| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkSLProgramElement.h" |
| #include "include/private/SkSLStatement.h" |
| #include "include/private/SkTArray.h" |
| #include "include/private/SkTPin.h" |
| #include "src/sksl/SkSLCodeGenerator.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLOperators.h" |
| #include "src/sksl/SkSLVMGenerator.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBlock.h" |
| #include "src/sksl/ir/SkSLBoolLiteral.h" |
| #include "src/sksl/ir/SkSLBreakStatement.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLConstructorArray.h" |
| #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" |
| #include "src/sksl/ir/SkSLConstructorMatrixResize.h" |
| #include "src/sksl/ir/SkSLConstructorSplat.h" |
| #include "src/sksl/ir/SkSLContinueStatement.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExternalFunctionCall.h" |
| #include "src/sksl/ir/SkSLExternalFunctionReference.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| #include <algorithm> |
| #include <unordered_map> |
| |
| namespace { |
| // sksl allows the optimizations of fast_mul(), so we want to use that most of the time. |
| // This little sneaky snippet of code lets us use ** as a fast multiply infix operator. |
| struct FastF32 { skvm::F32 val; }; |
| static FastF32 operator*(skvm::F32 y) { return {y}; } |
| static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); } |
| static skvm::F32 operator*(float x, FastF32 y) { return fast_mul(x, y.val); } |
| } |
| |
| namespace SkSL { |
| |
| namespace { |
| |
| // Holds scalars, vectors, or matrices |
| struct Value { |
| Value() = default; |
| explicit Value(size_t slots) { |
| fVals.resize(slots); |
| } |
| Value(skvm::F32 x) : fVals({ x.id }) {} |
| Value(skvm::I32 x) : fVals({ x.id }) {} |
| |
| explicit operator bool() const { return !fVals.empty(); } |
| |
| size_t slots() const { return fVals.size(); } |
| |
| struct ValRef { |
| ValRef(skvm::Val& val) : fVal(val) {} |
| |
| ValRef& operator=(ValRef v) { fVal = v.fVal; return *this; } |
| ValRef& operator=(skvm::Val v) { fVal = v; return *this; } |
| ValRef& operator=(skvm::F32 v) { fVal = v.id; return *this; } |
| ValRef& operator=(skvm::I32 v) { fVal = v.id; return *this; } |
| |
| operator skvm::Val() { return fVal; } |
| |
| skvm::Val& fVal; |
| }; |
| |
| ValRef operator[](size_t i) { |
| // These redundant asserts work around what we think is a codegen bug in GCC 8.x for |
| // 32-bit x86 Debug builds. |
| SkASSERT(i < fVals.size()); |
| return fVals[i]; |
| } |
| skvm::Val operator[](size_t i) const { |
| // These redundant asserts work around what we think is a codegen bug in GCC 8.x for |
| // 32-bit x86 Debug builds. |
| SkASSERT(i < fVals.size()); |
| return fVals[i]; |
| } |
| |
| SkSpan<skvm::Val> asSpan() { return fVals; } |
| |
| private: |
| SkSTArray<4, skvm::Val, true> fVals; |
| }; |
| |
| } // namespace |
| |
| class SkVMGenerator { |
| public: |
| SkVMGenerator(const Program& program, |
| skvm::Builder* builder, |
| SkSpan<skvm::Val> uniforms, |
| skvm::Coord device, |
| skvm::Coord local, |
| SampleChildFn sampleChild); |
| |
| void writeFunction(const FunctionDefinition& function, |
| SkSpan<skvm::Val> arguments, |
| SkSpan<skvm::Val> outReturn); |
| |
| private: |
| enum class Intrinsic { |
| // sksl_public.sksl declares these intrinsics (and defines some other inline) |
| |
| // Angle & Trigonometry |
| kRadians, |
| kDegrees, |
| kSin, |
| kCos, |
| kTan, |
| |
| kASin, |
| kACos, |
| kATan, |
| |
| // Exponential |
| kPow, |
| kExp, |
| kLog, |
| kExp2, |
| kLog2, |
| |
| kSqrt, |
| kInverseSqrt, |
| |
| // Common |
| kAbs, |
| kSign, |
| kFloor, |
| kCeil, |
| kFract, |
| kMod, |
| |
| kMin, |
| kMax, |
| kClamp, |
| kSaturate, |
| kMix, |
| kStep, |
| kSmoothstep, |
| |
| // Geometric |
| kLength, |
| kDistance, |
| kDot, |
| kCross, |
| kNormalize, |
| kFaceforward, |
| kReflect, |
| kRefract, |
| |
| // Matrix |
| kMatrixCompMult, |
| kInverse, |
| |
| // Vector Relational |
| kLessThan, |
| kLessThanEqual, |
| kGreaterThan, |
| kGreaterThanEqual, |
| kEqual, |
| kNotEqual, |
| |
| kAny, |
| kAll, |
| kNot, |
| |
| // SkSL |
| kSample, |
| }; |
| |
| /** |
| * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc). |
| * Every Variable is mapped to one (or several, contiguous) indices into our vector of |
| * skvm::Val. Those skvm::Val entries hold the current actual value of that variable. |
| * |
| * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way, |
| * (and eliminate the indirection), but it would add overhead for each Variable, |
| * and add additional (different) bookkeeping for things like lvalue-swizzles. |
| * |
| * Any time a variable appears in an expression, that's a VariableReference, which is a kind of |
| * Expression. Evaluating that VariableReference (or any other Expression) produces a Value, |
| * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in |
| * addition to a scalar). |
| * |
| * For a VariableReference, producing a Value is straightforward - we get the slot of the |
| * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the |
| * variable's contents, and construct a Value with those ids. |
| */ |
| |
| /** |
| * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is |
| * referenced. Compound variables (e.g. vectors) will consume more than one slot, with |
| * getSlot returning the start of the contiguous chunk of slots. |
| */ |
| size_t getSlot(const Variable& v); |
| |
| skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; } |
| skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; } |
| |
| // Shorthand for scalars |
| skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); } |
| skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); } |
| |
| template <typename Fn> |
| Value unary(const Value& v, Fn&& fn) { |
| Value result(v.slots()); |
| for (size_t i = 0; i < v.slots(); ++i) { |
| result[i] = fn({fBuilder, v[i]}); |
| } |
| return result; |
| } |
| |
| skvm::I32 mask() { |
| // As we encounter (possibly conditional) return statements, fReturned is updated to store |
| // the lanes that have already returned. For the remainder of the current function, those |
| // lanes should be disabled. |
| return fConditionMask & fLoopMask & ~currentFunction().fReturned; |
| } |
| |
| size_t fieldSlotOffset(const FieldAccess& expr); |
| size_t indexSlotOffset(const IndexExpression& expr); |
| |
| Value writeExpression(const Expression& expr); |
| Value writeBinaryExpression(const BinaryExpression& b); |
| Value writeAggregationConstructor(const AnyConstructor& c); |
| Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c); |
| Value writeConstructorMatrixResize(const ConstructorMatrixResize& c); |
| Value writeConstructorCast(const AnyConstructor& c); |
| Value writeConstructorSplat(const ConstructorSplat& c); |
| Value writeFunctionCall(const FunctionCall& c); |
| Value writeExternalFunctionCall(const ExternalFunctionCall& c); |
| Value writeFieldAccess(const FieldAccess& expr); |
| Value writeIndexExpression(const IndexExpression& expr); |
| Value writeIntrinsicCall(const FunctionCall& c); |
| Value writePostfixExpression(const PostfixExpression& p); |
| Value writePrefixExpression(const PrefixExpression& p); |
| Value writeSwizzle(const Swizzle& swizzle); |
| Value writeTernaryExpression(const TernaryExpression& t); |
| Value writeVariableExpression(const VariableReference& expr); |
| |
| Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind); |
| |
| void writeStatement(const Statement& s); |
| void writeBlock(const Block& b); |
| void writeBreakStatement(); |
