blob: 8f67a7f9580fed78ea359d2fae199e339fda7f6a [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorSpace.h"
#include "SkColorSpace_Base.h"
#include "SkOnce.h"
static bool color_space_almost_equal(float a, float b) {
return SkTAbs(a - b) < 0.01f;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Named named)
: fGammaNamed(kNonStandard_GammaNamed)
, fToXYZD50(toXYZD50)
, fNamed(named)
{}
SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, const SkMatrix44& toXYZD50,
Named named)
: INHERITED(kNonStandard_GammaNamed, toXYZD50, named)
, fGammas(gammas)
{}
SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, GammaNamed gammaNamed,
const SkMatrix44& toXYZD50, Named named)
: INHERITED(gammaNamed, toXYZD50, named)
, fGammas(gammas)
{}
SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGammas> gammas,
const SkMatrix44& toXYZD50)
: INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named)
, fColorLUT(colorLUT)
, fGammas(gammas)
{}
const float gSRGB_toXYZD50[] {
0.4358f, 0.2224f, 0.0139f, // * R
0.3853f, 0.7170f, 0.0971f, // * G
0.1430f, 0.0606f, 0.7139f, // * B
};
const float gAdobeRGB_toXYZD50[] {
0.6098f, 0.3111f, 0.0195f, // * R
0.2052f, 0.6257f, 0.0609f, // * G
0.1492f, 0.0632f, 0.7448f, // * B
};
/**
* Checks if our toXYZ matrix is a close match to a known color gamut.
*
* @param toXYZD50 transformation matrix deduced from profile data
* @param standard 3x3 canonical transformation matrix
*/
static bool xyz_almost_equal(const SkMatrix44& toXYZD50, const float* standard) {
return color_space_almost_equal(toXYZD50.getFloat(0, 0), standard[0]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 1), standard[1]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 2), standard[2]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 0), standard[3]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 1), standard[4]) &&
color_space_almost_equal(toXYZD50.getFloat(1, 2), standard[5]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 0), standard[6]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 1), standard[7]) &&
color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) &&
color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) &&
color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f);
}
static SkOnce g2Dot2CurveGammasOnce;
static SkGammas* g2Dot2CurveGammas;
static SkOnce gLinearGammasOnce;
static SkGammas* gLinearGammas;
sk_sp<SkColorSpace> SkColorSpace::NewRGB(float gammaVals[3], const SkMatrix44& toXYZD50) {
sk_sp<SkGammas> gammas = nullptr;
GammaNamed gammaNamed = kNonStandard_GammaNamed;
// Check if we really have sRGB or Adobe RGB
if (color_space_almost_equal(2.2f, gammaVals[0]) &&
color_space_almost_equal(2.2f, gammaVals[1]) &&
color_space_almost_equal(2.2f, gammaVals[2]))
{
g2Dot2CurveGammasOnce([] {
g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
});
gammas = sk_ref_sp(g2Dot2CurveGammas);
gammaNamed = k2Dot2Curve_GammaNamed;
if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) {
return SkColorSpace::NewNamed(kSRGB_Named);
} else if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) {
return SkColorSpace::NewNamed(kAdobeRGB_Named);
}
} else if (color_space_almost_equal(1.0f, gammaVals[0]) &&
color_space_almost_equal(1.0f, gammaVals[1]) &&
color_space_almost_equal(1.0f, gammaVals[2]))
{
gLinearGammasOnce([] {
gLinearGammas = new SkGammas(1.0f, 1.0f, 1.0f);
});
gammas = sk_ref_sp(gLinearGammas);
gammaNamed = kLinear_GammaNamed;
}
if (!gammas) {
gammas = sk_sp<SkGammas>(new SkGammas(gammaVals[0], gammaVals[1], gammaVals[2]));
}
return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, gammaNamed, toXYZD50, kUnknown_Named));
}
sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) {
static SkOnce sRGBOnce;
static SkColorSpace* sRGB;
static SkOnce adobeRGBOnce;
static SkColorSpace* adobeRGB;
switch (named) {
case kSRGB_Named: {
g2Dot2CurveGammasOnce([] {
g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
});
sRGBOnce([] {
SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor);
srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50);
sRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), k2Dot2Curve_GammaNamed,
srgbToxyzD50, kSRGB_Named);
});
return sk_ref_sp(sRGB);
}
case kAdobeRGB_Named: {
g2Dot2CurveGammasOnce([] {
g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
});
adobeRGBOnce([] {
SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Constructor);
adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50);
adobeRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas),
k2Dot2Curve_GammaNamed, adobergbToxyzD50,
kAdobeRGB_Named);
});
return sk_ref_sp(adobeRGB);
}
default:
break;
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkFixed.h"
#include "SkTemplates.h"
#define SkColorSpacePrintf(...)
