| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLInliner.h" |
| |
| #include <limits.h> |
| #include <memory> |
| #include <unordered_set> |
| |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBoolLiteral.h" |
| #include "src/sksl/ir/SkSLBreakStatement.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLContinueStatement.h" |
| #include "src/sksl/ir/SkSLDiscardStatement.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLEnum.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExternalFunctionCall.h" |
| #include "src/sksl/ir/SkSLExternalFunctionReference.h" |
| #include "src/sksl/ir/SkSLField.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLFunctionReference.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLInlineMarker.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLInterfaceBlock.h" |
| #include "src/sksl/ir/SkSLLayout.h" |
| #include "src/sksl/ir/SkSLNop.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLSwitchCase.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLUnresolvedFunction.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVariable.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| namespace SkSL { |
| namespace { |
| |
| static constexpr int kInlinedStatementLimit = 2500; |
| |
| static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) { |
| class CountReturnsAtEndOfControlFlow : public ProgramVisitor { |
| public: |
| CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.kind()) { |
| case Statement::Kind::kBlock: { |
| // Check only the last statement of a block. |
| const auto& block = stmt.as<Block>(); |
| return block.children().size() && |
| this->visitStatement(*block.children().back()); |
| } |
| case Statement::Kind::kSwitch: |
| case Statement::Kind::kDo: |
| case Statement::Kind::kFor: |
| // Don't introspect switches or loop structures at all. |
| return false; |
| |
| case Statement::Kind::kReturn: |
| ++fNumReturns; |
| [[fallthrough]]; |
| |
| default: |
| return INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns; |
| } |
| |
| static int count_returns_in_continuable_constructs(const FunctionDefinition& funcDef) { |
| class CountReturnsInContinuableConstructs : public ProgramVisitor { |
| public: |
| CountReturnsInContinuableConstructs(const FunctionDefinition& funcDef) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.kind()) { |
| case Statement::Kind::kDo: |
| case Statement::Kind::kFor: { |
| ++fInsideContinuableConstruct; |
| bool result = INHERITED::visitStatement(stmt); |
| --fInsideContinuableConstruct; |
| return result; |
| } |
| |
| case Statement::Kind::kReturn: |
| fNumReturns += (fInsideContinuableConstruct > 0) ? 1 : 0; |
| [[fallthrough]]; |
| |
| default: |
| return INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| int fInsideContinuableConstruct = 0; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return CountReturnsInContinuableConstructs{funcDef}.fNumReturns; |
| } |
| |
| static bool contains_recursive_call(const FunctionDeclaration& funcDecl) { |
| class ContainsRecursiveCall : public ProgramVisitor { |
| public: |
| bool visit(const FunctionDeclaration& funcDecl) { |
| fFuncDecl = &funcDecl; |
| return funcDecl.definition() ? this->visitProgramElement(*funcDecl.definition()) |
| : false; |
| } |
| |
| bool visitExpression(const Expression& expr) override { |
| if (expr.is<FunctionCall>() && expr.as<FunctionCall>().function().matches(*fFuncDecl)) { |
| return true; |
| } |
| return INHERITED::visitExpression(expr); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| if (stmt.is<InlineMarker>() && |
| stmt.as<InlineMarker>().function().matches(*fFuncDecl)) { |
| return true; |
| } |
| return INHERITED::visitStatement(stmt); |
| } |
| |
| const FunctionDeclaration* fFuncDecl; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return ContainsRecursiveCall{}.visit(funcDecl); |
| } |
| |
| static std::unique_ptr<Statement>* find_parent_statement( |
| const std::vector<std::unique_ptr<Statement>*>& stmtStack) { |
| SkASSERT(!stmtStack.empty()); |
| |
| // Walk the statement stack from back to front, ignoring the last element (which is the |
| // enclosing statement). |
| auto iter = stmtStack.rbegin(); |
| ++iter; |
| |