| void writeContinueStatement(); |
| void writeForStatement(const ForStatement& f); |
| void writeIfStatement(const IfStatement& stmt); |
| void writeReturnStatement(const ReturnStatement& r); |
| void writeVarDeclaration(const VarDeclaration& decl); |
| |
| Value writeStore(const Expression& lhs, const Value& rhs); |
| |
| Value writeMatrixInverse2x2(const Value& m); |
| Value writeMatrixInverse3x3(const Value& m); |
| Value writeMatrixInverse4x4(const Value& m); |
| |
| // |
| // Global state for the lifetime of the generator: |
| // |
| const Program& fProgram; |
| skvm::Builder* fBuilder; |
| |
| const skvm::Coord fLocalCoord; |
| const SampleChildFn fSampleChild; |
| |
| // [Variable, first slot in fSlots] |
| std::unordered_map<const Variable*, size_t> fVariableMap; |
| std::vector<skvm::Val> fSlots; |
| |
| // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes) |
| skvm::I32 fConditionMask; |
| |
| // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask). |
| // 'break' disables a lane in fLoopMask until the loop finishes |
| // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next |
| // iteration |
| skvm::I32 fLoopMask; |
| skvm::I32 fContinueMask; |
| |
| // |
| // State that's local to the generation of a single function: |
| // |
| struct Function { |
| const SkSpan<skvm::Val> fReturnValue; |
| skvm::I32 fReturned; |
| }; |
| std::vector<Function> fFunctionStack; |
| Function& currentFunction() { return fFunctionStack.back(); } |
| |
| class ScopedCondition { |
| public: |
| ScopedCondition(SkVMGenerator* generator, skvm::I32 mask) |
| : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) { |
| fGenerator->fConditionMask &= mask; |
| } |
| |
| ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; } |
| |
| private: |
| SkVMGenerator* fGenerator; |
| skvm::I32 fOldConditionMask; |
| }; |
| }; |
| |
| static Type::NumberKind base_number_kind(const Type& type) { |
| if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) { |
| return base_number_kind(type.componentType()); |
| } |
| return type.numberKind(); |
| } |
| |
| static inline bool is_uniform(const SkSL::Variable& var) { |
| return var.modifiers().fFlags & Modifiers::kUniform_Flag; |
| } |
| |
| SkVMGenerator::SkVMGenerator(const Program& program, |
| skvm::Builder* builder, |
| SkSpan<skvm::Val> uniforms, |
| skvm::Coord device, |
| skvm::Coord local, |
| SampleChildFn sampleChild) |
| : fProgram(program) |
| , fBuilder(builder) |
| , fLocalCoord(local) |
| , fSampleChild(std::move(sampleChild)) { |
| fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff); |
| |
| // Now, add storage for each global variable (including uniforms) to fSlots, and entries in |
| // fVariableMap to remember where every variable is stored. |
| const skvm::Val* uniformIter = uniforms.begin(); |
| size_t fpCount = 0; |
| for (const ProgramElement* e : fProgram.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>(); |
| const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>(); |
| const Variable& var = decl.var(); |
| SkASSERT(fVariableMap.find(&var) == fVariableMap.end()); |
| |
| // For most variables, fVariableMap stores an index into fSlots, but for children, |
| // fVariableMap stores the index to pass to fSampleChild(). |
| if (var.type().isEffectChild()) { |
| fVariableMap[&var] = fpCount++; |
| continue; |
| } |
| |
| // Opaque types include fragment processors, GL objects (samplers, textures, etc), and |
| // special types like 'void'. Of those, only fragment processors are legal variables. |
| SkASSERT(!var.type().isOpaque()); |
| |
| // getSlot() allocates space for the variable's value in fSlots, initializes it to zero, |
| // and populates fVariableMap. |
| size_t slot = this->getSlot(var), |
| nslots = var.type().slotCount(); |
| |
| if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) { |
| // builtin variables are system-defined, with special semantics. The only builtin |
| // variable exposed to runtime effects is sk_FragCoord. |
| switch (builtin) { |
| case SK_FRAGCOORD_BUILTIN: |
| SkASSERT(nslots == 4); |
| fSlots[slot + 0] = device.x.id; |
| fSlots[slot + 1] = device.y.id; |
| fSlots[slot + 2] = fBuilder->splat(0.0f).id; |
| fSlots[slot + 3] = fBuilder->splat(1.0f).id; |
| break; |
| default: |
| SkDEBUGFAIL("Unsupported builtin"); |
| } |
| } else if (is_uniform(var)) { |
| // For uniforms, copy the supplied IDs over |
| SkASSERT(uniformIter + nslots <= uniforms.end()); |
| std::copy(uniformIter, uniformIter + nslots, fSlots.begin() + slot); |
| uniformIter += nslots; |
| } else if (decl.value()) { |
| // For other globals, populate with the initializer expression (if there is one) |
| Value val = this->writeExpression(*decl.value()); |
| for (size_t i = 0; i < nslots; ++i) { |
| fSlots[slot + i] = val[i]; |
| } |
| } |
| } |
| } |
| SkASSERT(uniformIter == uniforms.end()); |
| } |
| |
| void SkVMGenerator::writeFunction(const FunctionDefinition& function, |
| SkSpan<skvm::Val> arguments, |
| SkSpan<skvm::Val> outReturn) { |
| const FunctionDeclaration& decl = function.declaration(); |
| SkASSERT(decl.returnType().slotCount() == outReturn.size()); |
| |
| fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)}); |
| |
| // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs |
| size_t argIdx = 0; |
| for (const Variable* p : decl.parameters()) { |
| size_t paramSlot = this->getSlot(*p), |
| nslots = p->type().slotCount(); |
| |
| for (size_t i = 0; i < nslots; ++i) { |
| fSlots[paramSlot + i] = arguments[argIdx + i]; |
| } |
| argIdx += nslots; |
| } |
| SkASSERT(argIdx == arguments.size()); |
| |
| this->writeStatement(*function.body()); |
| |
| // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage |
| argIdx = 0; |
| for (const Variable* p : decl.parameters()) { |
| size_t nslots = p->type().slotCount(); |
| |
| if (p->modifiers().fFlags & Modifiers::kOut_Flag) { |
| size_t paramSlot = this->getSlot(*p); |
| for (size_t i = 0; i < nslots; ++i) { |
| arguments[argIdx + i] = fSlots[paramSlot + i]; |
| } |
| } |
| argIdx += nslots; |
| } |
| SkASSERT(argIdx == arguments.size()); |
| |
| fFunctionStack.pop_back(); |
| } |
| |
| size_t SkVMGenerator::getSlot(const Variable& v) { |
| auto entry = fVariableMap.find(&v); |
| if (entry != fVariableMap.end()) { |
| return entry->second; |
| } |
| |
| size_t slot = fSlots.size(), |
| nslots = v.type().slotCount(); |
| fSlots.resize(slot + nslots, fBuilder->splat(0.0f).id); |
| fVariableMap[&v] = slot; |
| return slot; |
| } |
| |
| Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) { |
| const Expression& left = *b.left(); |
| const Expression& right = *b.right(); |
| Operator op = b.getOperator(); |
| if (op.kind() == Token::Kind::TK_EQ) { |
| return this->writeStore(left, this->writeExpression(right)); |
| } |
| |
| const Type& lType = left.type(); |
| const Type& rType = right.type(); |
| bool lVecOrMtx = (lType.isVector() || lType.isMatrix()); |
| bool rVecOrMtx = (rType.isVector() || rType.isMatrix()); |
| bool isAssignment = op.isAssignment(); |
| if (isAssignment) { |
| op = op.removeAssignment(); |
| } |
| Type::NumberKind nk = base_number_kind(lType); |
| |
| // A few ops require special treatment: |
| switch (op.kind()) { |
| case Token::Kind::TK_LOGICALAND: { |
| SkASSERT(!isAssignment); |
| SkASSERT(nk == Type::NumberKind::kBoolean); |
| skvm::I32 lVal = i32(this->writeExpression(left)); |
| ScopedCondition shortCircuit(this, lVal); |
| skvm::I32 rVal = i32(this->writeExpression(right)); |
| return lVal & rVal; |
| } |
| case Token::Kind::TK_LOGICALOR: { |
| SkASSERT(!isAssignment); |
| SkASSERT(nk == Type::NumberKind::kBoolean); |
