eax from xgetbv(0) will tell us whether XMM, YMM, and ZMM state is saved. |
| uint32_t xcr0, dont_need_edx; |
| __asm__ __volatile__("xgetbv" : "=a"(xcr0), "=d"(dont_need_edx) : "c"(0)); |
| |
| if ((xcr0 & (1u<<1)) && // XMM register state saved? |
| (xcr0 & (1u<<2)) && // YMM register state saved? |
| (ebx & (1u<<5))) { // AVX2 |
| // At this point we're at least HSW. Continue checking for SKX. |
| if ((xcr0 & (1u<< 5)) && // Opmasks state saved? |
| (xcr0 & (1u<< 6)) && // First 16 ZMM registers saved? |
| (xcr0 & (1u<< 7)) && // High 16 ZMM registers saved? |
| (ebx & (1u<<16)) && // AVX512F |
| (ebx & (1u<<17)) && // AVX512DQ |
| (ebx & (1u<<28)) && // AVX512CD |
| (ebx & (1u<<30)) && // AVX512BW |
| (ebx & (1u<<31))) { // AVX512VL |
| return CpuType::SKX; |
| } |
| return CpuType::HSW; |
| } |
| } |
| return CpuType::None; |
| }(); |
| return type; |
| } |
| #endif |
| |
| #endif |
| |
| typedef struct { |
| Op op; |
| const void* arg; |
| } OpAndArg; |
| |
| static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) { |
| static const struct { Op sRGBish, PQish, HLGish, HLGinvish, table; } ops[] = { |
| { Op_tf_r, Op_pq_r, Op_hlg_r, Op_hlginv_r, Op_table_r }, |
| { Op_tf_g, Op_pq_g, Op_hlg_g, Op_hlginv_g, Op_table_g }, |
| { Op_tf_b, Op_pq_b, Op_hlg_b, Op_hlginv_b, Op_table_b }, |
| { Op_tf_a, Op_pq_a, Op_hlg_a, Op_hlginv_a, Op_table_a }, |
| }; |
| const auto& op = ops[channel]; |
| |
| if (curve->table_entries == 0) { |
| const OpAndArg noop = { Op_load_a8/*doesn't matter*/, nullptr }; |
| |
| const skcms_TransferFunction& tf = curve->parametric; |
| |
| if (tf.g == 1 && tf.a == 1 && |
| tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0) { |
| return noop; |
| } |
| |
| switch (classify(tf)) { |
| case Bad: return noop; |
| case sRGBish: return OpAndArg{op.sRGBish, &tf}; |
| case PQish: return OpAndArg{op.PQish, &tf}; |
| case HLGish: return OpAndArg{op.HLGish, &tf}; |
| case HLGinvish: return OpAndArg{op.HLGinvish, &tf}; |
| } |
| } |
| return OpAndArg{op.table, curve}; |
| } |
| |
| static size_t bytes_per_pixel(skcms_PixelFormat fmt) { |
| switch (fmt >> 1) { // ignore rgb/bgr |
| case skcms_PixelFormat_A_8 >> 1: return 1; |
| case skcms_PixelFormat_G_8 >> 1: return 1; |
| case skcms_PixelFormat_RGBA_8888_Palette8 >> 1: return 1; |
| case skcms_PixelFormat_ABGR_4444 >> 1: return 2; |
| case skcms_PixelFormat_RGB_565 >> 1: return 2; |
| case skcms_PixelFormat_RGB_888 >> 1: return 3; |
| case skcms_PixelFormat_RGBA_8888 >> 1: return 4; |
| case skcms_PixelFormat_RGBA_1010102 >> 1: return 4; |
| case skcms_PixelFormat_RGB_161616LE >> 1: return 6; |
| case skcms_PixelFormat_RGBA_16161616LE >> 1: return 8; |
| case skcms_PixelFormat_RGB_161616BE >> 1: return 6; |
| case skcms_PixelFormat_RGBA_16161616BE >> 1: return 8; |
| case skcms_PixelFormat_RGB_hhh_Norm >> 1: return 6; |
| case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: return 8; |
| case skcms_PixelFormat_RGB_hhh >> 1: return 6; |
| case skcms_PixelFormat_RGBA_hhhh >> 1: return 8; |
| case skcms_PixelFormat_RGB_fff >> 1: return 12; |
| case skcms_PixelFormat_RGBA_ffff >> 1: return 16; |
| } |
| assert(false); |
| return 0; |
| } |
| |
| static bool prep_for_destination(const skcms_ICCProfile* profile, |
| skcms_Matrix3x3* fromXYZD50, |
| skcms_TransferFunction* invR, |
| skcms_TransferFunction* invG, |
| skcms_TransferFunction* invB) { |
| // We only support destinations with parametric transfer functions |
| // and with gamuts that can be transformed from XYZD50. |
| return profile->has_trc |
| && profile->has_toXYZD50 |
| && profile->trc[0].table_entries == 0 |
| && profile->trc[1].table_entries == 0 |
| && profile->trc[2].table_entries == 0 |
| && skcms_TransferFunction_invert(&profile->trc[0].parametric, invR) |
| && skcms_TransferFunction_invert(&profile->trc[1].parametric, invG) |
| && skcms_TransferFunction_invert(&profile->trc[2].parametric, invB) |
| && skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50); |
| } |
| |
| bool skcms_Transform(const void* src, |
| skcms_PixelFormat srcFmt, |
