| /* |
| * Copyright 2009 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBitmapProcState_opts_SSE2.h" |
| #include "SkBitmapProcState_utils.h" |
| #include "SkColorData.h" |
| #include "SkPaint.h" |
| #include "SkTo.h" |
| #include "SkUtils.h" |
| |
| #include <emmintrin.h> |
| |
| void S32_opaque_D32_filter_DX_SSE2(const SkBitmapProcState& s, |
| const uint32_t* xy, |
| int count, uint32_t* colors) { |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); |
| SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); |
| SkASSERT(s.fAlphaScale == 256); |
| |
| const char* srcAddr = static_cast<const char*>(s.fPixmap.addr()); |
| size_t rb = s.fPixmap.rowBytes(); |
| uint32_t XY = *xy++; |
| unsigned y0 = XY >> 14; |
| const uint32_t* row0 = reinterpret_cast<const uint32_t*>(srcAddr + (y0 >> 4) * rb); |
| const uint32_t* row1 = reinterpret_cast<const uint32_t*>(srcAddr + (XY & 0x3FFF) * rb); |
| unsigned subY = y0 & 0xF; |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, 16) |
| __m128i sixteen = _mm_cvtsi32_si128(16); |
| |
| // ( 0, 0, 0, 0, 16, 16, 16, 16) |
| sixteen = _mm_shufflelo_epi16(sixteen, 0); |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, y) |
| __m128i allY = _mm_cvtsi32_si128(subY); |
| |
| // ( 0, 0, 0, 0, y, y, y, y) |
| allY = _mm_shufflelo_epi16(allY, 0); |
| |
| // ( 0, 0, 0, 0, 16-y, 16-y, 16-y, 16-y) |
| __m128i negY = _mm_sub_epi16(sixteen, allY); |
| |
| // (16-y, 16-y, 16-y, 16-y, y, y, y, y) |
| allY = _mm_unpacklo_epi64(allY, negY); |
| |
| // (16, 16, 16, 16, 16, 16, 16, 16 ) |
| sixteen = _mm_shuffle_epi32(sixteen, 0); |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, 0) |
| __m128i zero = _mm_setzero_si128(); |
| do { |
| uint32_t XX = *xy++; // x0:14 | 4 | x1:14 |
| unsigned x0 = XX >> 18; |
| unsigned x1 = XX & 0x3FFF; |
| |
| // (0, 0, 0, 0, 0, 0, 0, x) |
| __m128i allX = _mm_cvtsi32_si128((XX >> 14) & 0x0F); |
| |
| // (0, 0, 0, 0, x, x, x, x) |
| allX = _mm_shufflelo_epi16(allX, 0); |
| |
| // (x, x, x, x, x, x, x, x) |
| allX = _mm_shuffle_epi32(allX, 0); |
| |
| // (16-x, 16-x, 16-x, 16-x, 16-x, 16-x, 16-x) |
| __m128i negX = _mm_sub_epi16(sixteen, allX); |
| |
| // Load 4 samples (pixels). |
| __m128i a00 = _mm_cvtsi32_si128(row0[x0]); |
| __m128i a01 = _mm_cvtsi32_si128(row0[x1]); |
| __m128i a10 = _mm_cvtsi32_si128(row1[x0]); |
| __m128i a11 = _mm_cvtsi32_si128(row1[x1]); |
| |
| // (0, 0, a00, a10) |
| __m128i a00a10 = _mm_unpacklo_epi32(a10, a00); |
| |
| // Expand to 16 bits per component. |
| a00a10 = _mm_unpacklo_epi8(a00a10, zero); |
| |
| // ((a00 * (16-y)), (a10 * y)). |
| a00a10 = _mm_mullo_epi16(a00a10, allY); |
| |
| // (a00 * (16-y) * (16-x), a10 * y * (16-x)). |
| a00a10 = _mm_mullo_epi16(a00a10, negX); |
| |
| // (0, 0, a01, a10) |
| __m128i a01a11 = _mm_unpacklo_epi32(a11, a01); |
| |
| // Expand to 16 bits per component. |
| a01a11 = _mm_unpacklo_epi8(a01a11, zero); |
| |
| // (a01 * (16-y)), (a11 * y) |
| a01a11 = _mm_mullo_epi16(a01a11, allY); |
| |
| // (a01 * (16-y) * x), (a11 * y * x) |
| a01a11 = _mm_mullo_epi16(a01a11, allX); |
| |
| // (a00*w00 + a01*w01, a10*w10 + a11*w11) |
| __m128i sum = _mm_add_epi16(a00a10, a01a11); |
| |
| // (DC, a00*w00 + a01*w01) |
