| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <new> |
| |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/gpu/GrTexture.h" |
| #include "include/private/GrRecordingContext.h" |
| #include "include/private/SkFloatingPoint.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/gpu/GrAppliedClip.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrDrawOpTest.h" |
| #include "src/gpu/GrGeometryProcessor.h" |
| #include "src/gpu/GrGpu.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrOpFlushState.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrResourceProvider.h" |
| #include "src/gpu/GrResourceProviderPriv.h" |
| #include "src/gpu/GrShaderCaps.h" |
| #include "src/gpu/GrTexturePriv.h" |
| #include "src/gpu/GrTextureProxy.h" |
| #include "src/gpu/SkGr.h" |
| #include "src/gpu/effects/GrTextureDomain.h" |
| #include "src/gpu/effects/generated/GrSaturateProcessor.h" |
| #include "src/gpu/geometry/GrQuad.h" |
| #include "src/gpu/geometry/GrQuadBuffer.h" |
| #include "src/gpu/geometry/GrQuadUtils.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ops/GrFillRectOp.h" |
| #include "src/gpu/ops/GrMeshDrawOp.h" |
| #include "src/gpu/ops/GrQuadPerEdgeAA.h" |
| #include "src/gpu/ops/GrTextureOp.h" |
| |
| namespace { |
| |
| using Domain = GrQuadPerEdgeAA::Domain; |
| using VertexSpec = GrQuadPerEdgeAA::VertexSpec; |
| using ColorType = GrQuadPerEdgeAA::ColorType; |
| |
| // Extracts lengths of vertical and horizontal edges of axis-aligned quad. "width" is the edge |
| // between v0 and v2 (or v1 and v3), "height" is the edge between v0 and v1 (or v2 and v3). |
| static SkSize axis_aligned_quad_size(const GrQuad& quad) { |
| SkASSERT(quad.quadType() == GrQuad::Type::kAxisAligned); |
| // Simplification of regular edge length equation, since it's axis aligned and can avoid sqrt |
| float dw = sk_float_abs(quad.x(2) - quad.x(0)) + sk_float_abs(quad.y(2) - quad.y(0)); |
| float dh = sk_float_abs(quad.x(1) - quad.x(0)) + sk_float_abs(quad.y(1) - quad.y(0)); |
| return {dw, dh}; |
| } |
| |
| static bool filter_has_effect(const GrQuad& srcQuad, const GrQuad& dstQuad) { |
| // If not axis-aligned in src or dst, then always say it has an effect |
| if (srcQuad.quadType() != GrQuad::Type::kAxisAligned || |
| dstQuad.quadType() != GrQuad::Type::kAxisAligned) { |
| return true; |
| } |
| |
| SkRect srcRect; |
| SkRect dstRect; |
| if (srcQuad.asRect(&srcRect) && dstQuad.asRect(&dstRect)) { |
| // Disable filtering when there is no scaling (width and height are the same), and the |
| // top-left corners have the same fraction (so src and dst snap to the pixel grid |
| // identically). |
| SkASSERT(srcRect.isSorted()); |
| return srcRect.width() != dstRect.width() || srcRect.height() != dstRect.height() || |
| SkScalarFraction(srcRect.fLeft) != SkScalarFraction(dstRect.fLeft) || |
| SkScalarFraction(srcRect.fTop) != SkScalarFraction(dstRect.fTop); |
| } else { |
| // Although the quads are axis-aligned, the local coordinate system is transformed such |
| // that fractionally-aligned sample centers will not align with the device coordinate system |
| // So disable filtering when edges are the same length and both srcQuad and dstQuad |
| // 0th vertex is integer aligned. |
| if (SkScalarIsInt(srcQuad.x(0)) && SkScalarIsInt(srcQuad.y(0)) && |
| SkScalarIsInt(dstQuad.x(0)) && SkScalarIsInt(dstQuad.y(0))) { |
| // Extract edge lengths |
| SkSize srcSize = axis_aligned_quad_size(srcQuad); |
| SkSize dstSize = axis_aligned_quad_size(dstQuad); |
| return srcSize.fWidth != dstSize.fWidth || srcSize.fHeight != dstSize.fHeight; |
| } else { |
| return true; |
| } |
| } |
| } |
| |
| // Describes function for normalizing src coords: [x * iw, y * ih + yOffset] can represent |
| // regular and rectangular textures, w/ or w/o origin correction. |
| struct NormalizationParams { |
| float fIW; // 1 / width of texture, or 1.0 for texture rectangles |
| float fIH; // 1 / height of texture, or 1.0 for tex rects, X -1 if bottom-left origin |
| float fYOffset; // 0 for top-left origin, height of [normalized] tex if bottom-left |
| }; |
| static NormalizationParams proxy_normalization_params(const GrSurfaceProxyView& proxyView) { |
| // Whether or not the proxy is instantiated, this is the size its texture will be, so we can |
| // normalize the src coordinates up front. |
| SkISize dimensions = proxyView.proxy()->backingStoreDimensions(); |
| float iw, ih, h; |
| if (proxyView.proxy()->backendFormat().textureType() == GrTextureType::kRectangle) { |
| iw = ih = 1.f; |
| h = dimensions.height(); |
| } else { |
| iw = 1.f / dimensions.width(); |
| ih = 1.f / dimensions.height(); |
| h = 1.f; |
| } |
| |
| if (proxyView.origin() == kBottomLeft_GrSurfaceOrigin) { |
| return {iw, -ih, h}; |
| } else { |
| return {iw, ih, 0.0f}; |
| } |
| } |
| |
| static void correct_domain_for_bilerp(const NormalizationParams& params, |
| SkRect* domainRect) { |
| // Normalized pixel size is also equal to iw and ih, so the insets for bilerp are just |
| // in those units and can be applied safely after normalization. However, if the domain is |
| // smaller than a texel, it should clamp to the center of that axis. |
| float dw = domainRect->width() < params.fIW ? domainRect->width() : params.fIW; |
| float dh = domainRect->height() < params.fIH ? domainRect->height() : params.fIH; |
| domainRect->inset(0.5f * dw, 0.5f * dh); |
| } |
| |
| // Normalize the domain and inset for bilerp as necessary. If 'domainRect' is null, it is assumed |
| // no domain constraint is desired, so a sufficiently large rect is returned even if the quad |
| // ends up batched with an op that uses domains overall. |
| static SkRect normalize_domain(GrSamplerState::Filter filter, |
| const NormalizationParams& params, |
| const SkRect* domainRect) { |
| static constexpr SkRect kLargeRect = {-100000, -100000, 1000000, 1000000}; |
| if (!domainRect) { |