| skvm::I32 lVal = i32(this->writeExpression(left)); |
| ScopedCondition shortCircuit(this, ~lVal); |
| skvm::I32 rVal = i32(this->writeExpression(right)); |
| return lVal | rVal; |
| } |
| case Token::Kind::TK_COMMA: |
| // We write the left side of the expression to preserve its side effects, even though we |
| // immediately discard the result. |
| this->writeExpression(left); |
| return this->writeExpression(right); |
| default: |
| break; |
| } |
| |
| // All of the other ops always evaluate both sides of the expression |
| Value lVal = this->writeExpression(left), |
| rVal = this->writeExpression(right); |
| |
| // Special case for M*V, V*M, M*M (but not V*V!) |
| if (op.kind() == Token::Kind::TK_STAR |
| && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) { |
| int rCols = rType.columns(), |
| rRows = rType.rows(), |
| lCols = lType.columns(), |
| lRows = lType.rows(); |
| // M*V treats the vector as a column |
| if (rType.isVector()) { |
| std::swap(rCols, rRows); |
| } |
| SkASSERT(lCols == rRows); |
| SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols)); |
| Value result(lRows * rCols); |
| size_t resultIdx = 0; |
| for (int c = 0; c < rCols; ++c) |
| for (int r = 0; r < lRows; ++r) { |
| skvm::F32 sum = fBuilder->splat(0.0f); |
| for (int j = 0; j < lCols; ++j) { |
| sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]); |
| } |
| result[resultIdx++] = sum; |
| } |
| SkASSERT(resultIdx == result.slots()); |
| return isAssignment ? this->writeStore(left, result) : result; |
| } |
| |
| size_t nslots = std::max(lVal.slots(), rVal.slots()); |
| |
| auto binary = [&](auto&& f_fn, auto&& i_fn) { |
| Value result(nslots); |
| for (size_t i = 0; i < nslots; ++i) { |
| // If one side is scalar, replicate it to all channels |
| skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i], |
| R = rVal.slots() == 1 ? rVal[0] : rVal[i]; |
| if (nk == Type::NumberKind::kFloat) { |
| result[i] = f_fn(f32(L), f32(R)); |
| } else { |
| result[i] = i_fn(i32(L), i32(R)); |
| } |
| } |
| return isAssignment ? this->writeStore(left, result) : result; |
| }; |
| |
| auto unsupported_f = [&](skvm::F32, skvm::F32) { |
| SkDEBUGFAIL("Unsupported operator"); |
| return skvm::F32{}; |
| }; |
| |
| switch (op.kind()) { |
| case Token::Kind::TK_EQEQ: { |
| SkASSERT(!isAssignment); |
| Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x == y; }); |
| skvm::I32 folded = i32(cmp[0]); |
| for (size_t i = 1; i < nslots; ++i) { |
| folded &= i32(cmp[i]); |
| } |
| return folded; |
| } |
| case Token::Kind::TK_NEQ: { |
| SkASSERT(!isAssignment); |
| Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x != y; }); |
| skvm::I32 folded = i32(cmp[0]); |
| for (size_t i = 1; i < nslots; ++i) { |
| folded |= i32(cmp[i]); |
| } |
| return folded; |
| } |
| case Token::Kind::TK_GT: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x > y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x > y; }); |
| case Token::Kind::TK_GTEQ: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x >= y; }); |
| case Token::Kind::TK_LT: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x < y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x < y; }); |
| case Token::Kind::TK_LTEQ: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x <= y; }); |
| |
| case Token::Kind::TK_PLUS: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x + y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x + y; }); |
| case Token::Kind::TK_MINUS: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x - y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x - y; }); |
| case Token::Kind::TK_STAR: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; }, |
| [](skvm::I32 x, skvm::I32 y) { return x * y; }); |
| case Token::Kind::TK_SLASH: |
| // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations. |
| // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating |
| // point division plus rounding. Section 10.28 of the spec even clarifies that the |
| // rounding mode is undefined (but round-towards-zero is the obvious/common choice). |
| return binary([](skvm::F32 x, skvm::F32 y) { return x / y; }, |
| [](skvm::I32 x, skvm::I32 y) { |
| return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y)); |
| }); |
| |
| case Token::Kind::TK_BITWISEXOR: |
| case Token::Kind::TK_LOGICALXOR: |
| return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; }); |
| case Token::Kind::TK_BITWISEAND: |
| return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; }); |
| case Token::Kind::TK_BITWISEOR: |
| return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; }); |
| |
| // These three operators are all 'reserved' (illegal) in our minimum spec, but will require |
| // implementation in the future. |
| case Token::Kind::TK_PERCENT: |
| case Token::Kind::TK_SHL: |
| case Token::Kind::TK_SHR: |
| default: |
| SkDEBUGFAIL("Unsupported operator"); |
| return {}; |
| } |
| } |
| |
| Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) { |
| Value result(c.type().slotCount()); |
| size_t resultIdx = 0; |
| for (const auto &arg : c.argumentSpan()) { |
| Value tmp = this->writeExpression(*arg); |
| for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) { |
| result[resultIdx++] = tmp[tmpSlot]; |
| } |
| } |
| return result; |
| } |
| |
| Value SkVMGenerator::writeTypeConversion(const Value& src, |
| Type::NumberKind srcKind, |
| Type::NumberKind dstKind) { |
| // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op. |
| if (srcKind == dstKind) { |
| return src; |
| } |
| |
| // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet. |
| Value dst(src.slots()); |
| switch (dstKind) { |
| case Type::NumberKind::kFloat: |
| if (srcKind == Type::NumberKind::kSigned) { |
| // int -> float |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = skvm::to_F32(i32(src[i])); |
| } |
| return dst; |
| } |
| if (srcKind == Type::NumberKind::kBoolean) { |
| // bool -> float |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f); |
| } |
| return dst; |
| } |
| break; |
| |
| case Type::NumberKind::kSigned: |
| if (srcKind == Type::NumberKind::kFloat) { |
| // float -> int |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = skvm::trunc(f32(src[i])); |
| } |
| return dst; |
| } |
| if (srcKind == Type::NumberKind::kBoolean) { |
| // bool -> int |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = skvm::select(i32(src[i]), 1, 0); |
| } |
| return dst; |
| } |
| break; |
| |
| case Type::NumberKind::kBoolean: |
| if (srcKind == Type::NumberKind::kSigned) { |
| // int -> bool |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = i32(src[i]) != 0; |
| } |
| return dst; |
| } |
| if (srcKind == Type::NumberKind::kFloat) { |
| // float -> bool |
| for (size_t i = 0; i < src.slots(); ++i) { |
| dst[i] = f32(src[i]) != 0.0; |
| } |
| return dst; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| SkDEBUGFAILF("Unsupported type conversion: %d -> %d", srcKind, dstKind); |
| return {}; |
| } |
| |
| Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) { |
| auto arguments = c.argumentSpan(); |
| SkASSERT(arguments.size() == 1); |
| const Expression& argument = *arguments.front(); |
| |
| const Type& srcType = argument.type(); |
| const Type& dstType = c.type(); |
| Type::NumberKind srcKind = base_number_kind(srcType); |
| Type::NumberKind dstKind = base_number_kind(dstType); |
| Value src = this->writeExpression(argument); |
| return this->writeTypeConversion(src, srcKind, dstKind); |
| } |
| |
| Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) { |
| SkASSERT(c.type().isVector()); |
| SkASSERT(c.argument()->type().isScalar()); |