| __m128i shifted = _mm_shuffle_epi32(sum, 0xEE); |
| |
| // (DC, a00*w00 + a01*w01 + a10*w10 + a11*w11) |
| sum = _mm_add_epi16(sum, shifted); |
| |
| // Divide each 16 bit component by 256. |
| sum = _mm_srli_epi16(sum, 8); |
| |
| // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| sum = _mm_packus_epi16(sum, zero); |
| |
| // Extract low int and store. |
| *colors++ = _mm_cvtsi128_si32(sum); |
| } while (--count > 0); |
| } |
| |
| void S32_alpha_D32_filter_DX_SSE2(const SkBitmapProcState& s, |
| const uint32_t* xy, |
| int count, uint32_t* colors) { |
| SkASSERT(count > 0 && colors != nullptr); |
| SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); |
| SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); |
| SkASSERT(s.fAlphaScale < 256); |
| |
| const char* srcAddr = static_cast<const char*>(s.fPixmap.addr()); |
| size_t rb = s.fPixmap.rowBytes(); |
| uint32_t XY = *xy++; |
| unsigned y0 = XY >> 14; |
| const uint32_t* row0 = reinterpret_cast<const uint32_t*>(srcAddr + (y0 >> 4) * rb); |
| const uint32_t* row1 = reinterpret_cast<const uint32_t*>(srcAddr + (XY & 0x3FFF) * rb); |
| unsigned subY = y0 & 0xF; |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, 16) |
| __m128i sixteen = _mm_cvtsi32_si128(16); |
| |
| // ( 0, 0, 0, 0, 16, 16, 16, 16) |
| sixteen = _mm_shufflelo_epi16(sixteen, 0); |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, y) |
| __m128i allY = _mm_cvtsi32_si128(subY); |
| |
| // ( 0, 0, 0, 0, y, y, y, y) |
| allY = _mm_shufflelo_epi16(allY, 0); |
| |
| // ( 0, 0, 0, 0, 16-y, 16-y, 16-y, 16-y) |
| __m128i negY = _mm_sub_epi16(sixteen, allY); |
| |
| // (16-y, 16-y, 16-y, 16-y, y, y, y, y) |
| allY = _mm_unpacklo_epi64(allY, negY); |
| |
| // (16, 16, 16, 16, 16, 16, 16, 16 ) |
| sixteen = _mm_shuffle_epi32(sixteen, 0); |
| |
| // ( 0, 0, 0, 0, 0, 0, 0, 0) |
| __m128i zero = _mm_setzero_si128(); |
| |
| // ( alpha, alpha, alpha, alpha, alpha, alpha, alpha, alpha ) |
| __m128i alpha = _mm_set1_epi16(s.fAlphaScale); |
| |
| do { |
| uint32_t XX = *xy++; // x0:14 | 4 | x1:14 |
| unsigned x0 = XX >> 18; |
| unsigned x1 = XX & 0x3FFF; |
| |
| // (0, 0, 0, 0, 0, 0, 0, x) |
| __m128i allX = _mm_cvtsi32_si128((XX >> 14) & 0x0F); |
| |
| // (0, 0, 0, 0, x, x, x, x) |
| allX = _mm_shufflelo_epi16(allX, 0); |
| |
| // (x, x, x, x, x, x, x, x) |
| allX = _mm_shuffle_epi32(allX, 0); |
| |
| // (16-x, 16-x, 16-x, 16-x, 16-x, 16-x, 16-x) |
| __m128i negX = _mm_sub_epi16(sixteen, allX); |
| |
| // Load 4 samples (pixels). |
| __m128i a00 = _mm_cvtsi32_si128(row0[x0]); |
| __m128i a01 = _mm_cvtsi32_si128(row0[x1]); |
| __m128i a10 = _mm_cvtsi32_si128(row1[x0]); |
| __m128i a11 = _mm_cvtsi32_si128(row1[x1]); |
| |
| // (0, 0, a00, a10) |
| __m128i a00a10 = _mm_unpacklo_epi32(a10, a00); |
| |
| // Expand to 16 bits per component. |
| a00a10 = _mm_unpacklo_epi8(a00a10, zero); |
| |
| // ((a00 * (16-y)), (a10 * y)). |
| a00a10 = _mm_mullo_epi16(a00a10, allY); |
| |
| // (a00 * (16-y) * (16-x), a10 * y * (16-x)). |
| a00a10 = _mm_mullo_epi16(a00a10, negX); |
| |
| // (0, 0, a01, a10) |
| __m128i a01a11 = _mm_unpacklo_epi32(a11, a01); |
| |
| // Expand to 16 bits per component. |
| a01a11 = _mm_unpacklo_epi8(a01a11, zero); |
| |
| // (a01 * (16-y)), (a11 * y) |