| // Either the quad has no domain constraint and is batched with a domain constrained op |
| // (in which case we want a domain that doesn't restrict normalized tex coords), or the |
| // entire op doesn't use the domain, in which case the returned value is ignored. |
| return kLargeRect; |
| } |
| |
| auto ltrb = skvx::Vec<4, float>::Load(domainRect); |
| // Normalize and offset |
| ltrb = mad(ltrb, {params.fIW, params.fIH, params.fIW, params.fIH}, |
| {0.f, params.fYOffset, 0.f, params.fYOffset}); |
| if (params.fIH < 0.f) { |
| // Flip top and bottom to keep the rect sorted when loaded back to SkRect. |
| ltrb = skvx::shuffle<0, 3, 2, 1>(ltrb); |
| } |
| |
| SkRect out; |
| ltrb.store(&out); |
| |
| if (filter != GrSamplerState::Filter::kNearest) { |
| correct_domain_for_bilerp(params, &out); |
| } |
| return out; |
| } |
| |
| // Normalizes logical src coords and corrects for origin |
| static void normalize_src_quad(const NormalizationParams& params, |
| GrQuad* srcQuad) { |
| // The src quad should not have any perspective |
| SkASSERT(!srcQuad->hasPerspective()); |
| skvx::Vec<4, float> xs = srcQuad->x4f() * params.fIW; |
| skvx::Vec<4, float> ys = mad(srcQuad->y4f(), params.fIH, params.fYOffset); |
| xs.store(srcQuad->xs()); |
| ys.store(srcQuad->ys()); |
| } |
| |
| /** |
| * Op that implements GrTextureOp::Make. It draws textured quads. Each quad can modulate against a |
| * the texture by color. The blend with the destination is always src-over. The edges are non-AA. |
| */ |
| class TextureOp final : public GrMeshDrawOp { |
| public: |
| static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
| GrSurfaceProxyView proxyView, |
| sk_sp<GrColorSpaceXform> textureXform, |
| GrSamplerState::Filter filter, |
| const SkPMColor4f& color, |
| GrTextureOp::Saturate saturate, |
| GrAAType aaType, |
| GrQuadAAFlags aaFlags, |
| const GrQuad& deviceQuad, |
| const GrQuad& localQuad, |
| const SkRect* domain) { |
| GrOpMemoryPool* pool = context->priv().opMemoryPool(); |
| return pool->allocate<TextureOp>(std::move(proxyView), std::move(textureXform), filter, |
| color, saturate, aaType, aaFlags, deviceQuad, localQuad, |
| domain); |
| } |
| |
| static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
| const GrRenderTargetContext::TextureSetEntry set[], |
| int cnt, |
| GrSamplerState::Filter filter, |
| GrTextureOp::Saturate saturate, |
| GrAAType aaType, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| size_t size = sizeof(TextureOp) + sizeof(ViewCountPair) * (cnt - 1); |
| GrOpMemoryPool* pool = context->priv().opMemoryPool(); |
| void* mem = pool->allocate(size); |
| return std::unique_ptr<GrDrawOp>(new (mem) TextureOp(set, cnt, filter, saturate, aaType, |
| constraint, viewMatrix, |
| std::move(textureColorSpaceXform))); |
| } |
| |
| ~TextureOp() override { |
| for (unsigned p = 1; p < fProxyCnt; ++p) { |
| fViewCountPairs[p].~ViewCountPair(); |
| } |
| } |
| |
| const char* name() const override { return "TextureOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| for (unsigned p = 0; p < fProxyCnt; ++p) { |
| bool mipped = (GrSamplerState::Filter::kMipMap == this->filter()); |
| func(fViewCountPairs[p].fProxyView.proxy(), GrMipMapped(mipped)); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| SkString dumpInfo() const override { |
| SkString str; |
| str.appendf("# draws: %d\n", fQuads.count()); |
| auto iter = fQuads.iterator(); |
| for (unsigned p = 0; p < fProxyCnt; ++p) { |
| str.appendf("Proxy ID: %d, Filter: %d\n", |
| fViewCountPairs[p].fProxyView.proxy()->uniqueID().asUInt(), |
| static_cast<int>(fFilter)); |
| int i = 0; |
| while(i < fViewCountPairs[p].fQuadCnt && iter.next()) { |
| const GrQuad& quad = iter.deviceQuad(); |
| const GrQuad& uv = iter.localQuad(); |
| const ColorDomainAndAA& info = iter.metadata(); |
| str.appendf( |
| "%d: Color: 0x%08x, Domain(%d): [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n" |
| " UVs [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n" |
| " Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n", |
| i, info.fColor.toBytes_RGBA(), fDomain, info.fDomainRect.fLeft, |
| info.fDomainRect.fTop, info.fDomainRect.fRight, info.fDomainRect.fBottom, |
| quad.point(0).fX, quad.point(0).fY, quad.point(1).fX, quad.point(1).fY, |
| quad.point(2).fX, quad.point(2).fY, quad.point(3).fX, quad.point(3).fY, |
| uv.point(0).fX, uv.point(0).fY, uv.point(1).fX, uv.point(1).fY, |
| uv.point(2).fX, uv.point(2).fY, uv.point(3).fX, uv.point(3).fY); |
| |
| i++; |
| } |
| } |
| str += INHERITED::dumpInfo(); |
| return str; |
| } |
| #endif |
| |
| GrProcessorSet::Analysis finalize( |
| const GrCaps& caps, const GrAppliedClip*, bool hasMixedSampledCoverage, |
| GrClampType clampType) override { |
| fColorType = static_cast<unsigned>(ColorType::kNone); |
| auto iter = fQuads.metadata(); |
| while(iter.next()) { |
| auto colorType = GrQuadPerEdgeAA::MinColorType(iter->fColor, clampType, caps); |
| fColorType = SkTMax(fColorType, static_cast<unsigned>(colorType)); |
| } |
| return GrProcessorSet::EmptySetAnalysis(); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { |
| return this->aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA |
| : FixedFunctionFlags::kNone; |
| } |
| |
| DEFINE_OP_CLASS_ID |
| |
| private: |
| friend class ::GrOpMemoryPool; |
| |
| struct ColorDomainAndAA { |
| ColorDomainAndAA(const SkPMColor4f& color, const SkRect& domainRect, GrQuadAAFlags aaFlags) |
| : fColor(color) |
| , fDomainRect(domainRect) |
| , fAAFlags(static_cast<unsigned>(aaFlags)) { |
| SkASSERT(fAAFlags == static_cast<unsigned>(aaFlags)); |
| } |
| |
| SkPMColor4f fColor; |
| // If the op doesn't use domains, this is ignored. If the op uses domains and the specific |
| // entry does not, this rect will equal kLargeRect, so it automatically has no effect. |
| SkRect fDomainRect; |
| unsigned fAAFlags : 4; |
| |
| GrQuadAAFlags aaFlags() const { return static_cast<GrQuadAAFlags>(fAAFlags); } |