| skcms_AlphaFormat srcAlpha, |
| const skcms_ICCProfile* srcProfile, |
| void* dst, |
| skcms_PixelFormat dstFmt, |
| skcms_AlphaFormat dstAlpha, |
| const skcms_ICCProfile* dstProfile, |
| size_t npixels) { |
| return skcms_TransformWithPalette(src, srcFmt, srcAlpha, srcProfile, |
| dst, dstFmt, dstAlpha, dstProfile, |
| npixels, nullptr); |
| } |
| |
| bool skcms_TransformWithPalette(const void* src, |
| skcms_PixelFormat srcFmt, |
| skcms_AlphaFormat srcAlpha, |
| const skcms_ICCProfile* srcProfile, |
| void* dst, |
| skcms_PixelFormat dstFmt, |
| skcms_AlphaFormat dstAlpha, |
| const skcms_ICCProfile* dstProfile, |
| size_t nz, |
| const void* palette) { |
| const size_t dst_bpp = bytes_per_pixel(dstFmt), |
| src_bpp = bytes_per_pixel(srcFmt); |
| // Let's just refuse if the request is absurdly big. |
| if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) { |
| return false; |
| } |
| int n = (int)nz; |
| |
| // Null profiles default to sRGB. Passing null for both is handy when doing format conversion. |
| if (!srcProfile) { |
| srcProfile = skcms_sRGB_profile(); |
| } |
| if (!dstProfile) { |
| dstProfile = skcms_sRGB_profile(); |
| } |
| |
| // We can't transform in place unless the PixelFormats are the same size. |
| if (dst == src && dst_bpp != src_bpp) { |
| return false; |
| } |
| // TODO: more careful alias rejection (like, dst == src + 1)? |
| |
| if (needs_palette(srcFmt) && !palette) { |
| return false; |
| } |
| |
| Op program [32]; |
| const void* arguments[32]; |
| |
| Op* ops = program; |
| const void** args = arguments; |
| |
| // These are always parametric curves of some sort. |
| skcms_Curve dst_curves[3]; |
| dst_curves[0].table_entries = |
| dst_curves[1].table_entries = |
| dst_curves[2].table_entries = 0; |
| |
| skcms_Matrix3x3 from_xyz; |
| |
| switch (srcFmt >> 1) { |
| default: return false; |
| case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_load_a8; break; |
| case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_load_g8; break; |
| case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_load_4444; break; |
| case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_load_565; break; |
| case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_load_888; break; |
| case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_load_8888; break; |
| case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_load_1010102; break; |
| case skcms_PixelFormat_RGB_161616LE >> 1: *ops++ = Op_load_161616LE; break; |
| case skcms_PixelFormat_RGBA_16161616LE >> 1: *ops++ = Op_load_16161616LE; break; |
| case skcms_PixelFormat_RGB_161616BE >> 1: *ops++ = Op_load_161616BE; break; |
| case skcms_PixelFormat_RGBA_16161616BE >> 1: *ops++ = Op_load_16161616BE; break; |
| case skcms_PixelFormat_RGB_hhh_Norm >> 1: *ops++ = Op_load_hhh; break; |
| case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: *ops++ = Op_load_hhhh; break; |
| case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_load_hhh; break; |
| case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_load_hhhh; break; |
| case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_load_fff; break; |
| case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_load_ffff; break; |
| |
| case skcms_PixelFormat_RGBA_8888_Palette8 >> 1: *ops++ = Op_load_8888_palette8; |
| *args++ = palette; |
| break; |
| } |
| if (srcFmt == skcms_PixelFormat_RGB_hhh_Norm || |
| srcFmt == skcms_PixelFormat_RGBA_hhhh_Norm) { |
| *ops++ = Op_clamp; |
| } |
| if (srcFmt & 1) { |
| *ops++ = Op_swap_rb; |
| } |
| skcms_ICCProfile gray_dst_profile; |
| if ((dstFmt >> 1) == (skcms_PixelFormat_G_8 >> 1)) { |
| // When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform |
| // luminance (Y) by the destination transfer function. |
| gray_dst_profile = *dstProfile; |
| skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50); |
| dstProfile = &gray_dst_profile; |
| } |
| |
| if (srcProfile->data_color_space == skcms_Signature_CMYK) { |
| // Photoshop creates CMYK images as inverse CMYK. |