| a01a11 = _mm_mullo_epi16(a01a11, allY); |
| |
| // (a01 * (16-y) * x), (a11 * y * x) |
| a01a11 = _mm_mullo_epi16(a01a11, allX); |
| |
| // (a00*w00 + a01*w01, a10*w10 + a11*w11) |
| __m128i sum = _mm_add_epi16(a00a10, a01a11); |
| |
| // (DC, a00*w00 + a01*w01) |
| __m128i shifted = _mm_shuffle_epi32(sum, 0xEE); |
| |
| // (DC, a00*w00 + a01*w01 + a10*w10 + a11*w11) |
| sum = _mm_add_epi16(sum, shifted); |
| |
| // Divide each 16 bit component by 256. |
| sum = _mm_srli_epi16(sum, 8); |
| |
| // Multiply by alpha. |
| sum = _mm_mullo_epi16(sum, alpha); |
| |
| // Divide each 16 bit component by 256. |
| sum = _mm_srli_epi16(sum, 8); |
| |
| // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| sum = _mm_packus_epi16(sum, zero); |
| |
| // Extract low int and store. |
| *colors++ = _mm_cvtsi128_si32(sum); |
| } while (--count > 0); |
| } |
| |
| // Temporarily go into 64bit so we don't overflow during the add. Since we shift down by 16 |
| // in the end, the result should always fit back in 32bits. |
| static inline int32_t safe_fixed_add_shift(SkFixed a, SkFixed b) { |
| int64_t tmp = a; |
| return SkToS32((tmp + b) >> 16); |
| } |
| |
| static inline uint32_t ClampX_ClampY_pack_filter(SkFixed f, unsigned max, |
| SkFixed one) { |
| unsigned i = SkClampMax(f >> 16, max); |
| i = (i << 4) | ((f >> 12) & 0xF); |
| return (i << 14) | SkClampMax(safe_fixed_add_shift(f, one), max); |
| } |
| |
| /* SSE version of ClampX_ClampY_filter_scale() |
| * portable version is in core/SkBitmapProcState_matrix.h |
| */ |
| void ClampX_ClampY_filter_scale_SSE2(const SkBitmapProcState& s, uint32_t xy[], |
| int count, int x, int y) { |
| SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | |
| SkMatrix::kScale_Mask)) == 0); |
| SkASSERT(s.fInvKy == 0); |
| |
| const unsigned maxX = s.fPixmap.width() - 1; |
| const SkFixed one = s.fFilterOneX; |
| const SkFixed dx = s.fInvSx; |
| |
| const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| const SkFixed fy = mapper.fixedY(); |
| const unsigned maxY = s.fPixmap.height() - 1; |
| // compute our two Y values up front |
| *xy++ = ClampX_ClampY_pack_filter(fy, maxY, s.fFilterOneY); |
| // now initialize fx |
| SkFixed fx = mapper.fixedX(); |
| |
| // test if we don't need to apply the tile proc |
| if (can_truncate_to_fixed_for_decal(fx, dx, count, maxX)) { |
| if (count >= 4) { |
| // SSE version of decal_filter_scale |
| while ((size_t(xy) & 0x0F) != 0) { |
| SkASSERT((fx >> (16 + 14)) == 0); |
| *xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1); |
| fx += dx; |
| count--; |
| } |
| |
| __m128i wide_1 = _mm_set1_epi32(1); |
| __m128i wide_dx4 = _mm_set1_epi32(dx * 4); |
| __m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2, |
| fx + dx, fx); |
| |
| while (count >= 4) { |
| __m128i wide_out; |
| |
| wide_out = _mm_slli_epi32(_mm_srai_epi32(wide_fx, 12), 14); |
| wide_out = _mm_or_si128(wide_out, _mm_add_epi32( |
| _mm_srai_epi32(wide_fx, 16), wide_1)); |
| |
| _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_out); |
| |
| xy += 4; |
| fx += dx * 4; |
| wide_fx = _mm_add_epi32(wide_fx, wide_dx4); |
| count -= 4; |
| } // while count >= 4 |
| } // if count >= 4 |
| |
| while (count-- > 0) { |
| SkASSERT((fx >> (16 + 14)) == 0); |