| // Anything counts as a parent statement other than a scopeless Block. |
| for (; iter != stmtStack.rend(); ++iter) { |
| std::unique_ptr<Statement>* stmt = *iter; |
| if (!(*stmt)->is<Block>() || (*stmt)->as<Block>().isScope()) { |
| return stmt; |
| } |
| } |
| |
| // There wasn't any parent statement to be found. |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr, |
| VariableReference::RefKind refKind) { |
| std::unique_ptr<Expression> clone = expr.clone(); |
| class SetRefKindInExpression : public ProgramWriter { |
| public: |
| SetRefKindInExpression(VariableReference::RefKind refKind) : fRefKind(refKind) {} |
| bool visitExpression(Expression& expr) override { |
| if (expr.is<VariableReference>()) { |
| expr.as<VariableReference>().setRefKind(fRefKind); |
| } |
| return INHERITED::visitExpression(expr); |
| } |
| |
| private: |
| VariableReference::RefKind fRefKind; |
| |
| using INHERITED = ProgramWriter; |
| }; |
| |
| SetRefKindInExpression{refKind}.visitExpression(*clone); |
| return clone; |
| } |
| |
| class CountReturnsWithLimit : public ProgramVisitor { |
| public: |
| CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.kind()) { |
| case Statement::Kind::kReturn: { |
| ++fNumReturns; |
| fDeepestReturn = std::max(fDeepestReturn, fScopedBlockDepth); |
| return (fNumReturns >= fLimit) || INHERITED::visitStatement(stmt); |
| } |
| case Statement::Kind::kVarDeclaration: { |
| if (fScopedBlockDepth > 1) { |
| fVariablesInBlocks = true; |
| } |
| return INHERITED::visitStatement(stmt); |
| } |
| case Statement::Kind::kBlock: { |
| int depthIncrement = stmt.as<Block>().isScope() ? 1 : 0; |
| fScopedBlockDepth += depthIncrement; |
| bool result = INHERITED::visitStatement(stmt); |
| fScopedBlockDepth -= depthIncrement; |
| if (fNumReturns == 0 && fScopedBlockDepth <= 1) { |
| // If closing this block puts us back at the top level, and we haven't |
| // encountered any return statements yet, any vardecls we may have encountered |
| // up until this point can be ignored. They are out of scope now, and they were |
| // never used in a return statement. |
| fVariablesInBlocks = false; |
| } |
| return result; |
| } |
| default: |
| return INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| int fDeepestReturn = 0; |
| int fLimit = 0; |
| int fScopedBlockDepth = 0; |
| bool fVariablesInBlocks = false; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| } // namespace |
| |
| Inliner::ReturnComplexity Inliner::GetReturnComplexity(const FunctionDefinition& funcDef) { |
| int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef); |
| CountReturnsWithLimit counter{funcDef, returnsAtEndOfControlFlow + 1}; |
| if (counter.fNumReturns > returnsAtEndOfControlFlow) { |
| return ReturnComplexity::kEarlyReturns; |
| } |
| if (counter.fNumReturns > 1) { |
| return ReturnComplexity::kScopedReturns; |
| } |
| if (counter.fVariablesInBlocks && counter.fDeepestReturn > 1) { |
| return ReturnComplexity::kScopedReturns; |
| } |
| return ReturnComplexity::kSingleSafeReturn; |
| } |
| |
| void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) { |
| // No changes necessary if this statement isn't actually a block. |
| if (!inlinedBody || !inlinedBody->is<Block>()) { |
| return; |
| } |
| |
| // No changes necessary if the parent statement doesn't require a scope. |
| if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() || |
| parentStmt->is<DoStatement>())) { |
| return; |
| } |
| |
| Block& block = inlinedBody->as<Block>(); |
| |
| // The inliner will create inlined function bodies as a Block containing multiple statements, |
| // but no scope. Normally, this is fine, but if this block is used as the statement for a |
| // do/for/if/while, this isn't actually possible to represent textually; a scope must be added |
| // for the generated code to match the intent. In the case of Blocks nested inside other Blocks, |
| // we add the scope to the outermost block if needed. Zero-statement blocks have similar |
| // issues--if we don't represent the Block textually somehow, we run the risk of accidentally |
| // absorbing the following statement into our loop--so we also add a scope to these. |
| for (Block* nestedBlock = █; ) { |
| if (nestedBlock->isScope()) { |