| // These happen to be the only ones we've _ever_ seen. |
| *ops++ = Op_invert; |
| // With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K. |
| srcAlpha = skcms_AlphaFormat_Unpremul; |
| } |
| |
| if (srcAlpha == skcms_AlphaFormat_Opaque) { |
| *ops++ = Op_force_opaque; |
| } else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) { |
| *ops++ = Op_unpremul; |
| } |
| |
| if (dstProfile != srcProfile) { |
| |
| if (!prep_for_destination(dstProfile, |
| &from_xyz, |
| &dst_curves[0].parametric, |
| &dst_curves[1].parametric, |
| &dst_curves[2].parametric)) { |
| return false; |
| } |
| |
| if (srcProfile->has_A2B) { |
| if (srcProfile->A2B.input_channels) { |
| for (int i = 0; i < (int)srcProfile->A2B.input_channels; i++) { |
| OpAndArg oa = select_curve_op(&srcProfile->A2B.input_curves[i], i); |
| if (oa.arg) { |
| *ops++ = oa.op; |
| *args++ = oa.arg; |
| } |
| } |
| *ops++ = Op_clamp; |
| *ops++ = Op_clut; |
| *args++ = &srcProfile->A2B; |
| } |
| |
| if (srcProfile->A2B.matrix_channels == 3) { |
| for (int i = 0; i < 3; i++) { |
| OpAndArg oa = select_curve_op(&srcProfile->A2B.matrix_curves[i], i); |
| if (oa.arg) { |
| *ops++ = oa.op; |
| *args++ = oa.arg; |
| } |
| } |
| |
| static const skcms_Matrix3x4 I = {{ |
| {1,0,0,0}, |
| {0,1,0,0}, |
| {0,0,1,0}, |
| }}; |
| if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) { |
| *ops++ = Op_matrix_3x4; |
| *args++ = &srcProfile->A2B.matrix; |
| } |
| } |
| |
| if (srcProfile->A2B.output_channels == 3) { |
| for (int i = 0; i < 3; i++) { |
| OpAndArg oa = select_curve_op(&srcProfile->A2B.output_curves[i], i); |
| if (oa.arg) { |
| *ops++ = oa.op; |
| *args++ = oa.arg; |
| } |
| } |
| } |
| |
| if (srcProfile->pcs == skcms_Signature_Lab) { |
| *ops++ = Op_lab_to_xyz; |
| } |
| |
| } else if (srcProfile->has_trc && srcProfile->has_toXYZD50) { |
| for (int i = 0; i < 3; i++) { |
| OpAndArg oa = select_curve_op(&srcProfile->trc[i], i); |
| if (oa.arg) { |
| *ops++ = oa.op; |
| *args++ = oa.arg; |
| } |
| } |
| } else { |
| return false; |
| } |
| |
| // A2B sources should already be in XYZD50 at this point. |
| // Others still need to be transformed using their toXYZD50 matrix. |
| // N.B. There are profiles that contain both A2B tags and toXYZD50 matrices. |
| // If we use the A2B tags, we need to ignore the XYZD50 matrix entirely. |
| assert (srcProfile->has_A2B || srcProfile->has_toXYZD50); |
| static const skcms_Matrix3x3 I = {{ |
| { 1.0f, 0.0f, 0.0f }, |
| { 0.0f, 1.0f, 0.0f }, |
| { 0.0f, 0.0f, 1.0f }, |
| }}; |
| const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50; |
| |
| // There's a chance the source and destination gamuts are identical, |
| // in which case we can skip the gamut transform. |
| if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) { |
| // Concat the entire gamut transform into from_xyz, |
| // now slightly misnamed but it's a handy spot to stash the result. |
| from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz); |
| *ops++ = Op_matrix_3x3; |
| *args++ = &from_xyz; |
| } |
| |
| // Encode back to dst RGB using its parametric transfer functions. |
| for (int i = 0; i < 3; i++) { |
| OpAndArg oa = select_curve_op(dst_curves+i, i); |
| if (oa.arg) { |
| assert (oa.op != Op_table_r && |
| oa.op != Op_table_g && |
| oa.op != Op_table_b && |
| oa.op != Op_table_a); |
| *ops++ = oa.op; |
| *args++ = oa.arg; |
| } |
| } |
| } |
| |
| // Clamp here before premul to make sure we're clamping to normalized values _and_ gamut, |
| // not just to values that fit in [0,1]. |
| // |
| // E.g. r = 1.1, a = 0.5 would fit fine in fixed point after premul (ra=0.55,a=0.5), |
| // but would be carrying r > 1, which is really unexpected for downstream consumers. |
| if (dstFmt < skcms_PixelFormat_RGB_hhh) { |
| *ops++ = Op_clamp; |
| } |
| if (dstAlpha == skcms_AlphaFormat_Opaque) { |
| *ops++ = Op_force_opaque; |
| } else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) { |
| *ops++ = Op_premul; |
| } |
| if (dstFmt & 1) { |
| *ops++ = Op_swap_rb; |
| } |
| switch (dstFmt >> 1) { |
