blob: 9224e005c6886358c2c6eb037c786bc5281bcdeb [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkClipOpPriv.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrColor.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrFixedClip.h"
#include "src/gpu/GrPathRenderer.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrReducedClip.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrStencilClip.h"
#include "src/gpu/GrStencilSettings.h"
#include "src/gpu/GrStyle.h"
#include "src/gpu/GrUserStencilSettings.h"
#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
#include "src/gpu/effects/GrConvexPolyEffect.h"
#include "src/gpu/effects/GrRRectEffect.h"
#include "src/gpu/effects/generated/GrAARectEffect.h"
#include "src/gpu/geometry/GrShape.h"
/**
* There are plenty of optimizations that could be added here. Maybe flips could be folded into
* earlier operations. Or would inserting flips and reversing earlier ops ever be a win? Perhaps
* for the case where the bounds are kInsideOut_BoundsType. We could restrict earlier operations
* based on later intersect operations, and perhaps remove intersect-rects. We could optionally
* take a rect in case the caller knows a bound on what is to be drawn through this clip.
*/
GrReducedClip::GrReducedClip(const SkClipStack& stack, const SkRect& queryBounds,
const GrCaps* caps, int maxWindowRectangles, int maxAnalyticFPs,
int maxCCPRClipPaths)
: fCaps(caps)
, fMaxWindowRectangles(maxWindowRectangles)
, fMaxAnalyticFPs(maxAnalyticFPs)
, fMaxCCPRClipPaths(maxCCPRClipPaths) {
SkASSERT(!queryBounds.isEmpty());
SkASSERT(fMaxWindowRectangles <= GrWindowRectangles::kMaxWindows);
SkASSERT(fMaxCCPRClipPaths <= fMaxAnalyticFPs);
fHasScissor = false;
fAAClipRectGenID = SK_InvalidGenID;
if (stack.isWideOpen()) {
fInitialState = InitialState::kAllIn;
return;
}
SkClipStack::BoundsType stackBoundsType;
SkRect stackBounds;
bool iior;
stack.getBounds(&stackBounds, &stackBoundsType, &iior);
if (GrClip::IsOutsideClip(stackBounds, queryBounds)) {
bool insideOut = SkClipStack::kInsideOut_BoundsType == stackBoundsType;
fInitialState = insideOut ? InitialState::kAllIn : InitialState::kAllOut;
return;
}
if (iior) {
// "Is intersection of rects" means the clip is a single rect indicated by the stack bounds.
// This should only be true if aa/non-aa status matches among all elements.
SkASSERT(SkClipStack::kNormal_BoundsType == stackBoundsType);
if (GrClip::IsInsideClip(stackBounds, queryBounds)) {
fInitialState = InitialState::kAllIn;
return;
}
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
if (!iter.prev()->isAA() || GrClip::IsPixelAligned(stackBounds)) {
// The clip is a non-aa rect. Here we just implement the entire thing using fScissor.
stackBounds.round(&fScissor);
fHasScissor = true;
fInitialState = fScissor.isEmpty() ? InitialState::kAllOut : InitialState::kAllIn;
return;
}
SkRect tightBounds;
SkAssertResult(tightBounds.intersect(stackBounds, queryBounds));
fScissor = GrClip::GetPixelIBounds(tightBounds);
if (fScissor.isEmpty()) {
fInitialState = InitialState::kAllOut;
return;
}
fHasScissor = true;
fAAClipRect = stackBounds;
fAAClipRectGenID = stack.getTopmostGenID();
SkASSERT(SK_InvalidGenID != fAAClipRectGenID);
fInitialState = InitialState::kAllIn;
} else {
SkRect tighterQuery = queryBounds;
if (SkClipStack::kNormal_BoundsType == stackBoundsType) {
// Tighten the query by introducing a new clip at the stack's pixel boundaries. (This
// new clip will be enforced by the scissor.)