#define return_if_false(pred, msg) \
do { \
if (!(pred)) { \
SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \
return false; \
} \
} while (0)
#define return_null(msg) \
do { \
SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \
return nullptr; \
} while (0)
static uint16_t read_big_endian_short(const uint8_t* ptr) {
return ptr[0] << 8 | ptr[1];
}
static uint32_t read_big_endian_uint(const uint8_t* ptr) {
return ptr[0] << 24 | ptr[1] << 16 | ptr[2] << 8 | ptr[3];
}
static int32_t read_big_endian_int(const uint8_t* ptr) {
return (int32_t) read_big_endian_uint(ptr);
}
// This is equal to the header size according to the ICC specification (128)
// plus the size of the tag count (4). We include the tag count since we
// always require it to be present anyway.
static const size_t kICCHeaderSize = 132;
// Contains a signature (4), offset (4), and size (4).
static const size_t kICCTagTableEntrySize = 12;
static const uint32_t kRGB_ColorSpace = SkSetFourByteTag('R', 'G', 'B', ' ');
struct ICCProfileHeader {
uint32_t fSize;
// No reason to care about the preferred color management module (ex: Adobe, Apple, etc.).
// We're always going to use this one.
uint32_t fCMMType_ignored;
uint32_t fVersion;
uint32_t fProfileClass;
uint32_t fInputColorSpace;
uint32_t fPCS;
uint32_t fDateTime_ignored[3];
uint32_t fSignature;
// Indicates the platform that this profile was created for (ex: Apple, Microsoft). This
// doesn't really matter to us.
uint32_t fPlatformTarget_ignored;
// Flags can indicate:
// (1) Whether this profile was embedded in a file. This flag is consistently wrong.
// Ex: The profile came from a file but indicates that it did not.
// (2) Whether we are allowed to use the profile independently of the color data. If set,
// this may allow us to use the embedded profile for testing separate from the original
// image.
uint32_t fFlags_ignored;
// We support many output devices. It doesn't make sense to think about the attributes of
// the device in the context of the image profile.
uint32_t fDeviceManufacturer_ignored;
uint32_t fDeviceModel_ignored;
uint32_t fDeviceAttributes_ignored[2];
uint32_t fRenderingIntent;
int32_t fIlluminantXYZ[3];
// We don't care who created the profile.
uint32_t fCreator_ignored;
// This is an MD5 checksum. Could be useful for checking if profiles are equal.
uint32_t fProfileId_ignored[4];
// Reserved for future use.
uint32_t fReserved_ignored[7];
uint32_t fTagCount;
void init(const uint8_t* src, size_t len) {
SkASSERT(kICCHeaderSize == sizeof(*this));
uint32_t* dst = (uint32_t*) this;
for (uint32_t i = 0; i < kICCHeaderSize / 4; i++, src+=4) {
dst[i] = read_big_endian_uint(src);
}
}
bool valid() const {
return_if_false(fSize >= kICCHeaderSize, "Size is too small");
uint8_t majorVersion = fVersion >> 24;
return_if_false(majorVersion <= 4, "Unsupported version");
// These are the three basic classes of profiles that we might expect to see embedded
// in images. Four additional classes exist, but they generally are used as a convenient
// way for CMMs to store calculated transforms.