| default: return false; |
| case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_store_a8; break; |
| case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_store_g8; break; |
| case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_store_4444; break; |
| case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_store_565; break; |
| case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_store_888; break; |
| case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_store_8888; break; |
| case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_store_1010102; break; |
| case skcms_PixelFormat_RGB_161616LE >> 1: *ops++ = Op_store_161616LE; break; |
| case skcms_PixelFormat_RGBA_16161616LE >> 1: *ops++ = Op_store_16161616LE; break; |
| case skcms_PixelFormat_RGB_161616BE >> 1: *ops++ = Op_store_161616BE; break; |
| case skcms_PixelFormat_RGBA_16161616BE >> 1: *ops++ = Op_store_16161616BE; break; |
| case skcms_PixelFormat_RGB_hhh_Norm >> 1: *ops++ = Op_store_hhh; break; |
| case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: *ops++ = Op_store_hhhh; break; |
| case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_store_hhh; break; |
| case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_store_hhhh; break; |
| case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_store_fff; break; |
| case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_store_ffff; break; |
| } |
| |
| auto run = baseline::run_program; |
| #if defined(TEST_FOR_HSW) |
| switch (cpu_type()) { |
| case CpuType::None: break; |
| case CpuType::HSW: run = hsw::run_program; break; |
| case CpuType::SKX: run = hsw::run_program; break; |
| } |
| #endif |
| #if defined(TEST_FOR_SKX) |
| switch (cpu_type()) { |
| case CpuType::None: break; |
| case CpuType::HSW: break; |
| case CpuType::SKX: run = skx::run_program; break; |
| } |
| #endif |
| run(program, arguments, (const char*)src, (char*)dst, n, src_bpp,dst_bpp); |
| return true; |
| } |
| |
| static void assert_usable_as_destination(const skcms_ICCProfile* profile) { |
| #if defined(NDEBUG) |
| (void)profile; |
| #else |
| skcms_Matrix3x3 fromXYZD50; |
| skcms_TransferFunction invR, invG, invB; |
| assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB)); |
| #endif |
| } |
| |
| bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) { |
| skcms_Matrix3x3 fromXYZD50; |
| if (!profile->has_trc || !profile->has_toXYZD50 |
| || !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) { |
| return false; |
| } |
| |
| skcms_TransferFunction tf[3]; |
| for (int i = 0; i < 3; i++) { |
| skcms_TransferFunction inv; |
| if (profile->trc[i].table_entries == 0 |
| && skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) { |
| tf[i] = profile->trc[i].parametric; |
| continue; |
| } |
| |
| float max_error; |
| // Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible. |
| if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) { |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| profile->trc[i].table_entries = 0; |
| profile->trc[i].parametric = tf[i]; |
| } |
| |
| assert_usable_as_destination(profile); |
| return true; |
| } |
| |
| bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) { |
| // Operate on a copy of profile, so we can choose the best TF for the original curves |
| skcms_ICCProfile result = *profile; |
| if (!skcms_MakeUsableAsDestination(&result)) { |
| return false; |
| } |
| |
| int best_tf = 0; |
| float min_max_error = INFINITY_; |
| for (int i = 0; i < 3; i++) { |
| skcms_TransferFunction inv; |
| if (!skcms_TransferFunction_invert(&result.trc[i].parametric, &inv)) { |
| return false; |
| } |
| |
| float err = 0; |
| for (int j = 0; j < 3; ++j) { |
| err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv)); |
| } |
| if (min_max_error > err) { |
| min_max_error = err; |
| best_tf = i; |
| } |
| } |
| |
| for (int i = 0; i < 3; i++) { |
| result.trc[i].parametric = result.trc[best_tf].parametric; |
| } |
| |
| *profile = result; |
| assert_usable_as_destination(profile); |
| return true; |
| } |