SkAssertResult(tighterQuery.intersect(GrClip::GetPixelBounds(stackBounds)));
}
fScissor = GrClip::GetPixelIBounds(tighterQuery);
if (fScissor.isEmpty()) {
fInitialState = InitialState::kAllOut;
return;
}
fHasScissor = true;
// Now that we have determined the bounds to use and filtered out the trivial cases, call
// the helper that actually walks the stack.
this->walkStack(stack, tighterQuery);
}
if (SK_InvalidGenID != fAAClipRectGenID && // Is there an AA clip rect?
ClipResult::kNotClipped == this->addAnalyticFP(fAAClipRect, Invert::kNo, GrAA::kYes)) {
if (fMaskElements.isEmpty()) {
// Use a replace since it is faster than intersect.
fMaskElements.addToHead(fAAClipRect, SkMatrix::I(), kReplace_SkClipOp, true /*doAA*/);
fInitialState = InitialState::kAllOut;
} else {
fMaskElements.addToTail(fAAClipRect, SkMatrix::I(), kIntersect_SkClipOp, true /*doAA*/);
}
fMaskRequiresAA = true;
fMaskGenID = fAAClipRectGenID;
}
}
void GrReducedClip::walkStack(const SkClipStack& stack, const SkRect& queryBounds) {
// walk backwards until we get to:
// a) the beginning
// b) an operation that is known to make the bounds all inside/outside
// c) a replace operation
enum class InitialTriState {
kUnknown = -1,
kAllIn = (int)GrReducedClip::InitialState::kAllIn,
kAllOut = (int)GrReducedClip::InitialState::kAllOut
} initialTriState = InitialTriState::kUnknown;
// During our backwards walk, track whether we've seen ops that either grow or shrink the clip.
// TODO: track these per saved clip so that we can consider them on the forward pass.
bool embiggens = false;
bool emsmallens = false;
// We use a slightly relaxed set of query bounds for element containment tests. This is to
// account for floating point rounding error that may have occurred during coord transforms.
SkRect relaxedQueryBounds = queryBounds.makeInset(GrClip::kBoundsTolerance,
GrClip::kBoundsTolerance);
if (relaxedQueryBounds.isEmpty()) {
relaxedQueryBounds = queryBounds;
}
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
int numAAElements = 0;
while (InitialTriState::kUnknown == initialTriState) {
const Element* element = iter.prev();
if (nullptr == element) {
initialTriState = InitialTriState::kAllIn;
break;
}
if (SkClipStack::kEmptyGenID == element->getGenID()) {
initialTriState = InitialTriState::kAllOut;
break;
}
if (SkClipStack::kWideOpenGenID == element->getGenID()) {
initialTriState = InitialTriState::kAllIn;
break;
}
bool skippable = false;
bool isFlip = false; // does this op just flip the in/out state of every point in the bounds
switch (element->getOp()) {
case kDifference_SkClipOp:
// check if the shape subtracted either contains the entire bounds (and makes
// the clip empty) or is outside the bounds and therefore can be skipped.
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipInsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
} else {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipOutsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
}
if (!skippable) {
emsmallens = true;
}
break;
case kIntersect_SkClipOp:
// check if the shape intersected contains the entire bounds and therefore can
// be skipped or it is outside the entire bounds and therefore makes the clip
// empty.
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipOutsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
} else {
if (element->contains(relaxedQueryBounds)) {
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipInsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
}
if (!skippable) {
emsmallens = true;
}
break;
case kUnion_SkClipOp:
// If the union-ed shape contains the entire bounds then after this element
// the bounds is entirely inside the clip. If the union-ed shape is outside the
// bounds then this op can be skipped.
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
}
} else {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
skippable = true;
}
}
if (!skippable) {
embiggens = true;
}
break;
case kXOR_SkClipOp:
// If the bounds is entirely inside the shape being xor-ed then the effect is
// to flip the inside/outside state of every point in the bounds. We may be
// able to take advantage of this in the forward pass. If the xor-ed shape
// doesn't intersect the bounds then it can be skipped.