| int columns = c.type().columns(); |
| |
| // Splat the argument across all components of a vector. |
| Value src = this->writeExpression(*c.argument()); |
| Value dst(columns); |
| for (int i = 0; i < columns; ++i) { |
| dst[i] = src[0]; |
| } |
| return dst; |
| } |
| |
| Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c) { |
| const Type& dstType = c.type(); |
| SkASSERT(dstType.isMatrix()); |
| SkASSERT(c.argument()->type() == dstType.componentType()); |
| |
| Value src = this->writeExpression(*c.argument()); |
| Value dst(dstType.rows() * dstType.columns()); |
| size_t dstIndex = 0; |
| |
| // Matrix-from-scalar builds a diagonal scale matrix |
| for (int c = 0; c < dstType.columns(); ++c) { |
| for (int r = 0; r < dstType.rows(); ++r) { |
| dst[dstIndex++] = (c == r ? f32(src) : fBuilder->splat(0.0f)); |
| } |
| } |
| |
| SkASSERT(dstIndex == dst.slots()); |
| return dst; |
| } |
| |
| Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c) { |
| const Type& srcType = c.argument()->type(); |
| const Type& dstType = c.type(); |
| Value src = this->writeExpression(*c.argument()); |
| Value dst(dstType.rows() * dstType.columns()); |
| |
| // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity. |
| size_t dstIndex = 0; |
| for (int c = 0; c < dstType.columns(); ++c) { |
| for (int r = 0; r < dstType.rows(); ++r) { |
| if (c < srcType.columns() && r < srcType.rows()) { |
| dst[dstIndex++] = src[c * srcType.rows() + r]; |
| } else { |
| dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f); |
| } |
| } |
| } |
| |
| SkASSERT(dstIndex == dst.slots()); |
| return dst; |
| } |
| |
| size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) { |
| size_t offset = 0; |
| for (int i = 0; i < expr.fieldIndex(); ++i) { |
| offset += (*expr.base()->type().fields()[i].fType).slotCount(); |
| } |
| return offset; |
| } |
| |
| Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) { |
| Value base = this->writeExpression(*expr.base()); |
| Value field(expr.type().slotCount()); |
| size_t offset = this->fieldSlotOffset(expr); |
| for (size_t i = 0; i < field.slots(); ++i) { |
| field[i] = base[offset + i]; |
| } |
| return field; |
| } |
| |
| size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) { |
| Value index = this->writeExpression(*expr.index()); |
| int indexValue = -1; |
| SkAssertResult(fBuilder->allImm(index[0], &indexValue)); |
| |
| // When indexing by a literal, the front-end guarantees that we don't go out of bounds. |
| // But when indexing by a loop variable, it's possible to generate out-of-bounds access. |
| // The GLSL spec leaves that behavior undefined - we'll just clamp everything here. |
| indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1); |
| |
| size_t stride = expr.type().slotCount(); |
| return indexValue * stride; |
| } |
| |
| Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) { |
| Value base = this->writeExpression(*expr.base()); |
| Value element(expr.type().slotCount()); |
| size_t offset = this->indexSlotOffset(expr); |
| for (size_t i = 0; i < element.slots(); ++i) { |
| element[i] = base[offset + i]; |
| } |
| return element; |
| } |
| |
| Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) { |
| size_t slot = this->getSlot(*expr.variable()); |
| Value val(expr.type().slotCount()); |
| for (size_t i = 0; i < val.slots(); ++i) { |
| val[i] = fSlots[slot + i]; |
| } |
| return val; |
| } |
| |
| Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) { |
| SkASSERT(m.slots() == 4); |
| skvm::F32 a = f32(m[0]), |
| b = f32(m[1]), |
| c = f32(m[2]), |
| d = f32(m[3]); |
| skvm::F32 idet = 1.0f / (a*d - b*c); |
| |
| Value result(m.slots()); |
| result[0] = ( d ** idet); |
| result[1] = (-b ** idet); |
| result[2] = (-c ** idet); |
| result[3] = ( a ** idet); |
| return result; |
| } |
| |
| Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) { |
| SkASSERT(m.slots() == 9); |
| skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]), |
| a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]), |
| a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]); |
| skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - |
| a11*a23*a32 - a12*a21*a33 - a13*a22*a31); |
| |
| Value result(m.slots()); |
| result[0] = ((a22**a33 - a23**a32) ** idet); |
| result[1] = ((a23**a31 - a21**a33) ** idet); |
| result[2] = ((a21**a32 - a22**a31) ** idet); |
| result[3] = ((a13**a32 - a12**a33) ** idet); |
| result[4] = ((a11**a33 - a13**a31) ** idet); |
| result[5] = ((a12**a31 - a11**a32) ** idet); |
| result[6] = ((a12**a23 - a13**a22) ** idet); |
| result[7] = ((a13**a21 - a11**a23) ** idet); |
| result[8] = ((a11**a22 - a12**a21) ** idet); |
| return result; |
| } |
| |
| Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) { |
| SkASSERT(m.slots() == 16); |
| skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]), |
| a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]), |
| a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]), |
| a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]); |
| |
| skvm::F32 b00 = a00**a11 - a01**a10, |
| b01 = a00**a12 - a02**a10, |
| b02 = a00**a13 - a03**a10, |
| b03 = a01**a12 - a02**a11, |
| b04 = a01**a13 - a03**a11, |
| b05 = a02**a13 - a03**a12, |
| b06 = a20**a31 - a21**a30, |
| b07 = a20**a32 - a22**a30, |
| b08 = a20**a33 - a23**a30, |
| b09 = a21**a32 - a22**a31, |
| b10 = a21**a33 - a23**a31, |
| b11 = a22**a33 - a23**a32; |
| |
| skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06); |
| |
| b00 *= idet; |
| b01 *= idet; |
| b02 *= idet; |
| b03 *= idet; |
| b04 *= idet; |
| b05 *= idet; |
| b06 *= idet; |
| b07 *= idet; |
| b08 *= idet; |
| b09 *= idet; |
| b10 *= idet; |
| b11 *= idet; |
| |
| Value result(m.slots()); |
| result[ 0] = (a11*b11 - a12*b10 + a13*b09); |
| result[ 1] = (a02*b10 - a01*b11 - a03*b09); |
| result[ 2] = (a31*b05 - a32*b04 + a33*b03); |
| result[ 3] = (a22*b04 - a21*b05 - a23*b03); |
| result[ 4] = (a12*b08 - a10*b11 - a13*b07); |
| result[ 5] = (a00*b11 - a02*b08 + a03*b07); |
| result[ 6] = (a32*b02 - a30*b05 - a33*b01); |
| result[ 7] = (a20*b05 - a22*b02 + a23*b01); |
| result[ 8] = (a10*b10 - a11*b08 + a13*b06); |
| result[ 9] = (a01*b08 - a00*b10 - a03*b06); |
| result[10] = (a30*b04 - a31*b02 + a33*b00); |
| result[11] = (a21*b02 - a20*b04 - a23*b00); |
| result[12] = (a11*b07 - a10*b09 - a12*b06); |
| result[13] = (a00*b09 - a01*b07 + a02*b06); |
| result[14] = (a31*b01 - a30*b03 - a32*b00); |
| result[15] = (a20*b03 - a21*b01 + a22*b00); |
| return result; |
| } |
| |
| Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) { |
| static std::unordered_map<String, Intrinsic> intrinsics { |
| { "radians", Intrinsic::kRadians }, |
| { "degrees", Intrinsic::kDegrees }, |
| { "sin", Intrinsic::kSin }, |
| { "cos", Intrinsic::kCos }, |
| { "tan", Intrinsic::kTan }, |
| { "asin", Intrinsic::kASin }, |
| { "acos", Intrinsic::kACos }, |
| { "atan", Intrinsic::kATan }, |
| |
| { "pow", Intrinsic::kPow }, |
| { "exp", Intrinsic::kExp }, |
| { "log", Intrinsic::kLog }, |
| { "exp2", Intrinsic::kExp2 }, |
| { "log2", Intrinsic::kLog2 }, |
| { "sqrt", Intrinsic::kSqrt }, |
| { "inversesqrt", Intrinsic::kInverseSqrt }, |
| |
| { "abs", Intrinsic::kAbs }, |
| { "sign", Intrinsic::kSign }, |
| { "floor", Intrinsic::kFloor }, |
| { "ceil", Intrinsic::kCeil }, |
| { "fract", Intrinsic::kFract }, |
| { "mod", Intrinsic::kMod }, |
| |
| { "min", Intrinsic::kMin }, |
| { "max", Intrinsic::kMax }, |
| { "clamp", Intrinsic::kClamp }, |
| { "saturate", Intrinsic::kSaturate }, |
| { "mix", Intrinsic::kMix }, |
| { "step", Intrinsic::kStep }, |