| }; |
| struct ViewCountPair { |
| GrSurfaceProxyView fProxyView; |
| int fQuadCnt; |
| }; |
| |
| // This descriptor is used in both onPrePrepareDraws and onPrepareDraws. |
| // |
| // In the onPrePrepareDraws case it is allocated in the creation-time opData |
| // arena. Both allocateCommon and allocatePrePrepareOnly are called and they also allocate |
| // their memory in the creation-time opData arena. |
| // |
| // In the onPrepareDraws case this descriptor is created on the stack and only |
| // allocateCommon is called. In this case the common memory fields are allocated |
| // in the flush-time arena (i.e., as part of the flushState). |
| struct PrePreparedDesc { |
| VertexSpec fVertexSpec; |
| int fNumProxies = 0; |
| int fNumTotalQuads = 0; |
| GrPipeline::DynamicStateArrays* fDynamicStateArrays = nullptr; |
| GrPipeline::FixedDynamicState* fFixedDynamicState = nullptr; |
| |
| // This member variable is only used by 'onPrePrepareDraws'. The prior five are also |
| // used by 'onPrepareDraws' |
| char* fVertices = nullptr; |
| |
| // How big should 'fVertices' be to hold all the vertex data? |
| size_t totalSizeInBytes() const { |
| return fNumTotalQuads * fVertexSpec.verticesPerQuad() * fVertexSpec.vertexSize(); |
| } |
| |
| int totalNumVertices() const { |
| return fNumTotalQuads * fVertexSpec.verticesPerQuad(); |
| } |
| |
| // Helper to fill in the fFixedDynamicState and fDynamicStateArrays. If there is more |
| // than one mesh/proxy they are stored in fDynamicStateArrays but if there is only one |
| // it is stored in fFixedDynamicState. |
| void setMeshProxy(int index, GrSurfaceProxy* proxy) { |
| SkASSERT(index < fNumProxies); |
| |
| if (fDynamicStateArrays) { |
| SkASSERT(fDynamicStateArrays->fPrimitiveProcessorTextures); |
| SkASSERT(fNumProxies > 1); |
| |
| fDynamicStateArrays->fPrimitiveProcessorTextures[index] = proxy; |
| } else { |
| SkASSERT(fFixedDynamicState); |
| SkASSERT(fNumProxies == 1); |
| |
| fFixedDynamicState->fPrimitiveProcessorTextures[index] = proxy; |
| } |
| } |
| |
| // Allocate the fields required in both onPrePrepareDraws and onPrepareDraws |
| void allocateCommon(SkArenaAlloc* arena, const GrAppliedClip* clip) { |
| // We'll use a dynamic state array for the GP textures when there are multiple ops. |
| // Otherwise, we use fixed dynamic state to specify the single op's proxy. |
| if (fNumProxies > 1) { |
| fDynamicStateArrays = Target::AllocDynamicStateArrays(arena, fNumProxies, 1, false); |
| fFixedDynamicState = Target::MakeFixedDynamicState(arena, clip, 0); |
| } else { |
| fFixedDynamicState = Target::MakeFixedDynamicState(arena, clip, 1); |
| } |
| } |
| |
| // Allocate the fields only needed by onPrePrepareDraws |
| void allocatePrePrepareOnly(SkArenaAlloc* arena) { |
| fVertices = arena->makeArrayDefault<char>(this->totalSizeInBytes()); |
| } |
| |
| }; |
| |
| // dstQuad should be the geometry transformed by the view matrix. If domainRect |
| // is not null it will be used to apply the strict src rect constraint. |
| TextureOp(GrSurfaceProxyView proxyView, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform, |
| GrSamplerState::Filter filter, |
| const SkPMColor4f& color, |
| GrTextureOp::Saturate saturate, |
| GrAAType aaType, |
| GrQuadAAFlags aaFlags, |
| const GrQuad& dstQuad, |
| const GrQuad& srcQuad, |
| const SkRect* domainRect) |
| : INHERITED(ClassID()) |
| , fQuads(1, true /* includes locals */) |
| , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
| , fPrePreparedDesc(nullptr) |
| , fSaturate(static_cast<unsigned>(saturate)) |
| , fFilter(static_cast<unsigned>(filter)) { |
| // Clean up disparities between the overall aa type and edge configuration and apply |
| // optimizations based on the rect and matrix when appropriate |
| GrQuadUtils::ResolveAAType(aaType, aaFlags, dstQuad, &aaType, &aaFlags); |
| fAAType = static_cast<unsigned>(aaType); |
| |
| // We expect our caller to have already caught this optimization. |
| SkASSERT(!domainRect || |
| !domainRect->contains(proxyView.proxy()->backingStoreBoundsRect())); |
| |
| // We may have had a strict constraint with nearest filter solely due to possible AA bloat. |
| // If we don't have (or determined we don't need) coverage AA then we can skip using a |
| // domain. |
| if (domainRect && this->filter() == GrSamplerState::Filter::kNearest && |
| aaType != GrAAType::kCoverage) { |
| domainRect = nullptr; |
| } |
| |
| // Normalize src coordinates and the domain (if set) |
| NormalizationParams params = proxy_normalization_params(proxyView); |
| GrQuad normalizedSrcQuad = srcQuad; |
| normalize_src_quad(params, &normalizedSrcQuad); |
| SkRect domain = normalize_domain(filter, params, domainRect); |
| |
| fQuads.append(dstQuad, {color, domain, aaFlags}, &normalizedSrcQuad); |
| |
| fProxyCnt = 1; |
| fViewCountPairs[0] = {std::move(proxyView), 1}; |
| fTotNumQuads = 1; |
| this->setBounds(dstQuad.bounds(), HasAABloat(aaType == GrAAType::kCoverage), |
| IsHairline::kNo); |
| fDomain = static_cast<unsigned>(domainRect != nullptr); |
| } |
| |
| TextureOp(const GrRenderTargetContext::TextureSetEntry set[], |
| int cnt, |
| GrSamplerState::Filter filter, |
| GrTextureOp::Saturate saturate, |
| GrAAType aaType, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) |
| : INHERITED(ClassID()) |
| , fQuads(cnt, true /* includes locals */) |
| , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
| , fPrePreparedDesc(nullptr) |
| , fSaturate(static_cast<unsigned>(saturate)) { |
| fProxyCnt = SkToUInt(cnt); |
| SkRect bounds = SkRectPriv::MakeLargestInverted(); |
| |
| GrAAType netAAType = GrAAType::kNone; // aa type maximally compatible with all dst rects |
| Domain netDomain = Domain::kNo; |
| GrSamplerState::Filter netFilter = GrSamplerState::Filter::kNearest; |
| |
| // Net domain and filter quality are being determined simultaneously while iterating through |