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
isFlip = true;
}
} else {
if (element->contains(relaxedQueryBounds)) {
isFlip = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
skippable = true;
}
}
if (!skippable) {
emsmallens = embiggens = true;
}
break;
case kReverseDifference_SkClipOp:
// When the bounds is entirely within the rev-diff shape then this behaves like xor
// and reverses every point inside the bounds. If the shape is completely outside
// the bounds then we know after this element is applied that the bounds will be
// all outside the current clip.B
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
isFlip = true;
}
} else {
if (element->contains(relaxedQueryBounds)) {
isFlip = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
}
}
if (!skippable) {
emsmallens = embiggens = true;
}
break;
case kReplace_SkClipOp:
// Replace will always terminate our walk. We will either begin the forward walk
// at the replace op or detect here than the shape is either completely inside
// or completely outside the bounds. In this latter case it can be skipped by
// setting the correct value for initialTriState.
if (element->isInverseFilled()) {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipOutsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
if (ClipResult::kClipped == result) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
}
}
} else {
if (element->contains(relaxedQueryBounds)) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipInsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
if (ClipResult::kClipped == result) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
}
}
}
if (!skippable) {
initialTriState = InitialTriState::kAllOut;
embiggens = emsmallens = true;
}
break;
default:
SkDEBUGFAIL("Unexpected op.");
break;
}
if (!skippable) {
if (fMaskElements.isEmpty()) {
// This will be the last element. Record the stricter genID.
fMaskGenID = element->getGenID();
}
// if it is a flip, change it to a bounds-filling rect
if (isFlip) {
SkASSERT(kXOR_SkClipOp == element->getOp() ||
kReverseDifference_SkClipOp == element->getOp());
fMaskElements.addToHead(SkRect::Make(fScissor), SkMatrix::I(),
kReverseDifference_SkClipOp, false);
} else {
Element* newElement = fMaskElements.addToHead(*element);
if (newElement->isAA()) {
++numAAElements;
}
// Intersecting an inverse shape is the same as differencing the non-inverse shape.
// Replacing with an inverse shape is the same as setting initialState=kAllIn and
// differencing the non-inverse shape.
bool isReplace = kReplace_SkClipOp == newElement->getOp();
if (newElement->isInverseFilled() &&
(kIntersect_SkClipOp == newElement->getOp() || isReplace)) {
newElement->invertShapeFillType();
newElement->setOp(kDifference_SkClipOp);
if (isReplace) {
SkASSERT(InitialTriState::kAllOut == initialTriState);
initialTriState = InitialTriState::kAllIn;
}
}
}
}
}
if ((InitialTriState::kAllOut == initialTriState && !embiggens) ||
(InitialTriState::kAllIn == initialTriState && !emsmallens)) {
fMaskElements.reset();
numAAElements = 0;
} else {
Element* element = fMaskElements.headIter().get();
while (element) {
bool skippable = false;
switch (element->getOp()) {
case kDifference_SkClipOp:
// subtracting from the empty set yields the empty set.
skippable = InitialTriState::kAllOut == initialTriState;
break;
case kIntersect_SkClipOp:
// intersecting with the empty set yields the empty set
if (InitialTriState::kAllOut == initialTriState) {
skippable = true;
} else {
// We can clear to zero and then simply draw the clip element.
initialTriState = InitialTriState::kAllOut;
element->setOp(kReplace_SkClipOp);
}
break;
case kUnion_SkClipOp:
if (InitialTriState::kAllIn == initialTriState) {
// unioning the infinite plane with anything is a no-op.
skippable = true;
} else {
// unioning the empty set with a shape is the shape.
element->setOp(kReplace_SkClipOp);
}
break;
case kXOR_SkClipOp:
if (InitialTriState::kAllOut == initialTriState) {
// xor could be changed to diff in the kAllIn case, not sure it's a win.
element->setOp(kReplace_SkClipOp);
}
break;
case kReverseDifference_SkClipOp:
if (InitialTriState::kAllIn == initialTriState) {
// subtracting the whole plane will yield the empty set.
skippable = true;
initialTriState = InitialTriState::kAllOut;
} else {
// this picks up flips inserted in the backwards pass.
skippable = element->isInverseFilled() ?