| { "smoothstep", Intrinsic::kSmoothstep }, |
| |
| { "length", Intrinsic::kLength }, |
| { "distance", Intrinsic::kDistance }, |
| { "dot", Intrinsic::kDot }, |
| { "cross", Intrinsic::kCross }, |
| { "normalize", Intrinsic::kNormalize }, |
| { "faceforward", Intrinsic::kFaceforward }, |
| { "reflect", Intrinsic::kReflect }, |
| { "refract", Intrinsic::kRefract }, |
| |
| { "matrixCompMult", Intrinsic::kMatrixCompMult }, |
| { "inverse", Intrinsic::kInverse }, |
| |
| { "lessThan", Intrinsic::kLessThan }, |
| { "lessThanEqual", Intrinsic::kLessThanEqual }, |
| { "greaterThan", Intrinsic::kGreaterThan }, |
| { "greaterThanEqual", Intrinsic::kGreaterThanEqual }, |
| { "equal", Intrinsic::kEqual }, |
| { "notEqual", Intrinsic::kNotEqual }, |
| |
| { "any", Intrinsic::kAny }, |
| { "all", Intrinsic::kAll }, |
| { "not", Intrinsic::kNot }, |
| |
| { "sample", Intrinsic::kSample } }; |
| |
| auto found = intrinsics.find(c.function().name()); |
| if (found == intrinsics.end()) { |
| SkDEBUGFAILF("Missing intrinsic: '%s'", String(c.function().name()).c_str()); |
| return {}; |
| } |
| |
| const size_t nargs = c.arguments().size(); |
| |
| if (found->second == Intrinsic::kSample) { |
| // Sample is very special, the first argument is a child (shader/colorFilter), which can't |
| // be evaluated |
| const Context& ctx = *fProgram.fContext; |
| if (nargs > 2 || !c.arguments()[0]->type().isEffectChild() || |
| (nargs == 2 && (c.arguments()[1]->type() != *ctx.fTypes.fFloat2 && |
| c.arguments()[1]->type() != *ctx.fTypes.fFloat3x3))) { |
| SkDEBUGFAIL("Invalid call to sample"); |
| return {}; |
| } |
| |
| auto fp_it = fVariableMap.find(c.arguments()[0]->as<VariableReference>().variable()); |
| SkASSERT(fp_it != fVariableMap.end()); |
| |
| skvm::Coord coord = fLocalCoord; |
| if (nargs == 2) { |
| Value arg = this->writeExpression(*c.arguments()[1]); |
| if (arg.slots() == 2) { |
| // explicit sampling |
| coord = {f32(arg[0]), f32(arg[1])}; |
| } else { |
| // matrix sampling |
| SkASSERT(arg.slots() == 9); |
| skvm::F32 x = f32(arg[0])**coord.x + f32(arg[3])**coord.y + f32(arg[6]), |
| y = f32(arg[1])**coord.x + f32(arg[4])**coord.y + f32(arg[7]), |
| w = f32(arg[2])**coord.x + f32(arg[5])**coord.y + f32(arg[8]); |
| x = x ** (1.0f / w); |
| y = y ** (1.0f / w); |
| coord = {x, y}; |
| } |
| } |
| |
| skvm::Color color = fSampleChild(fp_it->second, coord); |
| Value result(4); |
| result[0] = color.r; |
| result[1] = color.g; |
| result[2] = color.b; |
| result[3] = color.a; |
| return result; |
| } |
| |
| const size_t kMaxArgs = 3; // eg: clamp, mix, smoothstep |
| Value args[kMaxArgs]; |
| SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args)); |
| |
| // All other intrinsics have at most three args, and those can all be evaluated up front: |
| for (size_t i = 0; i < nargs; ++i) { |
| args[i] = this->writeExpression(*c.arguments()[i]); |
| } |
| Type::NumberKind nk = base_number_kind(c.arguments()[0]->type()); |
| |
| auto binary = [&](auto&& fn) { |
| // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN) |
| size_t nslots = std::max(args[0].slots(), args[1].slots()); |
| Value result(nslots); |
| SkASSERT(args[0].slots() == nslots || args[0].slots() == 1); |
| SkASSERT(args[1].slots() == nslots || args[1].slots() == 1); |
| |
| for (size_t i = 0; i < nslots; ++i) { |
| result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]}, |
| {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]}); |
| } |
| return result; |
| }; |
| |
| auto ternary = [&](auto&& fn) { |
| // Ternary intrinsics are some combination of vecN and float |
| size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()}); |
| Value result(nslots); |
| SkASSERT(args[0].slots() == nslots || args[0].slots() == 1); |
| SkASSERT(args[1].slots() == nslots || args[1].slots() == 1); |
| SkASSERT(args[2].slots() == nslots || args[2].slots() == 1); |
| |
| for (size_t i = 0; i < nslots; ++i) { |
| result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]}, |
| {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]}, |
| {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]}); |
| } |
| return result; |
| }; |
| |
| auto dot = [&](const Value& x, const Value& y) { |
| SkASSERT(x.slots() == y.slots()); |
| skvm::F32 result = f32(x[0]) * f32(y[0]); |
| for (size_t i = 1; i < x.slots(); ++i) { |
| result += f32(x[i]) * f32(y[i]); |
| } |
| return result; |
| }; |
| |
| switch (found->second) { |
| case Intrinsic::kRadians: |
| return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); }); |
| case Intrinsic::kDegrees: |
| return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); }); |
| |
| case Intrinsic::kSin: return unary(args[0], skvm::approx_sin); |
| case Intrinsic::kCos: return unary(args[0], skvm::approx_cos); |
| case Intrinsic::kTan: return unary(args[0], skvm::approx_tan); |
| |
| case Intrinsic::kASin: return unary(args[0], skvm::approx_asin); |
| case Intrinsic::kACos: return unary(args[0], skvm::approx_acos); |
| |
| case Intrinsic::kATan: return nargs == 1 ? unary(args[0], skvm::approx_atan) |
| : binary(skvm::approx_atan2); |
| |
| case Intrinsic::kPow: |
| return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); }); |
| case Intrinsic::kExp: return unary(args[0], skvm::approx_exp); |
| case Intrinsic::kLog: return unary(args[0], skvm::approx_log); |
| case Intrinsic::kExp2: return unary(args[0], skvm::approx_pow2); |
| case Intrinsic::kLog2: return unary(args[0], skvm::approx_log2); |
| |
| case Intrinsic::kSqrt: return unary(args[0], skvm::sqrt); |
| case Intrinsic::kInverseSqrt: |
| return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); }); |
| |
| case Intrinsic::kAbs: return unary(args[0], skvm::abs); |
| case Intrinsic::kSign: |
| return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f, |
| select(x > 0, +1.0f, 0.0f)); }); |
| case Intrinsic::kFloor: return unary(args[0], skvm::floor); |
| case Intrinsic::kCeil: return unary(args[0], skvm::ceil); |
| case Intrinsic::kFract: return unary(args[0], skvm::fract); |
| case Intrinsic::kMod: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); }); |
| |
| case Intrinsic::kMin: |
| return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); }); |
| case Intrinsic::kMax: |
| return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); }); |
| case Intrinsic::kClamp: |
| return ternary( |
| [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); }); |
| case Intrinsic::kSaturate: |
| return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); }); |
| case Intrinsic::kMix: |
| return ternary( |
| [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); }); |
| case Intrinsic::kStep: |
| return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); }); |
| case Intrinsic::kSmoothstep: |
| return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) { |
| skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0)); |
| return t ** t ** (3 - 2 ** t); |
| }); |
| |
| case Intrinsic::kLength: return skvm::sqrt(dot(args[0], args[0])); |
| case Intrinsic::kDistance: { |
| Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; }); |
| return skvm::sqrt(dot(vec, vec)); |
| } |
| case Intrinsic::kDot: return dot(args[0], args[1]); |
| case Intrinsic::kCross: { |
| skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]), |
| bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]); |
| Value result(3); |
| result[0] = ay**bz - az**by; |
| result[1] = az**bx - ax**bz; |
| result[2] = ax**by - ay**bx; |
| return result; |
| } |
| case Intrinsic::kNormalize: { |
| skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0])); |