| // the entry set. When filter changes to bilerp, all prior normalized domains in the |
| // GrQuadBuffer must be updated to reflect the 1/2px inset required. All quads appended |
| // afterwards will properly take that into account. |
| int correctDomainUpToIndex = 0; |
| const GrSurfaceProxy* curProxy; |
| |
| for (unsigned p = 0; p < fProxyCnt; ++p) { |
| if (p == 0) { |
| // We do not placement new the first ViewCountPair since that one is allocated and |
| // initialized as part of the GrTextureOp creation. |
| fViewCountPairs[p].fProxyView = std::move(set[p].fProxyView); |
| fViewCountPairs[p].fQuadCnt = 1; |
| } else { |
| // We must placement new the ViewCountPairs here so that the sk_sps in the |
| // GrSurfaceProxyView get initialized properly. |
| new(&fViewCountPairs[p])ViewCountPair({std::move(set[p].fProxyView), 1}); |
| } |
| fTotNumQuads += 1; |
| curProxy = fViewCountPairs[p].fProxyView.proxy(); |
| SkASSERT(curProxy->backendFormat().textureType() == |
| fViewCountPairs[0].fProxyView.proxy()->backendFormat().textureType()); |
| SkASSERT(curProxy->config() == fViewCountPairs[0].fProxyView.proxy()->config()); |
| |
| SkMatrix ctm = viewMatrix; |
| if (set[p].fPreViewMatrix) { |
| ctm.preConcat(*set[p].fPreViewMatrix); |
| } |
| |
| // Use dstRect/srcRect unless dstClip is provided, in which case derive new source |
| // coordinates by mapping dstClipQuad by the dstRect to srcRect transform. |
| GrQuad quad, srcQuad; |
| if (set[p].fDstClipQuad) { |
| quad = GrQuad::MakeFromSkQuad(set[p].fDstClipQuad, ctm); |
| |
| SkPoint srcPts[4]; |
| GrMapRectPoints(set[p].fDstRect, set[p].fSrcRect, set[p].fDstClipQuad, srcPts, 4); |
| srcQuad = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I()); |
| } else { |
| quad = GrQuad::MakeFromRect(set[p].fDstRect, ctm); |
| srcQuad = GrQuad(set[p].fSrcRect); |
| } |
| |
| // Before normalizing the source coordinates, determine if bilerp is actually needed |
| if (netFilter != filter && filter_has_effect(srcQuad, quad)) { |
| // The only way netFilter != filter is if bilerp is requested and we haven't yet |
| // found a quad that requires bilerp (so net is still nearest). |
| SkASSERT(netFilter == GrSamplerState::Filter::kNearest && |
| filter == GrSamplerState::Filter::kBilerp); |
| netFilter = GrSamplerState::Filter::kBilerp; |
| // All quads index < p with domains were calculated as if there was no filtering, |
| // which is no longer true. |
| correctDomainUpToIndex = p; |
| } |
| |
| // Normalize the src quads and apply origin |
| NormalizationParams proxyParams = |
| proxy_normalization_params(fViewCountPairs[p].fProxyView); |
| normalize_src_quad(proxyParams, &srcQuad); |
| |
| // Update overall bounds of the op as the union of all quads |
| bounds.joinPossiblyEmptyRect(quad.bounds()); |
| |
| // Determine the AA type for the quad, then merge with net AA type |
| GrQuadAAFlags aaFlags; |
| GrAAType aaForQuad; |
| GrQuadUtils::ResolveAAType(aaType, set[p].fAAFlags, quad, &aaForQuad, &aaFlags); |
| // Resolve sets aaForQuad to aaType or None, there is never a change between aa methods |
| SkASSERT(aaForQuad == GrAAType::kNone || aaForQuad == aaType); |
| if (netAAType == GrAAType::kNone && aaForQuad != GrAAType::kNone) { |
| netAAType = aaType; |
| } |
| |
| // Calculate metadata for the entry |
| const SkRect* domainForQuad = nullptr; |
| if (constraint == SkCanvas::kStrict_SrcRectConstraint) { |
| // Check (briefly) if the strict constraint is needed for this set entry |
| if (!set[p].fSrcRect.contains(curProxy->backingStoreBoundsRect()) && |
| (netFilter == GrSamplerState::Filter::kBilerp || |
| aaForQuad == GrAAType::kCoverage)) { |
| // Can't rely on hardware clamping and the draw will access outer texels |
| // for AA and/or bilerp. Unlike filter quality, this op still has per-quad |
| // control over AA so that can check aaForQuad, not netAAType. |
| netDomain = Domain::kYes; |
| domainForQuad = &set[p].fSrcRect; |
| } |
| } |
| |
| SkRect domain = normalize_domain(filter, proxyParams, domainForQuad); |
| float alpha = SkTPin(set[p].fAlpha, 0.f, 1.f); |
| fQuads.append(quad, {{alpha, alpha, alpha, alpha}, domain, aaFlags}, &srcQuad); |
| } |
| |
| // All the quads have been recorded, but some domains need to be fixed |
| if (netDomain == Domain::kYes && correctDomainUpToIndex > 0) { |
| int p = 0; |
| auto iter = fQuads.metadata(); |
| while(p < correctDomainUpToIndex && iter.next()) { |
| NormalizationParams proxyParams = |
| proxy_normalization_params(fViewCountPairs[p].fProxyView); |
| correct_domain_for_bilerp(proxyParams, &(iter->fDomainRect)); |
| p++; |
| } |
| } |
| |
| fAAType = static_cast<unsigned>(netAAType); |
| fFilter = static_cast<unsigned>(netFilter); |
| fDomain = static_cast<unsigned>(netDomain); |
| |
| this->setBounds(bounds, HasAABloat(netAAType == GrAAType::kCoverage), IsHairline::kNo); |
| } |
| |
| void onPrePrepareDraws(GrRecordingContext* context, |
| const GrSurfaceProxyView* dstView, |
| GrAppliedClip* clip, |
| const GrXferProcessor::DstProxyView& dstProxyView) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| SkDEBUGCODE(this->validate();) |
| SkASSERT(!fPrePreparedDesc); |
| |
| SkArenaAlloc* arena = context->priv().recordTimeAllocator(); |
| |
| fPrePreparedDesc = arena->make<PrePreparedDesc>(); |
| |
| this->characterize(fPrePreparedDesc); |
| |
| fPrePreparedDesc->allocateCommon(arena, clip); |
| |
| fPrePreparedDesc->allocatePrePrepareOnly(arena); |
| |
| // At this juncture we only fill in the vertex data and state arrays. Filling in of |
| // the meshes is left until onPrepareDraws. |
| SkAssertResult(FillInData(*context->priv().caps(), this, fPrePreparedDesc, |
| fPrePreparedDesc->fVertices, nullptr, 0, nullptr, nullptr)); |
| } |
| |
| static bool FillInData(const GrCaps& caps, TextureOp* texOp, PrePreparedDesc* desc, |
| char* pVertexData, GrMesh* meshes, int absBufferOffset, |
| sk_sp<const GrBuffer> vertexBuffer, |