GrClip::IsOutsideClip(element->getBounds(), queryBounds) :
element->contains(relaxedQueryBounds);
if (skippable) {
initialTriState = InitialTriState::kAllIn;
} else {
element->setOp(kReplace_SkClipOp);
}
}
break;
case kReplace_SkClipOp:
skippable = false; // we would have skipped it in the backwards walk if we
// could've.
break;
default:
SkDEBUGFAIL("Unexpected op.");
break;
}
if (!skippable) {
break;
} else {
if (element->isAA()) {
--numAAElements;
}
fMaskElements.popHead();
element = fMaskElements.headIter().get();
}
}
}
fMaskRequiresAA = numAAElements > 0;
SkASSERT(InitialTriState::kUnknown != initialTriState);
fInitialState = static_cast<GrReducedClip::InitialState>(initialTriState);
}
GrReducedClip::ClipResult GrReducedClip::clipInsideElement(const Element* element) {
SkIRect elementIBounds;
if (!element->isAA()) {
element->getBounds().round(&elementIBounds);
} else {
elementIBounds = GrClip::GetPixelIBounds(element->getBounds());
}
SkASSERT(fHasScissor);
if (!fScissor.intersect(elementIBounds)) {
this->makeEmpty();
return ClipResult::kMadeEmpty;
}
switch (element->getDeviceSpaceType()) {
case Element::DeviceSpaceType::kEmpty:
return ClipResult::kMadeEmpty;
case Element::DeviceSpaceType::kRect:
SkASSERT(element->getBounds() == element->getDeviceSpaceRect());
SkASSERT(!element->isInverseFilled());
if (element->isAA()) {
if (SK_InvalidGenID == fAAClipRectGenID) { // No AA clip rect yet?
fAAClipRect = element->getDeviceSpaceRect();
// fAAClipRectGenID is the value we should use for fMaskGenID if we end up
// moving the AA clip rect into the mask. The mask GenID is simply the topmost
// element's GenID. And since we walk the stack backwards, this means it's just
// the first element we don't skip during our walk.
fAAClipRectGenID = fMaskElements.isEmpty() ? element->getGenID() : fMaskGenID;
SkASSERT(SK_InvalidGenID != fAAClipRectGenID);
} else if (!fAAClipRect.intersect(element->getDeviceSpaceRect())) {
this->makeEmpty();
return ClipResult::kMadeEmpty;
}
}
return ClipResult::kClipped;
case Element::DeviceSpaceType::kRRect:
SkASSERT(!element->isInverseFilled());
return this->addAnalyticFP(element->getDeviceSpaceRRect(), Invert::kNo,
GrAA(element->isAA()));
case Element::DeviceSpaceType::kPath:
return this->addAnalyticFP(element->getDeviceSpacePath(),
Invert(element->isInverseFilled()), GrAA(element->isAA()));
}
SK_ABORT("Unexpected DeviceSpaceType");
}
GrReducedClip::ClipResult GrReducedClip::clipOutsideElement(const Element* element) {
switch (element->getDeviceSpaceType()) {
case Element::DeviceSpaceType::kEmpty:
return ClipResult::kMadeEmpty;
case Element::DeviceSpaceType::kRect:
SkASSERT(!element->isInverseFilled());
if (fWindowRects.count() < fMaxWindowRectangles) {
// Clip out the inside of every rect. We won't be able to entirely skip the AA ones,
// but it saves processing time.
this->addWindowRectangle(element->getDeviceSpaceRect(), element->isAA());
if (!element->isAA()) {
return ClipResult::kClipped;
}
}
return this->addAnalyticFP(element->getDeviceSpaceRect(), Invert::kYes,
GrAA(element->isAA()));
case Element::DeviceSpaceType::kRRect: {
SkASSERT(!element->isInverseFilled());
const SkRRect& clipRRect = element->getDeviceSpaceRRect();
ClipResult clipResult = this->addAnalyticFP(clipRRect, Invert::kYes,
GrAA(element->isAA()));
if (fWindowRects.count() >= fMaxWindowRectangles) {
return clipResult;
}
// Clip out the interiors of round rects with two window rectangles in the shape of a
// "plus". This doesn't let us skip the clip element, but still saves processing time.