const uint32_t kDisplay_Profile = SkSetFourByteTag('m', 'n', 't', 'r');
const uint32_t kInput_Profile = SkSetFourByteTag('s', 'c', 'n', 'r');
const uint32_t kOutput_Profile = SkSetFourByteTag('p', 'r', 't', 'r');
return_if_false(fProfileClass == kDisplay_Profile ||
fProfileClass == kInput_Profile ||
fProfileClass == kOutput_Profile,
"Unsupported profile");
// TODO (msarett):
// All the profiles we've tested so far use RGB as the input color space.
return_if_false(fInputColorSpace == kRGB_ColorSpace, "Unsupported color space");
// TODO (msarett):
// All the profiles we've tested so far use XYZ as the profile connection space.
const uint32_t kXYZ_PCSSpace = SkSetFourByteTag('X', 'Y', 'Z', ' ');
return_if_false(fPCS == kXYZ_PCSSpace, "Unsupported PCS space");
return_if_false(fSignature == SkSetFourByteTag('a', 'c', 's', 'p'), "Bad signature");
// TODO (msarett):
// Should we treat different rendering intents differently?
// Valid rendering intents include kPerceptual (0), kRelative (1),
// kSaturation (2), and kAbsolute (3).
return_if_false(fRenderingIntent <= 3, "Bad rendering intent");
return_if_false(color_space_almost_equal(SkFixedToFloat(fIlluminantXYZ[0]), 0.96420f) &&
color_space_almost_equal(SkFixedToFloat(fIlluminantXYZ[1]), 1.00000f) &&
color_space_almost_equal(SkFixedToFloat(fIlluminantXYZ[2]), 0.82491f),
"Illuminant must be D50");
return_if_false(fTagCount <= 100, "Too many tags");
return true;
}
};
struct ICCTag {
uint32_t fSignature;
uint32_t fOffset;
uint32_t fLength;
const uint8_t* init(const uint8_t* src) {
fSignature = read_big_endian_uint(src);
fOffset = read_big_endian_uint(src + 4);
fLength = read_big_endian_uint(src + 8);
return src + 12;
}
bool valid(size_t len) {
return_if_false(fOffset + fLength <= len, "Tag too large for ICC profile");
return true;
}
const uint8_t* addr(const uint8_t* src) const {
return src + fOffset;
}
static const ICCTag* Find(const ICCTag tags[], int count, uint32_t signature) {
for (int i = 0; i < count; ++i) {
if (tags[i].fSignature == signature) {
return &tags[i];
}
}
return nullptr;
}
};
static const uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z');
static const uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z');
static const uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z');
static const uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C');
static const uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C');
static const uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C');
static const uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0');
bool load_xyz(float dst[3], const uint8_t* src, size_t len) {
if (len < 20) {
SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len);
return false;
}
dst[0] = SkFixedToFloat(read_big_endian_int(src + 8));
dst[1] = SkFixedToFloat(read_big_endian_int(src + 12));
dst[2] = SkFixedToFloat(read_big_endian_int(src + 16));
SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]);
return true;
}
static const uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', 'v');
static const uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', 'a');
bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, size_t len) {
for (uint32_t i = 0; i < numGammas; i++) {
if (len < 12) {
// FIXME (msarett):
// We could potentially return false here after correctly parsing *some* of the
// gammas correctly. Should we somehow try to indicate a partial success?
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// We need to count the number of bytes in the tag, so we are able to move to the
// next tag on the next loop iteration.
size_t tagBytes;
uint32_t type = read_big_endian_uint(src);
switch (type) {
case kTAG_CurveType: {
uint32_t count = read_big_endian_uint(src + 8);
tagBytes = 12 + count * 2;
if (0 == count) {
// Some tags require a gamma curve, but the author doesn't actually want
// to transform the data. In this case, it is common to see a curve with
// a count of 0.
gammas[i].fValue = 1.0f;
break;
} else if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
const uint16_t* table = (const uint16_t*) (src + 12);
if (1 == count) {
// The table entry is the gamma (with a bias of 256).
uint16_t value = read_big_endian_short((const uint8_t*) table);
gammas[i].fValue = value / 256.0f;
SkColorSpacePrintf("gamma %d %g\n", value, gammas[i].fValue);
break;
}
// Check for frequently occurring curves and use a fast approximation.