| // We found an explicit scope; all is well. |
| return; |
| } |
| if (nestedBlock->children().size() != 1) { |
| // We found a block with multiple (or zero) statements, but no scope? Let's add a scope |
| // to the outermost block. |
| block.setIsScope(true); |
| return; |
| } |
| if (!nestedBlock->children()[0]->is<Block>()) { |
| // This block has exactly one thing inside, and it's not another block. No need to scope |
| // it. |
| return; |
| } |
| // We have to go deeper. |
| nestedBlock = &nestedBlock->children()[0]->as<Block>(); |
| } |
| } |
| |
| void Inliner::reset(ModifiersPool* modifiers, const Program::Settings* settings) { |
| fModifiers = modifiers; |
| fSettings = settings; |
| fMangler.reset(); |
| fInlinedStatementCounter = 0; |
| } |
| |
| std::unique_ptr<Expression> Inliner::inlineExpression(int offset, |
| VariableRewriteMap* varMap, |
| SymbolTable* symbolTableForExpression, |
| const Expression& expression) { |
| auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> { |
| if (e) { |
| return this->inlineExpression(offset, varMap, symbolTableForExpression, *e); |
| } |
| return nullptr; |
| }; |
| auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray { |
| ExpressionArray args; |
| args.reserve_back(originalArgs.size()); |
| for (const std::unique_ptr<Expression>& arg : originalArgs) { |
| args.push_back(expr(arg)); |
| } |
| return args; |
| }; |
| |
| switch (expression.kind()) { |
| case Expression::Kind::kBinary: { |
| const BinaryExpression& binaryExpr = expression.as<BinaryExpression>(); |
| return std::make_unique<BinaryExpression>( |
| offset, |
| expr(binaryExpr.left()), |
| binaryExpr.getOperator(), |
| expr(binaryExpr.right()), |
| binaryExpr.type().clone(symbolTableForExpression)); |
| } |
| case Expression::Kind::kBoolLiteral: |
| case Expression::Kind::kIntLiteral: |
| case Expression::Kind::kFloatLiteral: |
| return expression.clone(); |
| case Expression::Kind::kConstructor: { |
| const Constructor& constructor = expression.as<Constructor>(); |
| return std::make_unique<Constructor>(offset, |
| constructor.type().clone(symbolTableForExpression), |
| argList(constructor.arguments())); |
| } |
| case Expression::Kind::kExternalFunctionCall: { |
| const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>(); |
| return std::make_unique<ExternalFunctionCall>(offset, &externalCall.function(), |
| argList(externalCall.arguments())); |
| } |
| case Expression::Kind::kExternalFunctionReference: |
| return expression.clone(); |
| case Expression::Kind::kFieldAccess: { |
| const FieldAccess& f = expression.as<FieldAccess>(); |
| return std::make_unique<FieldAccess>(expr(f.base()), f.fieldIndex(), f.ownerKind()); |
| } |
| case Expression::Kind::kFunctionCall: { |
| const FunctionCall& funcCall = expression.as<FunctionCall>(); |
| return std::make_unique<FunctionCall>(offset, |
| funcCall.type().clone(symbolTableForExpression), |
| &funcCall.function(), |
| argList(funcCall.arguments())); |
| } |
| case Expression::Kind::kFunctionReference: |
| return expression.clone(); |
| case Expression::Kind::kIndex: { |
| const IndexExpression& idx = expression.as<IndexExpression>(); |
| return std::make_unique<IndexExpression>(*fContext, expr(idx.base()), |
| expr(idx.index())); |
| } |
| case Expression::Kind::kPrefix: { |
| const PrefixExpression& p = expression.as<PrefixExpression>(); |
| return std::make_unique<PrefixExpression>(p.getOperator(), expr(p.operand())); |
| } |
| case Expression::Kind::kPostfix: { |
| const PostfixExpression& p = expression.as<PostfixExpression>(); |
| return std::make_unique<PostfixExpression>(expr(p.operand()), p.getOperator()); |
| } |
| case Expression::Kind::kSetting: |
| return expression.clone(); |
| case Expression::Kind::kSwizzle: { |
| const Swizzle& s = expression.as<Swizzle>(); |
| return std::make_unique<Swizzle>(*fContext, expr(s.base()), s.components()); |
| } |
| case Expression::Kind::kTernary: { |
| const TernaryExpression& t = expression.as<TernaryExpression>(); |
| return std::make_unique<TernaryExpression>(offset, expr(t.test()), |
| expr(t.ifTrue()), expr(t.ifFalse())); |
| } |
| case Expression::Kind::kTypeReference: |
| return expression.clone(); |