SkVector insetTL = clipRRect.radii(SkRRect::kUpperLeft_Corner);
SkVector insetBR = clipRRect.radii(SkRRect::kLowerRight_Corner);
if (SkRRect::kComplex_Type == clipRRect.getType()) {
const SkVector& insetTR = clipRRect.radii(SkRRect::kUpperRight_Corner);
const SkVector& insetBL = clipRRect.radii(SkRRect::kLowerLeft_Corner);
insetTL.fX = SkTMax(insetTL.x(), insetBL.x());
insetTL.fY = SkTMax(insetTL.y(), insetTR.y());
insetBR.fX = SkTMax(insetBR.x(), insetTR.x());
insetBR.fY = SkTMax(insetBR.y(), insetBL.y());
}
const SkRect& bounds = clipRRect.getBounds();
if (insetTL.x() + insetBR.x() >= bounds.width() ||
insetTL.y() + insetBR.y() >= bounds.height()) {
return clipResult; // The interior "plus" is empty.
}
SkRect horzRect = SkRect::MakeLTRB(bounds.left(), bounds.top() + insetTL.y(),
bounds.right(), bounds.bottom() - insetBR.y());
this->addWindowRectangle(horzRect, element->isAA());
if (fWindowRects.count() < fMaxWindowRectangles) {
SkRect vertRect = SkRect::MakeLTRB(bounds.left() + insetTL.x(), bounds.top(),
bounds.right() - insetBR.x(), bounds.bottom());
this->addWindowRectangle(vertRect, element->isAA());
}
return clipResult;
}
case Element::DeviceSpaceType::kPath:
return this->addAnalyticFP(element->getDeviceSpacePath(),
Invert(!element->isInverseFilled()), GrAA(element->isAA()));
}
SK_ABORT("Unexpected DeviceSpaceType");
}
inline void GrReducedClip::addWindowRectangle(const SkRect& elementInteriorRect, bool elementIsAA) {
SkIRect window;
if (!elementIsAA) {
elementInteriorRect.round(&window);
} else {
elementInteriorRect.roundIn(&window);
}
if (!window.isEmpty()) { // Skip very thin windows that round to zero or negative dimensions.
fWindowRects.addWindow(window);
}
}
GrClipEdgeType GrReducedClip::GetClipEdgeType(Invert invert, GrAA aa) {
if (Invert::kNo == invert) {
return (GrAA::kYes == aa) ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
} else {
return (GrAA::kYes == aa) ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
}
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRect& deviceSpaceRect,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
fAnalyticFPs.push_back(GrAARectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRect));
SkASSERT(fAnalyticFPs.back());
return ClipResult::kClipped;
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRRect& deviceSpaceRRect,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
if (auto fp = GrRRectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRRect,
*fCaps->shaderCaps())) {
fAnalyticFPs.push_back(std::move(fp));
return ClipResult::kClipped;
}
SkPath deviceSpacePath;
deviceSpacePath.setIsVolatile(true);
deviceSpacePath.addRRect(deviceSpaceRRect);
return this->addAnalyticFP(deviceSpacePath, invert, aa);
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkPath& deviceSpacePath,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
if (auto fp = GrConvexPolyEffect::Make(GetClipEdgeType(invert, aa), deviceSpacePath)) {
fAnalyticFPs.push_back(std::move(fp));
return ClipResult::kClipped;
}
if (fCCPRClipPaths.count() < fMaxCCPRClipPaths && GrAA::kYes == aa) {
// Set aside CCPR paths for later. We will create their clip FPs once we know the ID of the
// opsTask they will operate in.