| sk_sp<const GrBuffer> indexBuffer) { |
| int totQuadsSeen = 0; |
| SkDEBUGCODE(int totVerticesSeen = 0;) |
| SkDEBUGCODE(const size_t vertexSize = desc->fVertexSpec.vertexSize()); |
| |
| GrQuadPerEdgeAA::Tessellator tessellator(desc->fVertexSpec, pVertexData); |
| int meshIndex = 0; |
| for (const auto& op : ChainRange<TextureOp>(texOp)) { |
| auto iter = op.fQuads.iterator(); |
| for (unsigned p = 0; p < op.fProxyCnt; ++p) { |
| GrSurfaceProxy* proxy = op.fViewCountPairs[p].fProxyView.proxy(); |
| |
| const int quadCnt = op.fViewCountPairs[p].fQuadCnt; |
| SkDEBUGCODE(int meshVertexCnt = quadCnt * desc->fVertexSpec.verticesPerQuad()); |
| SkASSERT(meshIndex < desc->fNumProxies); |
| |
| if (pVertexData) { |
| for (int i = 0; i < quadCnt && iter.next(); ++i) { |
| SkASSERT(iter.isLocalValid()); |
| const ColorDomainAndAA& info = iter.metadata(); |
| tessellator.append(iter.deviceQuad(), iter.localQuad(), |
| info.fColor, info.fDomainRect, info.aaFlags()); |
| } |
| desc->setMeshProxy(meshIndex, proxy); |
| |
| SkASSERT((totVerticesSeen + meshVertexCnt) * vertexSize |
| == (size_t)(tessellator.vertices() - pVertexData)); |
| } |
| |
| if (meshes) { |
| GrQuadPerEdgeAA::ConfigureMesh(caps, &(meshes[meshIndex]), desc->fVertexSpec, |
| totQuadsSeen, quadCnt, desc->totalNumVertices(), |
| vertexBuffer, indexBuffer, absBufferOffset); |
| } |
| |
| ++meshIndex; |
| |
| totQuadsSeen += quadCnt; |
| SkDEBUGCODE(totVerticesSeen += meshVertexCnt); |
| SkASSERT(totQuadsSeen * desc->fVertexSpec.verticesPerQuad() == totVerticesSeen); |
| } |
| |
| // If quad counts per proxy were calculated correctly, the entire iterator |
| // should have been consumed. |
| SkASSERT(!pVertexData || !iter.next()); |
| } |
| |
| SkASSERT(!pVertexData || |
| (desc->totalSizeInBytes() == (size_t)(tessellator.vertices() - pVertexData))); |
| SkASSERT(meshIndex == desc->fNumProxies); |
| SkASSERT(totQuadsSeen == desc->fNumTotalQuads); |
| SkASSERT(totVerticesSeen == desc->totalNumVertices()); |
| return true; |
| } |
| |
| #ifdef SK_DEBUG |
| void validate() const override { |
| // NOTE: Since this is debug-only code, we use the virtual asTextureProxy() |
| auto textureType = fViewCountPairs[0].fProxyView.asTextureProxy()->textureType(); |
| GrAAType aaType = this->aaType(); |
| |
| int quadCount = 0; |
| for (const auto& op : ChainRange<TextureOp>(this)) { |
| for (unsigned p = 0; p < op.fProxyCnt; ++p) { |
| auto* proxy = op.fViewCountPairs[p].fProxyView.asTextureProxy(); |
| quadCount += op.fViewCountPairs[p].fQuadCnt; |
| SkASSERT(proxy); |
| SkASSERT(proxy->textureType() == textureType); |
| SkASSERT(op.fViewCountPairs[p].fProxyView.swizzle() == |
| fViewCountPairs[0].fProxyView.swizzle()); |
| } |
| |
| // Each individual op must be a single aaType. kCoverage and kNone ops can chain |
| // together but kMSAA ones do not. |
| if (aaType == GrAAType::kCoverage || aaType == GrAAType::kNone) { |
| SkASSERT(op.aaType() == GrAAType::kCoverage || op.aaType() == GrAAType::kNone); |
| } else { |
| SkASSERT(aaType == GrAAType::kMSAA && op.aaType() == GrAAType::kMSAA); |
| } |
| } |
| |
| SkASSERT(quadCount == this->numChainedQuads()); |
| } |
| #endif |
| |
| #if GR_TEST_UTILS |
| int numQuads() const final { return this->totNumQuads(); } |
| #endif |
| |
| void characterize(PrePreparedDesc* desc) const { |
| GrQuad::Type quadType = GrQuad::Type::kAxisAligned; |
| ColorType colorType = ColorType::kNone; |
| GrQuad::Type srcQuadType = GrQuad::Type::kAxisAligned; |
| Domain domain = Domain::kNo; |
| GrAAType overallAAType = this->aaType(); |
| |
| desc->fNumProxies = 0; |
| desc->fNumTotalQuads = 0; |
| int maxQuadsPerMesh = 0; |
| |
| for (const auto& op : ChainRange<TextureOp>(this)) { |
| if (op.fQuads.deviceQuadType() > quadType) { |
| quadType = op.fQuads.deviceQuadType(); |
| } |
| if (op.fQuads.localQuadType() > srcQuadType) { |
| srcQuadType = op.fQuads.localQuadType(); |
| } |
| if (op.fDomain) { |
| domain = Domain::kYes; |
| } |
| colorType = SkTMax(colorType, static_cast<ColorType>(op.fColorType)); |
| desc->fNumProxies += op.fProxyCnt; |
| |
| for (unsigned p = 0; p < op.fProxyCnt; ++p) { |
| maxQuadsPerMesh = SkTMax(op.fViewCountPairs[p].fQuadCnt, maxQuadsPerMesh); |
| } |
| desc->fNumTotalQuads += op.totNumQuads(); |
| |
| if (op.aaType() == GrAAType::kCoverage) { |
| overallAAType = GrAAType::kCoverage; |
| } |
| } |
| |
| SkASSERT(desc->fNumTotalQuads == this->numChainedQuads()); |
| |
| SkASSERT(!CombinedQuadCountWillOverflow(overallAAType, false, desc->fNumTotalQuads)); |
| |
| auto indexBufferOption = GrQuadPerEdgeAA::CalcIndexBufferOption(overallAAType, |
| maxQuadsPerMesh); |
| |
| desc->fVertexSpec = VertexSpec(quadType, colorType, srcQuadType, /* hasLocal */ true, |
| domain, overallAAType, /* alpha as coverage */ true, |
| indexBufferOption); |
| |
| SkASSERT(desc->fNumTotalQuads <= GrQuadPerEdgeAA::QuadLimit(indexBufferOption)); |
| } |
| |
| int totNumQuads() const { |
| #ifdef SK_DEBUG |
| int tmp = 0; |
| for (unsigned p = 0; p < fProxyCnt; ++p) { |
| tmp += fViewCountPairs[p].fQuadCnt; |
| } |
| SkASSERT(tmp == fTotNumQuads); |
| #endif |
| |
| return fTotNumQuads; |
| } |
| |
| int numChainedQuads() const { |
| int numChainedQuads = this->totNumQuads(); |
| |
| for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) { |
| numChainedQuads += ((const TextureOp*)tmp)->totNumQuads(); |
| } |
| |
| for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) { |
| numChainedQuads += ((const TextureOp*)tmp)->totNumQuads(); |
| } |
| |
| return numChainedQuads; |
| } |
| |
| // onPrePrepareDraws may or may not have been called at this point |
| void onPrepareDraws(Target* target) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| PrePreparedDesc desc; |
| |
| if (fPrePreparedDesc) { |
| desc = *fPrePreparedDesc; |
| } else { |
| SkArenaAlloc* arena = target->allocator(); |
| |
| this->characterize(&desc); |