| case Expression::Kind::kVariableReference: { |
| const VariableReference& v = expression.as<VariableReference>(); |
| auto varMapIter = varMap->find(v.variable()); |
| if (varMapIter != varMap->end()) { |
| return clone_with_ref_kind(*varMapIter->second, v.refKind()); |
| } |
| return v.clone(); |
| } |
| default: |
| SkASSERT(false); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Statement> Inliner::inlineStatement(int offset, |
| VariableRewriteMap* varMap, |
| SymbolTable* symbolTableForStatement, |
| std::unique_ptr<Expression>* resultExpr, |
| ReturnComplexity returnComplexity, |
| const Statement& statement, |
| bool isBuiltinCode) { |
| auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> { |
| if (s) { |
| return this->inlineStatement(offset, varMap, symbolTableForStatement, resultExpr, |
| returnComplexity, *s, isBuiltinCode); |
| } |
| return nullptr; |
| }; |
| auto blockStmts = [&](const Block& block) { |
| StatementArray result; |
| result.reserve_back(block.children().size()); |
| for (const std::unique_ptr<Statement>& child : block.children()) { |
| result.push_back(stmt(child)); |
| } |
| return result; |
| }; |
| auto stmts = [&](const StatementArray& ss) { |
| StatementArray result; |
| result.reserve_back(ss.size()); |
| for (const auto& s : ss) { |
| result.push_back(stmt(s)); |
| } |
| return result; |
| }; |
| auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> { |
| if (e) { |
| return this->inlineExpression(offset, varMap, symbolTableForStatement, *e); |
| } |
| return nullptr; |
| }; |
| |
| ++fInlinedStatementCounter; |
| |
| switch (statement.kind()) { |
| case Statement::Kind::kBlock: { |
| const Block& b = statement.as<Block>(); |
| return std::make_unique<Block>(offset, blockStmts(b), |
| SymbolTable::WrapIfBuiltin(b.symbolTable()), |
| b.isScope()); |
| } |
| |
| case Statement::Kind::kBreak: |
| case Statement::Kind::kContinue: |
| case Statement::Kind::kDiscard: |
| return statement.clone(); |
| |
| case Statement::Kind::kDo: { |
| const DoStatement& d = statement.as<DoStatement>(); |
| return std::make_unique<DoStatement>(offset, stmt(d.statement()), expr(d.test())); |
| } |
| case Statement::Kind::kExpression: { |
| const ExpressionStatement& e = statement.as<ExpressionStatement>(); |
| return std::make_unique<ExpressionStatement>(expr(e.expression())); |
| } |
| case Statement::Kind::kFor: { |
| const ForStatement& f = statement.as<ForStatement>(); |
| // need to ensure initializer is evaluated first so that we've already remapped its |
| // declarations by the time we evaluate test & next |
| std::unique_ptr<Statement> initializer = stmt(f.initializer()); |
| return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.test()), |
| expr(f.next()), stmt(f.statement()), |
| SymbolTable::WrapIfBuiltin(f.symbols())); |
| } |
| case Statement::Kind::kIf: { |
| const IfStatement& i = statement.as<IfStatement>(); |
| return std::make_unique<IfStatement>(offset, i.isStatic(), expr(i.test()), |
| stmt(i.ifTrue()), stmt(i.ifFalse())); |
| } |
| case Statement::Kind::kInlineMarker: |
| case Statement::Kind::kNop: |
| return statement.clone(); |
| case Statement::Kind::kReturn: { |
| const ReturnStatement& r = statement.as<ReturnStatement>(); |
| if (!r.expression()) { |
| if (returnComplexity >= ReturnComplexity::kEarlyReturns) { |
| // This function doesn't return a value, but has early returns, so we've wrapped |
| // it in a for loop. Use a continue to jump to the end of the loop and "leave" |
| // the function. |
| return std::make_unique<ContinueStatement>(offset); |
| } else { |
| // This function doesn't exit early or return a value. A return statement at the |
| // end is a no-op and can be treated as such. |
| return std::make_unique<Nop>(); |
| } |
| } |
| |
| // If a function only contains a single return, and it doesn't reference variables from |
| // inside an Block's scope, we don't need to store the result in a variable at all. Just |
| // replace the function-call expression with the function's return expression. |
| SkASSERT(resultExpr); |
| SkASSERT(*resultExpr); |
| if (returnComplexity <= ReturnComplexity::kSingleSafeReturn) { |
| *resultExpr = expr(r.expression()); |