| *xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1); |
| fx += dx; |
| } |
| } else { |
| // SSE2 only support 16bit interger max & min, so only process the case |
| // maxX less than the max 16bit interger. Actually maxX is the bitmap's |
| // height, there should be rare bitmap whose height will be greater |
| // than max 16bit interger in the real world. |
| if ((count >= 4) && (maxX <= 0xFFFF)) { |
| while (((size_t)xy & 0x0F) != 0) { |
| *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); |
| fx += dx; |
| count--; |
| } |
| |
| __m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2, |
| fx + dx, fx); |
| __m128i wide_dx4 = _mm_set1_epi32(dx * 4); |
| __m128i wide_one = _mm_set1_epi32(one); |
| __m128i wide_maxX = _mm_set1_epi32(maxX); |
| __m128i wide_mask = _mm_set1_epi32(0xF); |
| |
| while (count >= 4) { |
| __m128i wide_i; |
| __m128i wide_lo; |
| __m128i wide_fx1; |
| |
| // i = SkClampMax(f>>16,maxX) |
| wide_i = _mm_max_epi16(_mm_srli_epi32(wide_fx, 16), |
| _mm_setzero_si128()); |
| wide_i = _mm_min_epi16(wide_i, wide_maxX); |
| |
| // i<<4 | EXTRACT_LOW_BITS(fx) |
| wide_lo = _mm_srli_epi32(wide_fx, 12); |
| wide_lo = _mm_and_si128(wide_lo, wide_mask); |
| wide_i = _mm_slli_epi32(wide_i, 4); |
| wide_i = _mm_or_si128(wide_i, wide_lo); |
| |
| // i<<14 |
| wide_i = _mm_slli_epi32(wide_i, 14); |
| |
| // SkClampMax(((f+one))>>16,max) |
| wide_fx1 = _mm_add_epi32(wide_fx, wide_one); |
| wide_fx1 = _mm_max_epi16(_mm_srli_epi32(wide_fx1, 16), |
| _mm_setzero_si128()); |
| wide_fx1 = _mm_min_epi16(wide_fx1, wide_maxX); |
| |
| // final combination |
| wide_i = _mm_or_si128(wide_i, wide_fx1); |
| _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_i); |
| |
| wide_fx = _mm_add_epi32(wide_fx, wide_dx4); |
| fx += dx * 4; |
| xy += 4; |
| count -= 4; |
| } // while count >= 4 |
| } // if count >= 4 |
| |
| /* |
| while (count-- > 0) { |
| *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); |
| fx += dx; |
| } |
| We'd like to write this as above, but that form allows fx to get 1-iteration too big/small |
| when count is 0, and this can trigger a UBSAN error, even though we won't in fact use that |
| last (undefined) value for fx. |
| |
| Here is an alternative that should always be efficient, but seems much harder to read: |
| |
| if (count > 0) { |
| for (;;) { |
| *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); |
| if (--count == 0) break; |
| fx += dx; |
| } |
| } |
| |
| For now, we'll try this variant: more compact than the if/for version, and we hope the |
| compiler will get rid of the integer multiply. |
| */ |
| for (int i = 0; i < count; ++i) { |
| *xy++ = ClampX_ClampY_pack_filter(fx + i*dx, maxX, one); |
| } |
| } |
| } |
| |
| /* SSE version of ClampX_ClampY_nofilter_scale() |
| * portable version is in core/SkBitmapProcState_matrix.h |
| */ |
| void ClampX_ClampY_nofilter_scale_SSE2(const SkBitmapProcState& s, |
| uint32_t xy[], int count, int x, int y) { |
| SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | |
| SkMatrix::kScale_Mask)) == 0); |
| |
| // we store y, x, x, x, x, x |
| const unsigned maxX = s.fPixmap.width() - 1; |
| const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| const unsigned maxY = s.fPixmap.height() - 1; |