| desc.allocateCommon(arena, target->appliedClip()); |
| |
| SkASSERT(!desc.fVertices); |
| } |
| |
| size_t vertexSize = desc.fVertexSpec.vertexSize(); |
| |
| sk_sp<const GrBuffer> vbuffer; |
| int vertexOffsetInBuffer = 0; |
| |
| void* vdata = target->makeVertexSpace(vertexSize, desc.totalNumVertices(), |
| &vbuffer, &vertexOffsetInBuffer); |
| if (!vdata) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| sk_sp<const GrBuffer> indexBuffer; |
| if (desc.fVertexSpec.needsIndexBuffer()) { |
| indexBuffer = GrQuadPerEdgeAA::GetIndexBuffer(target, |
| desc.fVertexSpec.indexBufferOption()); |
| if (!indexBuffer) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| } |
| |
| // Note: this allocation is always in the flush-time arena (i.e., the flushState) |
| GrMesh* meshes = target->allocMeshes(desc.fNumProxies); |
| |
| bool result; |
| if (fPrePreparedDesc) { |
| memcpy(vdata, desc.fVertices, desc.totalSizeInBytes()); |
| // The above memcpy filled in the vertex data - just call FillInData to fill in the |
| // mesh data |
| result = FillInData(target->caps(), this, &desc, nullptr, meshes, vertexOffsetInBuffer, |
| std::move(vbuffer), std::move(indexBuffer)); |
| } else { |
| // Fills in both vertex data and mesh data |
| result = FillInData(target->caps(), this, &desc, (char*) vdata, meshes, |
| vertexOffsetInBuffer, std::move(vbuffer), std::move(indexBuffer)); |
| } |
| |
| if (!result) { |
| return; |
| } |
| |
| GrGeometryProcessor* gp; |
| |
| { |
| const GrBackendFormat& backendFormat = |
| fViewCountPairs[0].fProxyView.proxy()->backendFormat(); |
| const GrSwizzle& swizzle = fViewCountPairs[0].fProxyView.swizzle(); |
| |
| GrSamplerState samplerState = GrSamplerState(GrSamplerState::WrapMode::kClamp, |
| this->filter()); |
| |
| auto saturate = static_cast<GrTextureOp::Saturate>(fSaturate); |
| |
| gp = GrQuadPerEdgeAA::MakeTexturedProcessor(target->allocator(), |
| desc.fVertexSpec, *target->caps().shaderCaps(), backendFormat, |
| samplerState, swizzle, std::move(fTextureColorSpaceXform), saturate); |
| |
| SkASSERT(vertexSize == gp->vertexStride()); |
| } |
| |
| target->recordDraw(gp, meshes, desc.fNumProxies, |
| desc.fFixedDynamicState, desc.fDynamicStateArrays, |
| desc.fVertexSpec.primitiveType()); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| auto pipelineFlags = (GrAAType::kMSAA == this->aaType()) |
| ? GrPipeline::InputFlags::kHWAntialias |
| : GrPipeline::InputFlags::kNone; |
| flushState->executeDrawsAndUploadsForMeshDrawOp( |
| this, chainBounds, GrProcessorSet::MakeEmptySet(), pipelineFlags); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| const auto* that = t->cast<TextureOp>(); |
| |
| if (fPrePreparedDesc || that->fPrePreparedDesc) { |
| // This should never happen (since only DDL recorded ops should be prePrepared) |
| // but, in any case, we should never combine ops that that been prePrepared |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fDomain != that->fDomain) { |
| // It is technically possible to combine operations across domain modes, but performance |
| // testing suggests it's better to make more draw calls where some take advantage of |
| // the more optimal shader path without coordinate clamping. |
| return CombineResult::kCannotCombine; |
| } |
| if (!GrColorSpaceXform::Equals(fTextureColorSpaceXform.get(), |
| that->fTextureColorSpaceXform.get())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| bool upgradeToCoverageAAOnMerge = false; |
| if (this->aaType() != that->aaType()) { |
| if (!CanUpgradeAAOnMerge(this->aaType(), that->aaType())) { |
| return CombineResult::kCannotCombine; |
| } |
| upgradeToCoverageAAOnMerge = true; |
| } |
| |
| if (CombinedQuadCountWillOverflow(this->aaType(), upgradeToCoverageAAOnMerge, |
| this->numChainedQuads() + that->numChainedQuads())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fSaturate != that->fSaturate) { |
| return CombineResult::kCannotCombine; |
| } |
| if (fFilter != that->fFilter) { |
| return CombineResult::kCannotCombine; |
| } |
| const auto& thisView = fViewCountPairs[0].fProxyView; |
| const auto& thatView = that->fViewCountPairs[0].fProxyView; |
| auto thisProxy = thisView.proxy(); |
| auto thatProxy = thatView.proxy(); |
| if (fProxyCnt > 1 || that->fProxyCnt > 1 || thisView != thatView) { |
| // We can't merge across different proxies. Check if 'this' can be chained with 'that'. |
| if (GrTextureProxy::ProxiesAreCompatibleAsDynamicState(thisProxy, thatProxy) && |
| caps.dynamicStateArrayGeometryProcessorTextureSupport() && |
| thisView.swizzle() == thatView.swizzle() && |
| thisView.origin() == thatView.origin()) { |
| return CombineResult::kMayChain; |
| } |
| return CombineResult::kCannotCombine; |
| } |
| |
| fDomain |= that->fDomain; |
| fColorType = SkTMax(fColorType, that->fColorType); |
| if (upgradeToCoverageAAOnMerge) { |
| fAAType = static_cast<unsigned>(GrAAType::kCoverage); |
| } |
| |
| // Concatenate quad lists together |
| fQuads.concat(that->fQuads); |
| fViewCountPairs[0].fQuadCnt += that->fQuads.count(); |
| fTotNumQuads += that->fQuads.count(); |
| |
| return CombineResult::kMerged; |
| } |
| |
| GrAAType aaType() const { return static_cast<GrAAType>(fAAType); } |
| GrSamplerState::Filter filter() const { return static_cast<GrSamplerState::Filter>(fFilter); } |
| |
| GrQuadBuffer<ColorDomainAndAA> fQuads; |
| sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| // 'fPrePreparedDesc' is only filled in when this op has been prePrepared. In that case, |
| // it - and the matching dynamic and fixed state - have been allocated in the opPOD arena |
| // not in the FlushState arena. |
| PrePreparedDesc* fPrePreparedDesc; |
| int fTotNumQuads = 0; // the total number of quads in this op (but not in the whole chain) |
| unsigned fSaturate : 1; |
| unsigned fFilter : 2; |
| unsigned fAAType : 2; |
| unsigned fDomain : 1; |
| unsigned fColorType : 2; |
| GR_STATIC_ASSERT(GrQuadPerEdgeAA::kColorTypeCount <= 4); |