// We do this by sampling a few values and see if they match our expectation.
// A more robust solution would be to compare each value in this curve against
// a 2.2f curve see if we remain below an error threshold. At this time,
// we haven't seen any images in the wild that make this kind of
// calculation necessary. We encounter identical gamma curves over and
// over again, but relatively few variations.
if (1024 == count) {
// The magic values were chosen because they match a very common sRGB
// gamma table and the less common Canon sRGB gamma table (which use
// different rounding rules).
if (0 == read_big_endian_short((const uint8_t*) &table[0]) &&
3366 == read_big_endian_short((const uint8_t*) &table[257]) &&
14116 == read_big_endian_short((const uint8_t*) &table[513]) &&
34318 == read_big_endian_short((const uint8_t*) &table[768]) &&
65535 == read_big_endian_short((const uint8_t*) &table[1023])) {
gammas[i].fValue = 2.2f;
break;
}
} else if (26 == count) {
// The magic values were chosen because they match a very common sRGB
// gamma table.
if (0 == read_big_endian_short((const uint8_t*) &table[0]) &&
3062 == read_big_endian_short((const uint8_t*) &table[6]) &&
12824 == read_big_endian_short((const uint8_t*) &table[12]) &&
31237 == read_big_endian_short((const uint8_t*) &table[18]) &&
65535 == read_big_endian_short((const uint8_t*) &table[25])) {
gammas[i].fValue = 2.2f;
break;
}
} else if (4096 == count) {
// The magic values were chosen because they match Nikon, Epson, and
// LCMS sRGB gamma tables (all of which use different rounding rules).
if (0 == read_big_endian_short((const uint8_t*) &table[0]) &&
950 == read_big_endian_short((const uint8_t*) &table[515]) &&
3342 == read_big_endian_short((const uint8_t*) &table[1025]) &&
14079 == read_big_endian_short((const uint8_t*) &table[2051]) &&
65535 == read_big_endian_short((const uint8_t*) &table[4095])) {
gammas[i].fValue = 2.2f;
break;
}
}
// Otherwise, fill in the interpolation table.
gammas[i].fTableSize = count;
gammas[i].fTable = std::unique_ptr<float[]>(new float[count]);
for (uint32_t j = 0; j < count; j++) {
gammas[i].fTable[j] =
(read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f;
}
break;
}
case kTAG_ParaCurveType:
// Determine the format of the parametric curve tag.
switch(read_big_endian_short(src + 8)) {
case 0: {
tagBytes = 12 + 4;
if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// Y = X^g
int32_t g = read_big_endian_int(src + 12);
gammas[i].fValue = SkFixedToFloat(g);
break;
}
// Here's where the real parametric gammas start. There are many
// permutations of the same equations.
//
// Y = (aX + b)^g + c for X >= d
// Y = eX + f otherwise
//
// We will fill in with zeros as necessary to always match the above form.
// Note that there is no need to actually write zero, since the struct is
// zero initialized.