| return unary(args[0], [&](skvm::F32 x) { return x ** invLen; }); |
| } |
| case Intrinsic::kFaceforward: { |
| const Value &N = args[0], |
| &I = args[1], |
| &Nref = args[2]; |
| |
| skvm::F32 dotNrefI = dot(Nref, I); |
| return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); }); |
| } |
| case Intrinsic::kReflect: { |
| const Value &I = args[0], |
| &N = args[1]; |
| |
| skvm::F32 dotNI = dot(N, I); |
| return binary([&](skvm::F32 i, skvm::F32 n) { |
| return i - 2**dotNI**n; |
| }); |
| } |
| case Intrinsic::kRefract: { |
| const Value &I = args[0], |
| &N = args[1]; |
| skvm::F32 eta = f32(args[2]); |
| |
| skvm::F32 dotNI = dot(N, I), |
| k = 1 - eta**eta**(1 - dotNI**dotNI); |
| return binary([&](skvm::F32 i, skvm::F32 n) { |
| return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n); |
| }); |
| } |
| |
| case Intrinsic::kMatrixCompMult: |
| return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; }); |
| case Intrinsic::kInverse: { |
| switch (args[0].slots()) { |
| case 4: return this->writeMatrixInverse2x2(args[0]); |
| case 9: return this->writeMatrixInverse3x3(args[0]); |
| case 16: return this->writeMatrixInverse4x4(args[0]); |
| default: |
| SkDEBUGFAIL("Invalid call to inverse"); |
| return {}; |
| } |
| } |
| |
| case Intrinsic::kLessThan: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x < y; }); |
| case Intrinsic::kLessThanEqual: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; }); |
| case Intrinsic::kGreaterThan: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x > y; }); |
| case Intrinsic::kGreaterThanEqual: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; }); |
| |
| case Intrinsic::kEqual: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x == y; }); |
| case Intrinsic::kNotEqual: |
| return nk == Type::NumberKind::kFloat |
| ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; }) |
| : binary([](skvm::I32 x, skvm::I32 y) { return x != y; }); |
| |
| case Intrinsic::kAny: { |
| skvm::I32 result = i32(args[0][0]); |
| for (size_t i = 1; i < args[0].slots(); ++i) { |
| result |= i32(args[0][i]); |
| } |
| return result; |
| } |
| case Intrinsic::kAll: { |
| skvm::I32 result = i32(args[0][0]); |
| for (size_t i = 1; i < args[0].slots(); ++i) { |
| result &= i32(args[0][i]); |
| } |
| return result; |
| } |
| case Intrinsic::kNot: return unary(args[0], [](skvm::I32 x) { return ~x; }); |
| |
| case Intrinsic::kSample: |
| // Handled earlier |
| SkASSERT(false); |
| return {}; |
| } |
| SkUNREACHABLE; |
| } |
| |
| Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) { |
| if (f.function().isBuiltin() && !f.function().definition()) { |
| return this->writeIntrinsicCall(f); |
| } |
| |
| const FunctionDeclaration& decl = f.function(); |
| |
| // Evaluate all arguments, gather the results into a contiguous list of IDs |
| std::vector<skvm::Val> argVals; |
| for (const auto& arg : f.arguments()) { |
| Value v = this->writeExpression(*arg); |
| for (size_t i = 0; i < v.slots(); ++i) { |
| argVals.push_back(v[i]); |
| } |
| } |
| |
| // Create storage for the return value |
| size_t nslots = f.type().slotCount(); |
| Value result(nslots); |
| for (size_t i = 0; i < nslots; ++i) { |
| result[i] = fBuilder->splat(0.0f); |
| } |
| |
| { |
| // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally |
| // returned in the current function would otherwise resume execution within the child. |
| ScopedCondition m(this, ~currentFunction().fReturned); |
| this->writeFunction(*f.function().definition(), argVals, result.asSpan()); |
| } |
| |
| // Propagate new values of any 'out' params back to the original arguments |
| const std::unique_ptr<Expression>* argIter = f.arguments().begin(); |
| size_t valIdx = 0; |
| for (const Variable* p : decl.parameters()) { |
| size_t nslots = p->type().slotCount(); |
| if (p->modifiers().fFlags & Modifiers::kOut_Flag) { |
| Value v(nslots); |
| for (size_t i = 0; i < nslots; ++i) { |
| v[i] = argVals[valIdx + i]; |
| } |
| const std::unique_ptr<Expression>& arg = *argIter; |
| this->writeStore(*arg, v); |
| } |
| valIdx += nslots; |
| argIter++; |
| } |
| |
| return result; |
| } |
| |
| Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) { |
| // Evaluate all arguments, gather the results into a contiguous list of F32 |
| std::vector<skvm::F32> args; |
| for (const auto& arg : c.arguments()) { |
| Value v = this->writeExpression(*arg); |
| for (size_t i = 0; i < v.slots(); ++i) { |
| args.push_back(f32(v[i])); |
| } |
| } |
| |
| // Create storage for the return value |
| size_t nslots = c.type().slotCount(); |
| std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f)); |
| |
| c.function().call(fBuilder, args.data(), result.data(), this->mask()); |
| |
| // Convert from 'vector of F32' to Value |
| Value resultVal(nslots); |
| for (size_t i = 0; i < nslots; ++i) { |
| resultVal[i] = result[i]; |
| } |
| |
| return resultVal; |
| } |
| |
| Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) { |
| Value val = this->writeExpression(*p.operand()); |
| |
| switch (p.getOperator().kind()) { |
| case Token::Kind::TK_PLUSPLUS: |
| case Token::Kind::TK_MINUSMINUS: { |
| bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS; |
| |
| switch (base_number_kind(p.type())) { |
| case Type::NumberKind::kFloat: |
| val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f); |
| break; |
| case Type::NumberKind::kSigned: |
| val = i32(val) + fBuilder->splat(incr ? 1 : -1); |
| break; |
| default: |
| SkASSERT(false); |
| return {}; |
| } |
| return this->writeStore(*p.operand(), val); |
| } |
| case Token::Kind::TK_MINUS: { |
| switch (base_number_kind(p.type())) { |
| case Type::NumberKind::kFloat: |
| return this->unary(val, [](skvm::F32 x) { return -x; }); |
| case Type::NumberKind::kSigned: |
| return this->unary(val, [](skvm::I32 x) { return -x; }); |
| default: |
| SkASSERT(false); |
| return {}; |
| } |
| } |
| case Token::Kind::TK_LOGICALNOT: |
| case Token::Kind::TK_BITWISENOT: |
| return this->unary(val, [](skvm::I32 x) { return ~x; }); |
| default: |
| SkASSERT(false); |
| return {}; |
| } |
| } |
| |
| Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) { |
| switch (p.getOperator().kind()) { |
| case Token::Kind::TK_PLUSPLUS: |
| case Token::Kind::TK_MINUSMINUS: { |
| Value old = this->writeExpression(*p.operand()), |
| val = old; |
| SkASSERT(val.slots() == 1); |
| bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS; |
| |
| switch (base_number_kind(p.type())) { |
| case Type::NumberKind::kFloat: |
| val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f); |
| break; |
| case Type::NumberKind::kSigned: |
| val = i32(val) + fBuilder->splat(incr ? 1 : -1); |
| break; |
| default: |
| SkASSERT(false); |
| return {}; |
| } |
| this->writeStore(*p.operand(), val); |
| return old; |
| } |
| default: |
| SkASSERT(false); |
| return {}; |
| } |
| } |
| |
| Value SkVMGenerator::writeSwizzle(const Swizzle& s) { |
| Value base = this->writeExpression(*s.base()); |
| Value swizzled(s.components().size()); |
| for (size_t i = 0; i < s.components().size(); ++i) { |
| swizzled[i] = base[s.components()[i]]; |
| } |
| return swizzled; |
| } |
| |
| Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) { |
| skvm::I32 test = i32(this->writeExpression(*t.test())); |
| Value ifTrue, ifFalse; |
| |
| { |
| ScopedCondition m(this, test); |
| ifTrue = this->writeExpression(*t.ifTrue()); |
| } |
| { |
| ScopedCondition m(this, ~test); |
| ifFalse = this->writeExpression(*t.ifFalse()); |
| } |
| |
| size_t nslots = ifTrue.slots(); |
| SkASSERT(nslots == ifFalse.slots()); |
| |
| Value result(nslots); |