SkPath& ccprClipPath = fCCPRClipPaths.push_back(deviceSpacePath);
if (Invert::kYes == invert) {
ccprClipPath.toggleInverseFillType();
}
return ClipResult::kClipped;
}
return ClipResult::kNotClipped;
}
void GrReducedClip::makeEmpty() {
fHasScissor = false;
fAAClipRectGenID = SK_InvalidGenID;
fWindowRects.reset();
fMaskElements.reset();
fInitialState = InitialState::kAllOut;
}
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
static bool stencil_element(GrRenderTargetContext* rtc,
const GrFixedClip& clip,
const GrUserStencilSettings* ss,
const SkMatrix& viewMatrix,
const SkClipStack::Element* element) {
GrAA aa = GrAA(element->isAA());
switch (element->getDeviceSpaceType()) {
case SkClipStack::Element::DeviceSpaceType::kEmpty:
SkDEBUGFAIL("Should never get here with an empty element.");
break;
case SkClipStack::Element::DeviceSpaceType::kRect: {
GrPaint paint;
paint.setCoverageSetOpXPFactory((SkRegion::Op)element->getOp(),
element->isInverseFilled());
rtc->priv().stencilRect(clip, ss, std::move(paint), aa, viewMatrix,
element->getDeviceSpaceRect());
return true;
}
default: {
SkPath path;
element->asDeviceSpacePath(&path);
if (path.isInverseFillType()) {
path.toggleInverseFillType();
}
return rtc->priv().drawAndStencilPath(clip, ss, (SkRegion::Op)element->getOp(),
element->isInverseFilled(), aa, viewMatrix, path);
}
}
return false;
}
static void stencil_device_rect(GrRenderTargetContext* rtc,
const GrHardClip& clip,
const GrUserStencilSettings* ss,
GrAA aa,
const SkRect& rect) {
GrPaint paint;
paint.setXPFactory(GrDisableColorXPFactory::Get());
rtc->priv().stencilRect(clip, ss, std::move(paint), aa, SkMatrix::I(), rect);
}
static void draw_element(GrRenderTargetContext* rtc,
const GrClip& clip, // TODO: can this just always be WideOpen?
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkClipStack::Element* element) {
// TODO: Draw rrects directly here.
switch (element->getDeviceSpaceType()) {
case SkClipStack::Element::DeviceSpaceType::kEmpty:
SkDEBUGFAIL("Should never get here with an empty element.");
break;
case SkClipStack::Element::DeviceSpaceType::kRect:
rtc->drawRect(clip, std::move(paint), aa, viewMatrix, element->getDeviceSpaceRect());
break;
default: {
SkPath path;
element->asDeviceSpacePath(&path);
if (path.isInverseFillType()) {
path.toggleInverseFillType();
}
rtc->drawPath(clip, std::move(paint), aa, viewMatrix, path, GrStyle::SimpleFill());
break;
}
}
}
bool GrReducedClip::drawAlphaClipMask(GrRenderTargetContext* rtc) const {
// The texture may be larger than necessary, this rect represents the part of the texture
// we populate with a rasterization of the clip.
GrFixedClip clip(SkIRect::MakeWH(fScissor.width(), fScissor.height()));
if (!fWindowRects.empty()) {
clip.setWindowRectangles(fWindowRects.makeOffset(-fScissor.left(), -fScissor.top()),
GrWindowRectsState::Mode::kExclusive);
}
// The scratch texture that we are drawing into can be substantially larger than the mask. Only
// clear the part that we care about.
SkPMColor4f initialCoverage =
InitialState::kAllIn == this->initialState() ? SK_PMColor4fWHITE : SK_PMColor4fTRANSPARENT;
rtc->priv().clear(clip, initialCoverage, GrRenderTargetContext::CanClearFullscreen::kYes);
// Set the matrix so that rendered clip elements are transformed to mask space from clip space.