case 1: {
tagBytes = 12 + 12;
if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// Y = (aX + b)^g for X >= -b/a
// Y = 0 otherwise
gammas[i].fG = SkFixedToFloat(read_big_endian_int(src + 12));
gammas[i].fA = SkFixedToFloat(read_big_endian_int(src + 16));
gammas[i].fB = SkFixedToFloat(read_big_endian_int(src + 20));
gammas[i].fD = -gammas[i].fB / gammas[i].fA;
break;
}
case 2:
tagBytes = 12 + 16;
if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// Y = (aX + b)^g + c for X >= -b/a
// Y = c otherwise
gammas[i].fG = SkFixedToFloat(read_big_endian_int(src + 12));
gammas[i].fA = SkFixedToFloat(read_big_endian_int(src + 16));
gammas[i].fB = SkFixedToFloat(read_big_endian_int(src + 20));
gammas[i].fC = SkFixedToFloat(read_big_endian_int(src + 24));
gammas[i].fD = -gammas[i].fB / gammas[i].fA;
gammas[i].fF = gammas[i].fC;
break;
case 3:
tagBytes = 12 + 20;
if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// Y = (aX + b)^g for X >= d
// Y = cX otherwise
gammas[i].fG = SkFixedToFloat(read_big_endian_int(src + 12));
gammas[i].fA = SkFixedToFloat(read_big_endian_int(src + 16));
gammas[i].fB = SkFixedToFloat(read_big_endian_int(src + 20));
gammas[i].fD = SkFixedToFloat(read_big_endian_int(src + 28));
gammas[i].fE = SkFixedToFloat(read_big_endian_int(src + 24));
break;
case 4:
tagBytes = 12 + 28;
if (len < tagBytes) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
return false;
}
// Y = (aX + b)^g + c for X >= d
// Y = eX + f otherwise
// NOTE: The ICC spec writes "cX" instead of "eX" but I think it's a typo.
gammas[i].fG = SkFixedToFloat(read_big_endian_int(src + 12));
gammas[i].fA = SkFixedToFloat(read_big_endian_int(src + 16));
gammas[i].fB = SkFixedToFloat(read_big_endian_int(src + 20));
gammas[i].fC = SkFixedToFloat(read_big_endian_int(src + 24));
gammas[i].fD = SkFixedToFloat(read_big_endian_int(src + 28));
gammas[i].fE = SkFixedToFloat(read_big_endian_int(src + 32));
gammas[i].fF = SkFixedToFloat(read_big_endian_int(src + 36));
break;
default:
SkColorSpacePrintf("Invalid parametric curve type\n");
return false;
}
break;
default:
SkColorSpacePrintf("Unsupported gamma tag type %d\n", type);
return false;
}
// Adjust src and len if there is another gamma curve to load.
if (i != numGammas - 1) {
// Each curve is padded to 4-byte alignment.
tagBytes = SkAlign4(tagBytes);
if (len < tagBytes) {
return false;
}
src += tagBytes;
len -= tagBytes;
}
}
return true;
}
static const uint32_t kTAG_AtoBType = SkSetFourByteTag('m', 'A', 'B', ' ');
bool load_color_lut(SkColorLookUpTable* colorLUT, uint32_t inputChannels, uint32_t outputChannels,
const uint8_t* src, size_t len) {
if (len < 20) {
SkColorSpacePrintf("Color LUT tag is too small (%d bytes).", len);
return false;
}
SkASSERT(inputChannels <= SkColorLookUpTable::kMaxChannels && 3 == outputChannels);
colorLUT->fInputChannels = inputChannels;
colorLUT->fOutputChannels = outputChannels;
uint32_t numEntries = 1;
for (uint32_t i = 0; i < inputChannels; i++) {
colorLUT->fGridPoints[i] = src[i];
numEntries *= src[i];
}
numEntries *= outputChannels;
// Space is provided for a maximum of the 16 input channels. Now we determine the precision
// of the table values.
uint8_t precision = src[16];
switch (precision) {
case 1: // 8-bit data
case 2: // 16-bit data
break;
default:
SkColorSpacePrintf("Color LUT precision must be 8-bit or 16-bit.\n", len);
return false;
}
if (len < 20 + numEntries * precision) {
SkColorSpacePrintf("Color LUT tag is too small (%d bytes).", len);
return false;
}
// Movable struct colorLUT has ownership of fTable.