| return std::make_unique<Nop>(); |
| } |
| |
| // For more complex functions, assign their result into a variable. |
| auto assignment = |
| std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>( |
| offset, |
| clone_with_ref_kind(**resultExpr, VariableReference::RefKind::kWrite), |
| Token::Kind::TK_EQ, |
| expr(r.expression()), |
| (*resultExpr)->type().clone(symbolTableForStatement))); |
| |
| // Early returns are wrapped in a for loop; we need to synthesize a continue statement |
| // to "leave" the function. |
| if (returnComplexity >= ReturnComplexity::kEarlyReturns) { |
| StatementArray block; |
| block.reserve_back(2); |
| block.push_back(std::move(assignment)); |
| block.push_back(std::make_unique<ContinueStatement>(offset)); |
| return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr, |
| /*isScope=*/true); |
| } |
| // Functions without early returns aren't wrapped in a for loop and don't need to worry |
| // about breaking out of the control flow. |
| return std::move(assignment); |
| |
| } |
| case Statement::Kind::kSwitch: { |
| const SwitchStatement& ss = statement.as<SwitchStatement>(); |
| std::vector<std::unique_ptr<SwitchCase>> cases; |
| cases.reserve(ss.cases().size()); |
| for (const std::unique_ptr<SwitchCase>& sc : ss.cases()) { |
| cases.push_back(std::make_unique<SwitchCase>(offset, expr(sc->value()), |
| stmts(sc->statements()))); |
| } |
| return std::make_unique<SwitchStatement>(offset, ss.isStatic(), expr(ss.value()), |
| std::move(cases), |
| SymbolTable::WrapIfBuiltin(ss.symbols())); |
| } |
| case Statement::Kind::kVarDeclaration: { |
| const VarDeclaration& decl = statement.as<VarDeclaration>(); |
| std::unique_ptr<Expression> initialValue = expr(decl.value()); |
| const Variable& variable = decl.var(); |
| |
| // We assign unique names to inlined variables--scopes hide most of the problems in this |
| // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique |
| // names are important. |
| auto name = std::make_unique<String>(fMangler.uniqueName(variable.name(), |
| symbolTableForStatement)); |
| const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name)); |
| auto clonedVar = std::make_unique<Variable>( |
| offset, |
| &variable.modifiers(), |
| namePtr->c_str(), |
| variable.type().clone(symbolTableForStatement), |
| isBuiltinCode, |
| variable.storage()); |
| (*varMap)[&variable] = std::make_unique<VariableReference>(offset, clonedVar.get()); |
| auto result = std::make_unique<VarDeclaration>(clonedVar.get(), |
| decl.baseType().clone(symbolTableForStatement), |
| decl.arraySize(), |
| std::move(initialValue)); |
| clonedVar->setDeclaration(result.get()); |
| symbolTableForStatement->takeOwnershipOfSymbol(std::move(clonedVar)); |
| return std::move(result); |
| } |
| default: |
| SkASSERT(false); |
| return nullptr; |
| } |
| } |
| |
| Inliner::InlineVariable Inliner::makeInlineVariable(const String& baseName, |
| const Type* type, |
| SymbolTable* symbolTable, |
| Modifiers modifiers, |
| bool isBuiltinCode, |
| std::unique_ptr<Expression>* initialValue) { |
| // $floatLiteral or $intLiteral aren't real types that we can use for scratch variables, so |
| // replace them if they ever appear here. If this happens, we likely forgot to coerce a type |
| // somewhere during compilation. |
| if (type->isLiteral()) { |
| SkDEBUGFAIL("found a $literal type while inlining"); |
| type = &type->scalarTypeForLiteral(); |
| } |
| |
| // Provide our new variable with a unique name, and add it to our symbol table. |
| const String* namePtr = symbolTable->takeOwnershipOfString( |
| std::make_unique<String>(fMangler.uniqueName(baseName, symbolTable))); |
| StringFragment nameFrag{namePtr->c_str(), namePtr->length()}; |
| |
| // Create our new variable and add it to the symbol table. |
| InlineVariable result; |
| auto var = std::make_unique<Variable>(/*offset=*/-1, |
| fModifiers->addToPool(Modifiers()), |
| nameFrag, |
| type, |
| isBuiltinCode, |
| Variable::Storage::kLocal); |
| |
| // Prepare the variable declaration (taking extra care with `out` params to not clobber any |
| // initial value). |
| if (*initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) { |
| result.fVarDecl = std::make_unique<VarDeclaration>(var.get(), type, /*arraySize=*/0, |