| unsigned fProxyCnt : 32 - 8; |
| |
| // This field must go last. When allocating this op, we will allocate extra space to hold |
| // additional ViewCountPairs immediately after the op's allocation so we can treat this |
| // as an fProxyCnt-length array. |
| ViewCountPair fViewCountPairs[1]; |
| |
| static_assert(GrQuad::kTypeCount <= 4, "GrQuad::Type does not fit in 2 bits"); |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| } // anonymous namespace |
| |
| #if GR_TEST_UTILS |
| uint32_t GrTextureOp::ClassID() { |
| return TextureOp::ClassID(); |
| } |
| #endif |
| |
| std::unique_ptr<GrDrawOp> GrTextureOp::Make(GrRecordingContext* context, |
| GrSurfaceProxyView proxyView, |
| SkAlphaType alphaType, |
| sk_sp<GrColorSpaceXform> textureXform, |
| GrSamplerState::Filter filter, |
| const SkPMColor4f& color, |
| Saturate saturate, |
| SkBlendMode blendMode, |
| GrAAType aaType, |
| GrQuadAAFlags aaFlags, |
| const GrQuad& deviceQuad, |
| const GrQuad& localQuad, |
| const SkRect* domain) { |
| // Apply optimizations that are valid whether or not using GrTextureOp or GrFillRectOp |
| if (domain && domain->contains(proxyView.proxy()->backingStoreBoundsRect())) { |
| // No need for a shader-based domain if hardware clamping achieves the same effect |
| domain = nullptr; |
| } |
| |
| if (filter != GrSamplerState::Filter::kNearest && !filter_has_effect(localQuad, deviceQuad)) { |
| filter = GrSamplerState::Filter::kNearest; |
| } |
| |
| if (blendMode == SkBlendMode::kSrcOver) { |
| return TextureOp::Make(context, std::move(proxyView), std::move(textureXform), filter, |
| color, saturate, aaType, aaFlags, deviceQuad, localQuad, domain); |
| } else { |
| // Emulate complex blending using GrFillRectOp |
| GrPaint paint; |
| paint.setColor4f(color); |
| paint.setXPFactory(SkBlendMode_AsXPFactory(blendMode)); |
| |
| GrSurfaceProxy* proxy = proxyView.proxy(); |
| std::unique_ptr<GrFragmentProcessor> fp; |
| if (domain) { |
| // Update domain to match what GrTextureOp would do for bilerp, but don't do any |
| // normalization since GrTextureDomainEffect handles that and the origin. |
| SkRect correctedDomain = normalize_domain(filter, {1.f, 1.f, 0.f}, domain); |
| fp = GrTextureDomainEffect::Make(sk_ref_sp(proxy), alphaType, SkMatrix::I(), |
| correctedDomain, GrTextureDomain::kClamp_Mode, filter); |
| } else { |
| fp = GrSimpleTextureEffect::Make(sk_ref_sp(proxy), alphaType, SkMatrix::I(), filter); |
| } |
| fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(textureXform)); |
| paint.addColorFragmentProcessor(std::move(fp)); |
| if (saturate == GrTextureOp::Saturate::kYes) { |
| paint.addColorFragmentProcessor(GrSaturateProcessor::Make()); |
| } |
| |
| return GrFillRectOp::Make(context, std::move(paint), aaType, aaFlags, |
| deviceQuad, localQuad); |
| } |
| } |
| |
| // A helper class that assists in breaking up bulk API quad draws into manageable chunks. |
| class GrTextureOp::BatchSizeLimiter { |
| public: |
| BatchSizeLimiter(GrRenderTargetContext* rtc, |
| const GrClip& clip, |
| GrRecordingContext* context, |
| int numEntries, |
| GrSamplerState::Filter filter, |
| GrTextureOp::Saturate saturate, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) |
| : fRTC(rtc) |
| , fClip(clip) |
| , fContext(context) |
| , fFilter(filter) |
| , fSaturate(saturate) |
| , fConstraint(constraint) |
| , fViewMatrix(viewMatrix) |
| , fTextureColorSpaceXform(textureColorSpaceXform) |
| , fNumLeft(numEntries) { |
| } |
| |
| void createOp(const GrRenderTargetContext::TextureSetEntry set[], |
| int clumpSize, |
| GrAAType aaType) { |
| std::unique_ptr<GrDrawOp> op = TextureOp::Make(fContext, &set[fNumClumped], clumpSize, |
| fFilter, fSaturate, aaType, |
| fConstraint, fViewMatrix, |
| fTextureColorSpaceXform); |
| fRTC->addDrawOp(fClip, std::move(op)); |
| |
| fNumLeft -= clumpSize; |
| fNumClumped += clumpSize; |
| } |
| |
| int numLeft() const { return fNumLeft; } |
| int baseIndex() const { return fNumClumped; } |
| |
| private: |
| GrRenderTargetContext* fRTC; |
| const GrClip& fClip; |
| GrRecordingContext* fContext; |
| GrSamplerState::Filter fFilter; |
| GrTextureOp::Saturate fSaturate; |
| SkCanvas::SrcRectConstraint fConstraint; |
| const SkMatrix& fViewMatrix; |
| sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| |
| int fNumLeft; |
| int fNumClumped = 0; // also the offset for the start of the next clump |
| }; |
| |
| // Greedily clump quad draws together until the index buffer limit is exceeded. |
| void GrTextureOp::AddTextureSetOps(GrRenderTargetContext* rtc, |
| const GrClip& clip, |
| GrRecordingContext* context, |
| const GrRenderTargetContext::TextureSetEntry set[], |
| int cnt, |
| GrSamplerState::Filter filter, |
| Saturate saturate, |
| SkBlendMode blendMode, |
| GrAAType aaType, |
| SkCanvas::SrcRectConstraint constraint, |
| const SkMatrix& viewMatrix, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| // First check if we can support batches as a single op |
| if (blendMode != SkBlendMode::kSrcOver || |
| !context->priv().caps()->dynamicStateArrayGeometryProcessorTextureSupport()) { |
| // Append each entry as its own op; these may still be GrTextureOps if the blend mode is |
| // src-over but the backend doesn't support dynamic state changes. Otherwise Make() |
| // automatically creates the appropriate GrFillRectOp to emulate GrTextureOp. |
| SkMatrix ctm; |
| for (int i = 0; i < cnt; ++i) { |
| float alpha = set[i].fAlpha; |
| ctm = viewMatrix; |
| if (set[i].fPreViewMatrix) { |
| ctm.preConcat(*set[i].fPreViewMatrix); |
| } |
| |
| GrQuad quad, srcQuad; |
| if (set[i].fDstClipQuad) { |
| quad = GrQuad::MakeFromSkQuad(set[i].fDstClipQuad, ctm); |
| |
| SkPoint srcPts[4]; |
| GrMapRectPoints(set[i].fDstRect, set[i].fSrcRect, set[i].fDstClipQuad, srcPts, 4); |
| srcQuad = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I()); |
| } else { |