colorLUT->fTable = std::unique_ptr<float[]>(new float[numEntries]);
const uint8_t* ptr = src + 20;
for (uint32_t i = 0; i < numEntries; i++, ptr += precision) {
if (1 == precision) {
colorLUT->fTable[i] = ((float) ptr[i]) / 255.0f;
} else {
colorLUT->fTable[i] = ((float) read_big_endian_short(ptr)) / 65535.0f;
}
}
return true;
}
bool load_matrix(SkMatrix44* toXYZ, const uint8_t* src, size_t len) {
if (len < 48) {
SkColorSpacePrintf("Matrix tag is too small (%d bytes).", len);
return false;
}
float array[16];
array[ 0] = SkFixedToFloat(read_big_endian_int(src));
array[ 1] = SkFixedToFloat(read_big_endian_int(src + 4));
array[ 2] = SkFixedToFloat(read_big_endian_int(src + 8));
array[ 3] = SkFixedToFloat(read_big_endian_int(src + 36)); // translate R
array[ 4] = SkFixedToFloat(read_big_endian_int(src + 12));
array[ 5] = SkFixedToFloat(read_big_endian_int(src + 16));
array[ 6] = SkFixedToFloat(read_big_endian_int(src + 20));
array[ 7] = SkFixedToFloat(read_big_endian_int(src + 40)); // translate G
array[ 8] = SkFixedToFloat(read_big_endian_int(src + 24));
array[ 9] = SkFixedToFloat(read_big_endian_int(src + 28));
array[10] = SkFixedToFloat(read_big_endian_int(src + 32));
array[11] = SkFixedToFloat(read_big_endian_int(src + 44)); // translate B
array[12] = 0.0f;
array[13] = 0.0f;
array[14] = 0.0f;
array[15] = 1.0f;
toXYZ->setColMajorf(array);
return true;
}
bool load_a2b0(SkColorLookUpTable* colorLUT, SkGammaCurve* gammas, SkMatrix44* toXYZ,
const uint8_t* src, size_t len) {
if (len < 32) {
SkColorSpacePrintf("A to B tag is too small (%d bytes).", len);
return false;
}
uint32_t type = read_big_endian_uint(src);
if (kTAG_AtoBType != type) {
// FIXME (msarett): Need to support lut8Type and lut16Type.
SkColorSpacePrintf("Unsupported A to B tag type.\n");
return false;
}
// Read the number of channels. The four bytes that we skipped are reserved and
// must be zero.
uint8_t inputChannels = src[8];
uint8_t outputChannels = src[9];
if (0 == inputChannels || inputChannels > SkColorLookUpTable::kMaxChannels ||
3 != outputChannels) {
// The color LUT assumes that there are at most 16 input channels. For RGB
// profiles, output channels should be 3.
SkColorSpacePrintf("Too many input or output channels in A to B tag.\n");
return false;
}
// Read the offsets of each element in the A to B tag. With the exception of A curves and
// B curves (which we do not yet support), we will handle these elements in the order in
// which they should be applied (rather than the order in which they occur in the tag).
// If the offset is non-zero it indicates that the element is present.
uint32_t offsetToACurves = read_big_endian_int(src + 28);
uint32_t offsetToBCurves = read_big_endian_int(src + 12);
if ((0 != offsetToACurves) || (0 != offsetToBCurves)) {
// FIXME (msarett): Handle A and B curves.
// Note that the A curve is technically required in order to have a color LUT.
// However, all the A curves I have seen so far have are just placeholders that
// don't actually transform the data.
SkColorSpacePrintf("Ignoring A and/or B curve. Output may be wrong.\n");
}
uint32_t offsetToColorLUT = read_big_endian_int(src + 24);
if (0 != offsetToColorLUT && offsetToColorLUT < len) {
if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offsetToColorLUT,
len - offsetToColorLUT)) {
SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n");
}
}
uint32_t offsetToMCurves = read_big_endian_int(src + 20);
if (0 != offsetToMCurves && offsetToMCurves < len) {
if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - offsetToMCurves)) {
SkColorSpacePrintf("Failed to read M curves from A to B tag.\n");
}
}
uint32_t offsetToMatrix = read_big_endian_int(src + 16);
if (0 != offsetToMatrix && offsetToMatrix < len) {
if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) {
SkColorSpacePrintf("Failed to read matrix from A to B tag.\n");
}
}
return true;
}
sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* base, size_t len) {
const uint8_t* ptr = (const uint8_t*) base;
if (len < kICCHeaderSize) {
return_null("Data is not large enough to contain an ICC profile");
}
// Read the ICC profile header and check to make sure that it is valid.