SkMatrix translate;
translate.setTranslate(SkIntToScalar(-fScissor.left()), SkIntToScalar(-fScissor.top()));
// walk through each clip element and perform its set op
for (ElementList::Iter iter(fMaskElements); iter.get(); iter.next()) {
const Element* element = iter.get();
SkRegion::Op op = (SkRegion::Op)element->getOp();
GrAA aa = GrAA(element->isAA());
bool invert = element->isInverseFilled();
if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) {
// draw directly into the result with the stencil set to make the pixels affected
// by the clip shape be non-zero.
static constexpr GrUserStencilSettings kStencilInElement(
GrUserStencilSettings::StaticInit<
0xffff,
GrUserStencilTest::kAlways,
0xffff,
GrUserStencilOp::kReplace,
GrUserStencilOp::kReplace,
0xffff>()
);
if (!stencil_element(rtc, clip, &kStencilInElement, translate, element)) {
return false;
}
// Draw to the exterior pixels (those with a zero stencil value).
static constexpr GrUserStencilSettings kDrawOutsideElement(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kEqual,
0xffff,
GrUserStencilOp::kZero,
GrUserStencilOp::kZero,
0xffff>()
);
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, !invert);
rtc->priv().stencilRect(clip, &kDrawOutsideElement, std::move(paint), GrAA::kNo,
translate, SkRect::Make(fScissor));
} else {
// all the remaining ops can just be directly draw into the accumulation buffer
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, false);
draw_element(rtc, clip, std::move(paint), aa, translate, element);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer.
bool GrReducedClip::drawStencilClipMask(GrRecordingContext* context,
GrRenderTargetContext* renderTargetContext) const {
// We set the current clip to the bounds so that our recursive draws are scissored to them.
GrStencilClip stencilClip(fScissor, this->maskGenID());
if (!fWindowRects.empty()) {
stencilClip.fixedClip().setWindowRectangles(fWindowRects,
GrWindowRectsState::Mode::kExclusive);
}
bool initialState = InitialState::kAllIn == this->initialState();
renderTargetContext->priv().clearStencilClip(stencilClip.fixedClip(), initialState);
// walk through each clip element and perform its set op with the existing clip.
for (ElementList::Iter iter(fMaskElements); iter.get(); iter.next()) {
const Element* element = iter.get();
// MIXED SAMPLES TODO: We can use stencil with mixed samples as well.
bool doStencilMSAA = element->isAA() && renderTargetContext->numSamples() > 1;
// Since we are only drawing to the stencil buffer, we can use kMSAA even if the render
// target is mixed sampled.
auto pathAAType = (doStencilMSAA) ? GrAAType::kMSAA : GrAAType::kNone;
bool fillInverted = false;
// This will be used to determine whether the clip shape can be rendered into the
// stencil with arbitrary stencil settings.
GrPathRenderer::StencilSupport stencilSupport;
SkRegion::Op op = (SkRegion::Op)element->getOp();
GrPathRenderer* pr = nullptr;
SkPath clipPath;
if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) {
stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport;
fillInverted = false;
} else {
element->asDeviceSpacePath(&clipPath);
fillInverted = clipPath.isInverseFillType();
if (fillInverted) {
clipPath.toggleInverseFillType();
}
GrShape shape(clipPath, GrStyle::SimpleFill());
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = context->priv().caps();
canDrawArgs.fProxy = renderTargetContext->proxy();
canDrawArgs.fClipConservativeBounds = &stencilClip.fixedClip().scissorRect();
canDrawArgs.fViewMatrix = &SkMatrix::I();
canDrawArgs.fShape = &shape;
canDrawArgs.fAAType = pathAAType;
canDrawArgs.fHasUserStencilSettings = false;
canDrawArgs.fTargetIsWrappedVkSecondaryCB = renderTargetContext->wrapsVkSecondaryCB();
GrDrawingManager* dm = context->priv().drawingManager();
pr = dm->getPathRenderer(canDrawArgs, false, GrPathRendererChain::DrawType::kStencil,
&stencilSupport);
if (!pr) {
return false;
}
}
bool canRenderDirectToStencil =
GrPathRenderer::kNoRestriction_StencilSupport == stencilSupport;
bool drawDirectToClip; // Given the renderer, the element,
// fill rule, and set operation should
// we render the element directly to
// stencil bit used for clipping.