| for (size_t i = 0; i < nslots; ++i) { |
| result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i])); |
| } |
| return result; |
| } |
| |
| Value SkVMGenerator::writeExpression(const Expression& e) { |
| switch (e.kind()) { |
| case Expression::Kind::kBinary: |
| return this->writeBinaryExpression(e.as<BinaryExpression>()); |
| case Expression::Kind::kBoolLiteral: |
| return fBuilder->splat(e.as<BoolLiteral>().value() ? ~0 : 0); |
| case Expression::Kind::kConstructorArray: |
| case Expression::Kind::kConstructorComposite: |
| return this->writeAggregationConstructor(e.asAnyConstructor()); |
| case Expression::Kind::kConstructorDiagonalMatrix: |
| return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>()); |
| case Expression::Kind::kConstructorMatrixResize: |
| return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>()); |
| case Expression::Kind::kConstructorScalarCast: |
| case Expression::Kind::kConstructorCompositeCast: |
| return this->writeConstructorCast(e.asAnyConstructor()); |
| case Expression::Kind::kConstructorSplat: |
| return this->writeConstructorSplat(e.as<ConstructorSplat>()); |
| case Expression::Kind::kFieldAccess: |
| return this->writeFieldAccess(e.as<FieldAccess>()); |
| case Expression::Kind::kIndex: |
| return this->writeIndexExpression(e.as<IndexExpression>()); |
| case Expression::Kind::kVariableReference: |
| return this->writeVariableExpression(e.as<VariableReference>()); |
| case Expression::Kind::kFloatLiteral: |
| return fBuilder->splat(e.as<FloatLiteral>().value()); |
| case Expression::Kind::kFunctionCall: |
| return this->writeFunctionCall(e.as<FunctionCall>()); |
| case Expression::Kind::kExternalFunctionCall: |
| return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>()); |
| case Expression::Kind::kIntLiteral: |
| return fBuilder->splat(static_cast<int>(e.as<IntLiteral>().value())); |
| case Expression::Kind::kPrefix: |
| return this->writePrefixExpression(e.as<PrefixExpression>()); |
| case Expression::Kind::kPostfix: |
| return this->writePostfixExpression(e.as<PostfixExpression>()); |
| case Expression::Kind::kSwizzle: |
| return this->writeSwizzle(e.as<Swizzle>()); |
| case Expression::Kind::kTernary: |
| return this->writeTernaryExpression(e.as<TernaryExpression>()); |
| case Expression::Kind::kExternalFunctionReference: |
| default: |
| SkDEBUGFAIL("Unsupported expression"); |
| return {}; |
| } |
| } |
| |
| Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) { |
| SkASSERTF(rhs.slots() == lhs.type().slotCount(), |
| "lhs=%s (%s)\nrhs=%d slot", |
| lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots()); |
| |
| // We need to figure out the collection of slots that we're storing into. The l-value (lhs) |
| // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or |
| // IndexExpressions. The underlying VariableReference has a range of slots for its storage, |
| // and each expression wrapped around that selects a sub-set of those slots (Field/Index), |
| // or rearranges them (Swizzle). |
| SkSTArray<4, size_t, true> slots; |
| slots.resize(rhs.slots()); |
| |
| // Start with the identity slot map - this basically says that the values from rhs belong in |
| // slots [0, 1, 2 ... N] of the lhs. |
| for (size_t i = 0; i < slots.size(); ++i) { |
| slots[i] = i; |
| } |
| |
| // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to |
| // the next (inner) expression: |
| const Expression* expr = &lhs; |
| while (!expr->is<VariableReference>()) { |
| switch (expr->kind()) { |
| case Expression::Kind::kFieldAccess: { |
| const FieldAccess& fld = expr->as<FieldAccess>(); |
| size_t offset = this->fieldSlotOffset(fld); |
| for (size_t& s : slots) { |
| s += offset; |
| } |
| expr = fld.base().get(); |
| } break; |
| case Expression::Kind::kIndex: { |
| const IndexExpression& idx = expr->as<IndexExpression>(); |
| size_t offset = this->indexSlotOffset(idx); |
| for (size_t& s : slots) { |
| s += offset; |
| } |
| expr = idx.base().get(); |
| } break; |
| case Expression::Kind::kSwizzle: { |
| const Swizzle& swz = expr->as<Swizzle>(); |
| for (size_t& s : slots) { |
| s = swz.components()[s]; |
| } |
| expr = swz.base().get(); |
| } break; |
| default: |
| // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable) |
| SkDEBUGFAIL("Invalid expression type"); |
| return {}; |
| } |
| } |
| |
| // When we get here, 'slots' are all relative to the first slot holding 'var's storage |
| const Variable& var = *expr->as<VariableReference>().variable(); |
| size_t varSlot = this->getSlot(var); |
| skvm::I32 mask = this->mask(); |
| for (size_t i = rhs.slots(); i --> 0;) { |
| SkASSERT(slots[i] < var.type().slotCount()); |
| skvm::F32 curr = f32(fSlots[varSlot + slots[i]]), |
| next = f32(rhs[i]); |
| fSlots[varSlot + slots[i]] = select(mask, next, curr).id; |
| } |
| return rhs; |
| } |
| |
| void SkVMGenerator::writeBlock(const Block& b) { |
| for (const std::unique_ptr<Statement>& stmt : b.children()) { |
| this->writeStatement(*stmt); |
| } |
| } |
| |
| void SkVMGenerator::writeBreakStatement() { |
| // Any active lanes stop executing for the duration of the current loop |
| fLoopMask &= ~this->mask(); |
| } |
| |
| void SkVMGenerator::writeContinueStatement() { |
| // Any active lanes stop executing for the current iteration. |
| // Remember them in fContinueMask, to be re-enabled later. |
| skvm::I32 mask = this->mask(); |
| fLoopMask &= ~mask; |
| fContinueMask |= mask; |
| } |
| |
| void SkVMGenerator::writeForStatement(const ForStatement& f) { |
| // We require that all loops be ES2-compliant (unrollable), and actually unroll them here |
| Analysis::UnrollableLoopInfo loop; |
| SkAssertResult(Analysis::ForLoopIsValidForES2(f.fOffset, f.initializer().get(), f.test().get(), |
| f.next().get(), f.statement().get(), &loop, |
| /*errors=*/nullptr)); |
| SkASSERT(loop.fIndex->type().slotCount() == 1); |
| |
| size_t indexSlot = this->getSlot(*loop.fIndex); |
| double val = loop.fStart; |
| |
| skvm::I32 oldLoopMask = fLoopMask, |
| oldContinueMask = fContinueMask; |
| |
| for (int i = 0; i < loop.fCount; ++i) { |
| fSlots[indexSlot] = loop.fIndex->type().isInteger() |
| ? fBuilder->splat(static_cast<int>(val)).id |
| : fBuilder->splat(static_cast<float>(val)).id; |
| |
| fContinueMask = fBuilder->splat(0); |
| this->writeStatement(*f.statement()); |
| fLoopMask |= fContinueMask; |
| |
| val += loop.fDelta; |
| } |
| |
| fLoopMask = oldLoopMask; |
| fContinueMask = oldContinueMask; |
| } |
| |
| void SkVMGenerator::writeIfStatement(const IfStatement& i) { |
| Value test = this->writeExpression(*i.test()); |
| { |
| ScopedCondition ifTrue(this, i32(test)); |
| this->writeStatement(*i.ifTrue()); |
| } |
| if (i.ifFalse()) { |
| ScopedCondition ifFalse(this, ~i32(test)); |
| this->writeStatement(*i.ifFalse()); |
| } |
| } |
| |
| void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) { |
| skvm::I32 returnsHere = this->mask(); |
| |
| if (r.expression()) { |
| Value val = this->writeExpression(*r.expression()); |
| |
| int i = 0; |
| for (skvm::Val& slot : currentFunction().fReturnValue) { |
| slot = select(returnsHere, f32(val[i]), f32(slot)).id; |
| i++; |
| } |
| } |
| |
| currentFunction().fReturned |= returnsHere; |
| } |
| |
| void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) { |
| size_t slot = this->getSlot(decl.var()), |
| nslots = decl.var().type().slotCount(); |
| |
| Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{}; |
| for (size_t i = 0; i < nslots; ++i) { |
| fSlots[slot + i] = val ? val[i] : fBuilder->splat(0.0f).id; |
| } |
| } |
| |
| void SkVMGenerator::writeStatement(const Statement& s) { |