ICCProfileHeader header;
header.init(ptr, len);
if (!header.valid()) {
return nullptr;
}
// Adjust ptr and len before reading the tags.
if (len < header.fSize) {
SkColorSpacePrintf("ICC profile might be truncated.\n");
} else if (len > header.fSize) {
SkColorSpacePrintf("Caller provided extra data beyond the end of the ICC profile.\n");
len = header.fSize;
}
ptr += kICCHeaderSize;
len -= kICCHeaderSize;
// Parse tag headers.
uint32_t tagCount = header.fTagCount;
SkColorSpacePrintf("ICC profile contains %d tags.\n", tagCount);
if (len < kICCTagTableEntrySize * tagCount) {
return_null("Not enough input data to read tag table entries");
}
SkAutoTArray<ICCTag> tags(tagCount);
for (uint32_t i = 0; i < tagCount; i++) {
ptr = tags[i].init(ptr);
SkColorSpacePrintf("[%d] %c%c%c%c %d %d\n", i, (tags[i].fSignature >> 24) & 0xFF,
(tags[i].fSignature >> 16) & 0xFF, (tags[i].fSignature >> 8) & 0xFF,
(tags[i].fSignature >> 0) & 0xFF, tags[i].fOffset, tags[i].fLength);
if (!tags[i].valid(kICCHeaderSize + len)) {
return_null("Tag is too large to fit in ICC profile");
}
}
switch (header.fInputColorSpace) {
case kRGB_ColorSpace: {
// Recognize the rXYZ, gXYZ, and bXYZ tags.
const ICCTag* r = ICCTag::Find(tags.get(), tagCount, kTAG_rXYZ);
const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ);
const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ);
if (r && g && b) {
float toXYZ[9];
if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLength) ||
!load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLength) ||
!load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLength))
{
return_null("Need valid rgb tags for XYZ space");
}
// It is not uncommon to see missing or empty gamma tags. This indicates
// that we should use unit gamma.
SkGammaCurve curves[3];
r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC);
g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC);
b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC);
if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) base), r->fLength))
{
SkColorSpacePrintf("Failed to read R gamma tag.\n");
}
if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) base), g->fLength))
{
SkColorSpacePrintf("Failed to read G gamma tag.\n");
}
if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) base), b->fLength))
{
SkColorSpacePrintf("Failed to read B gamma tag.\n");
}
sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::move(curves[1]),
std::move(curves[2])));
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
mat.set3x3ColMajorf(toXYZ);
if (gammas->isValues()) {
// When we have values, take advantage of the NewFromRGB initializer.
// This allows us to check for canonical sRGB and Adobe RGB.
float gammaVals[3];
gammaVals[0] = gammas->fRed.fValue;
gammaVals[1] = gammas->fGreen.fValue;
gammaVals[2] = gammas->fBlue.fValue;
return SkColorSpace::NewRGB(gammaVals, mat);
} else {
return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, mat, kUnknown_Named));
}
}
// Recognize color profile specified by A2B0 tag.
const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0);
if (a2b0) {
SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTable());
SkGammaCurve curves[3];
SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor);
if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8_t*) base),
a2b0->fLength)) {
return_null("Failed to parse A2B0 tag");
}
sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::move(curves[1]),
std::move(curves[2])));
if (colorLUT->fTable) {
return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.release(), gammas,
toXYZ));
} else if (gammas->isValues()) {
// When we have values, take advantage of the NewFromRGB initializer.
// This allows us to check for canonical sRGB and Adobe RGB.
float gammaVals[3];
gammaVals[0] = gammas->fRed.fValue;
gammaVals[1] = gammas->fGreen.fValue;
gammaVals[2] = gammas->fBlue.fValue;
return SkColorSpace::NewRGB(gammaVals, toXYZ);
} else {
return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, toXYZ,
kUnknown_Named));
}
}
}
default:
break;
}
return_null("ICC profile contains unsupported colorspace");
}