GrUserStencilSettings const* const* stencilPasses =
GrStencilSettings::GetClipPasses(op, canRenderDirectToStencil, fillInverted,
&drawDirectToClip);
// draw the element to the client stencil bits if necessary
if (!drawDirectToClip) {
static constexpr GrUserStencilSettings kDrawToStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kAlways,
0xffff,
GrUserStencilOp::kIncMaybeClamp,
GrUserStencilOp::kIncMaybeClamp,
0xffff>()
);
if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) {
stencil_device_rect(renderTargetContext, stencilClip.fixedClip(), &kDrawToStencil,
GrAA(doStencilMSAA), element->getDeviceSpaceRect());
} else {
if (!clipPath.isEmpty()) {
GrShape shape(clipPath, GrStyle::SimpleFill());
if (canRenderDirectToStencil) {
GrPaint paint;
paint.setXPFactory(GrDisableColorXPFactory::Get());
GrPathRenderer::DrawPathArgs args{context,
std::move(paint),
&kDrawToStencil,
renderTargetContext,
&stencilClip.fixedClip(),
&stencilClip.fixedClip().scissorRect(),
&SkMatrix::I(),
&shape,
pathAAType,
false};
pr->drawPath(args);
} else {
GrPathRenderer::StencilPathArgs args;
args.fContext = context;
args.fRenderTargetContext = renderTargetContext;
args.fClip = &stencilClip.fixedClip();
args.fClipConservativeBounds = &stencilClip.fixedClip().scissorRect();
args.fViewMatrix = &SkMatrix::I();
args.fDoStencilMSAA = GrAA(doStencilMSAA);
args.fShape = &shape;
pr->stencilPath(args);
}
}
}
}
// now we modify the clip bit by rendering either the clip
// element directly or a bounding rect of the entire clip.
for (GrUserStencilSettings const* const* pass = stencilPasses; *pass; ++pass) {
if (drawDirectToClip) {
if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) {
stencil_device_rect(renderTargetContext, stencilClip, *pass,
GrAA(doStencilMSAA), element->getDeviceSpaceRect());
} else {
GrShape shape(clipPath, GrStyle::SimpleFill());
GrPaint paint;
paint.setXPFactory(GrDisableColorXPFactory::Get());
GrPathRenderer::DrawPathArgs args{context,
std::move(paint),
*pass,
renderTargetContext,
&stencilClip,
&stencilClip.fixedClip().scissorRect(),
&SkMatrix::I(),
&shape,
pathAAType,
false};
pr->drawPath(args);
}
} else {
// The view matrix is setup to do clip space -> stencil space translation, so
// draw rect in clip space.
stencil_device_rect(renderTargetContext, stencilClip, *pass, GrAA(doStencilMSAA),
SkRect::Make(fScissor));
}
}
}
return true;
}
std::unique_ptr<GrFragmentProcessor> GrReducedClip::finishAndDetachAnalyticFPs(
GrCoverageCountingPathRenderer* ccpr, uint32_t opsTaskID) {
// Make sure finishAndDetachAnalyticFPs hasn't been called already.
SkDEBUGCODE(for (const auto& fp : fAnalyticFPs) { SkASSERT(fp); })
if (!fCCPRClipPaths.empty()) {
fAnalyticFPs.reserve(fAnalyticFPs.count() + fCCPRClipPaths.count());
for (const SkPath& ccprClipPath : fCCPRClipPaths) {
SkASSERT(ccpr);
SkASSERT(fHasScissor);
auto fp = ccpr->makeClipProcessor(opsTaskID, ccprClipPath, fScissor, *fCaps);
fAnalyticFPs.push_back(std::move(fp));
}
fCCPRClipPaths.reset();
}
return GrFragmentProcessor::RunInSeries(fAnalyticFPs.begin(), fAnalyticFPs.count());
}