| quad = GrQuad::MakeFromRect(set[i].fDstRect, ctm); |
| srcQuad = GrQuad(set[i].fSrcRect); |
| } |
| |
| const SkRect* domain = constraint == SkCanvas::kStrict_SrcRectConstraint |
| ? &set[i].fSrcRect : nullptr; |
| |
| auto op = Make(context, set[i].fProxyView, set[i].fSrcAlphaType, textureColorSpaceXform, |
| filter, {alpha, alpha, alpha, alpha}, saturate, blendMode, aaType, |
| set[i].fAAFlags, quad, srcQuad, domain); |
| rtc->addDrawOp(clip, std::move(op)); |
| } |
| return; |
| } |
| |
| // Second check if we can always just make a single op and avoid the extra iteration |
| // needed to clump things together. |
| if (cnt <= SkTMin(GrResourceProvider::MaxNumNonAAQuads(), |
| GrResourceProvider::MaxNumAAQuads())) { |
| auto op = TextureOp::Make(context, set, cnt, filter, saturate, aaType, |
| constraint, viewMatrix, std::move(textureColorSpaceXform)); |
| rtc->addDrawOp(clip, std::move(op)); |
| return; |
| } |
| |
| BatchSizeLimiter state(rtc, clip, context, cnt, filter, saturate, constraint, viewMatrix, |
| std::move(textureColorSpaceXform)); |
| |
| // kNone and kMSAA never get altered |
| if (aaType == GrAAType::kNone || aaType == GrAAType::kMSAA) { |
| // Clump these into series of MaxNumNonAAQuads-sized GrTextureOps |
| while (state.numLeft() > 0) { |
| int clumpSize = SkTMin(state.numLeft(), GrResourceProvider::MaxNumNonAAQuads()); |
| |
| state.createOp(set, clumpSize, aaType); |
| } |
| } else { |
| // kCoverage can be downgraded to kNone. Note that the following is conservative. kCoverage |
| // can also get downgraded to kNone if all the quads are on integer coordinates and |
| // axis-aligned. |
| SkASSERT(aaType == GrAAType::kCoverage); |
| |
| while (state.numLeft() > 0) { |
| GrAAType runningAA = GrAAType::kNone; |
| bool clumped = false; |
| |
| for (int i = 0; i < state.numLeft(); ++i) { |
| int absIndex = state.baseIndex() + i; |
| |
| if (set[absIndex].fAAFlags != GrQuadAAFlags::kNone) { |
| |
| if (i >= GrResourceProvider::MaxNumAAQuads()) { |
| // Here we either need to boost the AA type to kCoverage, but doing so with |
| // all the accumulated quads would overflow, or we have a set of AA quads |
| // that has just gotten too large. In either case, calve off the existing |
| // quads as their own TextureOp. |
| state.createOp( |
| set, |
| runningAA == GrAAType::kNone ? i : GrResourceProvider::MaxNumAAQuads(), |
| runningAA); // maybe downgrading AA here |
| clumped = true; |
| break; |
| } |
| |
| runningAA = GrAAType::kCoverage; |
| } else if (runningAA == GrAAType::kNone) { |
| |
| if (i >= GrResourceProvider::MaxNumNonAAQuads()) { |
| // Here we've found a consistent batch of non-AA quads that has gotten too |
| // large. Calve it off as its own GrTextureOp. |
| state.createOp(set, GrResourceProvider::MaxNumNonAAQuads(), |
| GrAAType::kNone); // definitely downgrading AA here |
| clumped = true; |
| break; |
| } |
| } |
| } |
| |
| if (!clumped) { |
| // We ran through the above loop w/o hitting a limit. Spit out this last clump of |
| // quads and call it a day. |
| state.createOp(set, state.numLeft(), runningAA); // maybe downgrading AA here |
| } |
| } |
| } |
| } |
| |
| #if GR_TEST_UTILS |
| #include "include/private/GrRecordingContext.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| |
| GR_DRAW_OP_TEST_DEFINE(TextureOp) { |
| GrSurfaceDesc desc; |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| desc.fHeight = random->nextULessThan(90) + 10; |
| desc.fWidth = random->nextULessThan(90) + 10; |
| auto origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; |
| GrMipMapped mipMapped = random->nextBool() ? GrMipMapped::kYes : GrMipMapped::kNo; |
| SkBackingFit fit = SkBackingFit::kExact; |
| if (mipMapped == GrMipMapped::kNo) { |
| fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact; |
| } |
| const GrBackendFormat format = |
| context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, |
| GrRenderable::kNo); |
| |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy( |
| format, desc, GrRenderable::kNo, 1, origin, mipMapped, fit, SkBudgeted::kNo, |
| GrProtected::kNo, GrInternalSurfaceFlags::kNone); |
| |
| SkRect rect = GrTest::TestRect(random); |
| SkRect srcRect; |
| srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f); |
| srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f; |
| srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f); |
| srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f; |
| SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); |
| SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU())); |
| GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan( |
| static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1); |
| while (mipMapped == GrMipMapped::kNo && filter == GrSamplerState::Filter::kMipMap) { |
| filter = (GrSamplerState::Filter)random->nextULessThan( |
| static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1); |
| } |
| auto texXform = GrTest::TestColorXform(random); |
| GrAAType aaType = GrAAType::kNone; |
| if (random->nextBool()) { |
| aaType = (numSamples > 1) ? GrAAType::kMSAA : GrAAType::kCoverage; |
| } |
| GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone; |
| aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone; |
| bool useDomain = random->nextBool(); |
| auto saturate = random->nextBool() ? GrTextureOp::Saturate::kYes : GrTextureOp::Saturate::kNo; |
| GrSurfaceProxyView proxyView( |
| std::move(proxy), origin, |
| context->priv().caps()->getTextureSwizzle(format, GrColorType::kRGBA_8888)); |
| auto alphaType = static_cast<SkAlphaType>( |
| random->nextRangeU(kUnknown_SkAlphaType + 1, kLastEnum_SkAlphaType)); |
| |
| return GrTextureOp::Make(context, std::move(proxyView), alphaType, std::move(texXform), filter, |
| color, saturate, SkBlendMode::kSrcOver, aaType, aaFlags, |
| GrQuad::MakeFromRect(rect, viewMatrix), GrQuad(srcRect), |
| useDomain ? &srcRect : nullptr); |
| } |
| |
| #endif |