| switch (s.kind()) { |
| case Statement::Kind::kBlock: |
| this->writeBlock(s.as<Block>()); |
| break; |
| case Statement::Kind::kBreak: |
| this->writeBreakStatement(); |
| break; |
| case Statement::Kind::kContinue: |
| this->writeContinueStatement(); |
| break; |
| case Statement::Kind::kExpression: |
| this->writeExpression(*s.as<ExpressionStatement>().expression()); |
| break; |
| case Statement::Kind::kFor: |
| this->writeForStatement(s.as<ForStatement>()); |
| break; |
| case Statement::Kind::kIf: |
| this->writeIfStatement(s.as<IfStatement>()); |
| break; |
| case Statement::Kind::kReturn: |
| this->writeReturnStatement(s.as<ReturnStatement>()); |
| break; |
| case Statement::Kind::kVarDeclaration: |
| this->writeVarDeclaration(s.as<VarDeclaration>()); |
| break; |
| case Statement::Kind::kDiscard: |
| case Statement::Kind::kDo: |
| case Statement::Kind::kSwitch: |
| SkDEBUGFAIL("Unsupported control flow"); |
| break; |
| case Statement::Kind::kInlineMarker: |
| case Statement::Kind::kNop: |
| break; |
| default: |
| SkASSERT(false); |
| } |
| } |
| |
| skvm::Color ProgramToSkVM(const Program& program, |
| const FunctionDefinition& function, |
| skvm::Builder* builder, |
| SkSpan<skvm::Val> uniforms, |
| skvm::Coord device, |
| skvm::Coord local, |
| SampleChildFn sampleChild) { |
| skvm::Val args[2] = {local.x.id, local.y.id}; |
| skvm::Val zero = builder->splat(0.0f).id; |
| skvm::Val result[4] = {zero,zero,zero,zero}; |
| size_t paramSlots = 0; |
| for (const SkSL::Variable* param : function.declaration().parameters()) { |
| paramSlots += param->type().slotCount(); |
| } |
| SkASSERT(paramSlots <= SK_ARRAY_COUNT(args)); |
| |
| SkVMGenerator generator(program, builder, uniforms, device, local, std::move(sampleChild)); |
| generator.writeFunction(function, {args, paramSlots}, result); |
| |
| return skvm::Color{{builder, result[0]}, |
| {builder, result[1]}, |
| {builder, result[2]}, |
| {builder, result[3]}}; |
| } |
| |
| bool ProgramToSkVM(const Program& program, |
| const FunctionDefinition& function, |
| skvm::Builder* b, |
| SkSpan<skvm::Val> uniforms, |
| SkVMSignature* outSignature) { |
| SkVMSignature ignored, |
| *signature = outSignature ? outSignature : &ignored; |
| |
| std::vector<skvm::Ptr> argPtrs; |
| std::vector<skvm::Val> argVals; |
| |
| for (const Variable* p : function.declaration().parameters()) { |
| size_t slots = p->type().slotCount(); |
| signature->fParameterSlots += slots; |
| for (size_t i = 0; i < slots; ++i) { |
| argPtrs.push_back(b->varying<float>()); |
| argVals.push_back(b->loadF(argPtrs.back()).id); |
| } |
| } |
| |
| std::vector<skvm::Ptr> returnPtrs; |
| std::vector<skvm::Val> returnVals; |
| |
| signature->fReturnSlots = function.declaration().returnType().slotCount(); |
| for (size_t i = 0; i < signature->fReturnSlots; ++i) { |
| returnPtrs.push_back(b->varying<float>()); |
| returnVals.push_back(b->splat(0.0f).id); |
| } |
| |
| skvm::Coord zeroCoord = {b->splat(0.0f), b->splat(0.0f)}; |
| SkVMGenerator generator(program, b, uniforms, /*device=*/zeroCoord, /*local=*/zeroCoord, |
| /*sampleChild=*/{}); |
| generator.writeFunction(function, argVals, returnVals); |
| |
| // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters. |
| // Propagate those changes back to our varying buffers: |
| size_t argIdx = 0; |
| for (const Variable* p : function.declaration().parameters()) { |
| size_t nslots = p->type().slotCount(); |
| if (p->modifiers().fFlags & Modifiers::kOut_Flag) { |
| for (size_t i = 0; i < nslots; ++i) { |
| b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]}); |
| } |
| } |
| argIdx += nslots; |
| } |
| |
| // It's also updated the contents of 'returnVals' with the return value of the entry point. |
| // Store that as well: |
| for (size_t i = 0; i < signature->fReturnSlots; ++i) { |
| b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]}); |
| } |
| |
| return true; |
| } |
| |
| const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) { |
| for (const ProgramElement* e : program.elements()) { |
| if (e->is<FunctionDefinition>() && |
| e->as<FunctionDefinition>().declaration().name() == function) { |
| return &e->as<FunctionDefinition>(); |
| } |
| } |
| return nullptr; |
| } |
| |
| static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) { |
| switch (type.typeKind()) { |
| case Type::TypeKind::kStruct: |
| for (const auto& f : type.fields()) { |
| gather_uniforms(info, *f.fType, name + "." + f.fName); |
| } |
| break; |
| case Type::TypeKind::kArray: |
| for (int i = 0; i < type.columns(); ++i) { |
| gather_uniforms(info, type.componentType(), |
| String::printf("%s[%d]", name.c_str(), i)); |
| } |
| break; |
| case Type::TypeKind::kScalar: |
| case Type::TypeKind::kVector: |
| case Type::TypeKind::kMatrix: |
| info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(), |
| info->fUniformSlotCount}); |
| info->fUniformSlotCount += type.columns() * type.rows(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) { |
| auto info = std::make_unique<UniformInfo>(); |
| for (const ProgramElement* e : program.elements()) { |
| if (!e->is<GlobalVarDeclaration>()) { |
| continue; |
| } |
| const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>(); |
| const Variable& var = decl.declaration()->as<VarDeclaration>().var(); |
| if (var.modifiers().fFlags & Modifiers::kUniform_Flag) { |
| gather_uniforms(info.get(), var.type(), var.name()); |
| } |
| } |
| return info; |
| } |
| |
| /* |
| * Testing utility function that emits program's "main" with a minimal harness. Used to create |
| * representative skvm op sequences for SkSL tests. |
| */ |
| bool testingOnly_ProgramToSkVMShader(const Program& program, skvm::Builder* builder) { |
| const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main"); |
| if (!main) { |
| return false; |
| } |
| |
| size_t uniformSlots = 0; |
| int childSlots = 0; |
| for (const SkSL::ProgramElement* e : program.elements()) { |
| if (e->is<GlobalVarDeclaration>()) { |
| const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>(); |
| const Variable& var = decl.declaration()->as<VarDeclaration>().var(); |
| if (var.type().isEffectChild()) { |
| childSlots++; |
| } else if (is_uniform(var)) { |
| uniformSlots += var.type().slotCount(); |
| } |
| } |
| } |
| |
| skvm::Uniforms uniforms(builder->uniform(), 0); |
| |
| auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); }; |
| |
| // Assume identity CTM |
| skvm::Coord device = {pun_to_F32(builder->index()), new_uni()}; |
| skvm::Coord local = device; |
| |
| struct Child { |
| skvm::Uniform addr; |
| skvm::I32 rowBytesAsPixels; |
| }; |
| |
| std::vector<Child> children; |
| for (int i = 0; i < childSlots; ++i) { |
| children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))}); |
| } |
| |
| auto sampleChild = [&](int i, skvm::Coord coord) { |
| skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType); |
| skvm::I32 index = trunc(coord.x); |
| index += trunc(coord.y) * children[i].rowBytesAsPixels; |
| return gather(pixelFormat, children[i].addr, index); |
| }; |
| |
| std::vector<skvm::Val> uniformVals; |
| for (size_t i = 0; i < uniformSlots; ++i) { |
| uniformVals.push_back(new_uni().id); |
| } |
| |
| skvm::Color result = |
| SkSL::ProgramToSkVM(program, *main, builder, uniformVals, device, local, sampleChild); |
| |
| storeF(builder->varying<float>(), result.r); |
| storeF(builder->varying<float>(), result.g); |
| storeF(builder->varying<float>(), result.b); |
| storeF(builder->varying<float>(), result.a); |
| |
| return true; |
| |
| } |
| |
| } // namespace SkSL |