| *xy++ = SkClampMax(mapper.intY(), maxY); |
| SkFixed fx = mapper.fixedX(); |
| |
| if (0 == maxX) { |
| // all of the following X values must be 0 |
| memset(xy, 0, count * sizeof(uint16_t)); |
| return; |
| } |
| |
| const SkFixed dx = s.fInvSx; |
| |
| // test if we don't need to apply the tile proc |
| if ((unsigned)(fx >> 16) <= maxX && |
| (unsigned)((fx + dx * (count - 1)) >> 16) <= maxX) { |
| // SSE version of decal_nofilter_scale |
| if (count >= 8) { |
| while (((size_t)xy & 0x0F) != 0) { |
| *xy++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16); |
| fx += 2 * dx; |
| count -= 2; |
| } |
| |
| __m128i wide_dx4 = _mm_set1_epi32(dx * 4); |
| __m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4); |
| |
| __m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2, |
| fx + dx, fx); |
| __m128i wide_high = _mm_add_epi32(wide_low, wide_dx4); |
| |
| while (count >= 8) { |
| __m128i wide_out_low = _mm_srli_epi32(wide_low, 16); |
| __m128i wide_out_high = _mm_srli_epi32(wide_high, 16); |
| |
| __m128i wide_result = _mm_packs_epi32(wide_out_low, |
| wide_out_high); |
| _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result); |
| |
| wide_low = _mm_add_epi32(wide_low, wide_dx8); |
| wide_high = _mm_add_epi32(wide_high, wide_dx8); |
| |
| xy += 4; |
| fx += dx * 8; |
| count -= 8; |
| } |
| } // if count >= 8 |
| |
| uint16_t* xx = reinterpret_cast<uint16_t*>(xy); |
| while (count-- > 0) { |
| *xx++ = SkToU16(fx >> 16); |
| fx += dx; |
| } |
| } else { |
| // SSE2 only support 16bit interger max & min, so only process the case |
| // maxX less than the max 16bit interger. Actually maxX is the bitmap's |
| // height, there should be rare bitmap whose height will be greater |
| // than max 16bit interger in the real world. |
| if ((count >= 8) && (maxX <= 0xFFFF)) { |
| while (((size_t)xy & 0x0F) != 0) { |
| *xy++ = pack_two_shorts(SkClampMax((fx + dx) >> 16, maxX), |
| SkClampMax(fx >> 16, maxX)); |
| fx += 2 * dx; |
| count -= 2; |
| } |
| |
| __m128i wide_dx4 = _mm_set1_epi32(dx * 4); |
| __m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4); |
| |
| __m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2, |
| fx + dx, fx); |
| __m128i wide_high = _mm_add_epi32(wide_low, wide_dx4); |
| __m128i wide_maxX = _mm_set1_epi32(maxX); |
| |
| while (count >= 8) { |
| __m128i wide_out_low = _mm_srli_epi32(wide_low, 16); |
| __m128i wide_out_high = _mm_srli_epi32(wide_high, 16); |
| |
| wide_out_low = _mm_max_epi16(wide_out_low, |
| _mm_setzero_si128()); |
| wide_out_low = _mm_min_epi16(wide_out_low, wide_maxX); |
| wide_out_high = _mm_max_epi16(wide_out_high, |
| _mm_setzero_si128()); |
| wide_out_high = _mm_min_epi16(wide_out_high, wide_maxX); |
| |
| __m128i wide_result = _mm_packs_epi32(wide_out_low, |
| wide_out_high); |
| _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result); |
| |
| wide_low = _mm_add_epi32(wide_low, wide_dx8); |
| wide_high = _mm_add_epi32(wide_high, wide_dx8); |
| |
| xy += 4; |
| fx += dx * 8; |
| count -= 8; |
| } |
| } // if count >= 8 |
| |
| uint16_t* xx = reinterpret_cast<uint16_t*>(xy); |
| while (count-- > 0) { |
| *xx++ = SkClampMax(fx >> 16, maxX); |
| fx += dx; |
| } |
| } |
| } |