| (*initialValue)->clone()); |
| } else { |
| result.fVarDecl = std::make_unique<VarDeclaration>(var.get(), type, /*arraySize=*/0, |
| std::move(*initialValue)); |
| } |
| var->setDeclaration(&result.fVarDecl->as<VarDeclaration>()); |
| result.fVarSymbol = symbolTable->add(std::move(var)); |
| return result; |
| } |
| |
| Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call, |
| std::shared_ptr<SymbolTable> symbolTable, |
| const FunctionDeclaration* caller) { |
| // Inlining is more complicated here than in a typical compiler, because we have to have a |
| // high-level IR and can't just drop statements into the middle of an expression or even use |
| // gotos. |
| // |
| // Since we can't insert statements into an expression, we run the inline function as extra |
| // statements before the statement we're currently processing, relying on a lack of execution |
| // order guarantees. Since we can't use gotos (which are normally used to replace return |
| // statements), we wrap the whole function in a loop and use break statements to jump to the |
| // end. |
| SkASSERT(fSettings); |
| SkASSERT(fContext); |
| SkASSERT(call); |
| SkASSERT(this->isSafeToInline(call->function().definition())); |
| |
| ExpressionArray& arguments = call->arguments(); |
| const int offset = call->fOffset; |
| const FunctionDefinition& function = *call->function().definition(); |
| const ReturnComplexity returnComplexity = GetReturnComplexity(function); |
| bool hasEarlyReturn = (returnComplexity >= ReturnComplexity::kEarlyReturns); |
| |
| InlinedCall inlinedCall; |
| inlinedCall.fInlinedBody = std::make_unique<Block>(offset, StatementArray{}, |
| /*symbols=*/nullptr, |
| /*isScope=*/false); |
| |
| Block& inlinedBody = *inlinedCall.fInlinedBody; |
| inlinedBody.children().reserve_back( |
| 1 + // Inline marker |
| 1 + // Result variable |
| arguments.size() + // Function arguments (passing in) |
| arguments.size() + // Function arguments (copy out-params back) |
| 1); // Block for inlined code |
| |
| inlinedBody.children().push_back(std::make_unique<InlineMarker>(&call->function())); |
| |
| // Create a variable to hold the result in the extra statements (excepting void). |
| std::unique_ptr<Expression> resultExpr; |
| if (function.declaration().returnType() != *fContext->fTypes.fVoid) { |
| std::unique_ptr<Expression> noInitialValue; |
| InlineVariable var = this->makeInlineVariable(function.declaration().name(), |
| &function.declaration().returnType(), |
| symbolTable.get(), Modifiers{}, |
| caller->isBuiltin(), &noInitialValue); |
| inlinedBody.children().push_back(std::move(var.fVarDecl)); |
| resultExpr = std::make_unique<VariableReference>(/*offset=*/-1, var.fVarSymbol); |
| } |
| |
| // Create variables in the extra statements to hold the arguments, and assign the arguments to |
| // them. |
| VariableRewriteMap varMap; |
| std::vector<int> argsToCopyBack; |
| for (int i = 0; i < (int) arguments.size(); ++i) { |
| const Variable* param = function.declaration().parameters()[i]; |
| bool isOutParam = param->modifiers().fFlags & Modifiers::kOut_Flag; |
| |
| // If this argument can be inlined trivially (e.g. a swizzle, or a constant array index)... |
| if (Analysis::IsTrivialExpression(*arguments[i])) { |
| // ... and it's an `out` param, or it isn't written to within the inline function... |
| if (isOutParam || !Analysis::StatementWritesToVariable(*function.body(), *param)) { |
| // ... we don't need to copy it at all! We can just use the existing expression. |
| varMap[param] = arguments[i]->clone(); |
| continue; |
| } |
| } |
| if (isOutParam) { |
| argsToCopyBack.push_back(i); |
| } |
| InlineVariable var = this->makeInlineVariable(param->name(), &arguments[i]->type(), |
| symbolTable.get(), param->modifiers(), |
| caller->isBuiltin(), &arguments[i]); |
| inlinedBody.children().push_back(std::move(var.fVarDecl)); |
| varMap[param] = std::make_unique<VariableReference>(/*offset=*/-1, var.fVarSymbol); |
| } |
| |
| const Block& body = function.body()->as<Block>(); |
| StatementArray* inlineStatements; |
| |
| if (hasEarlyReturn) { |
| // Since we output to backends that don't have a goto statement (which would normally be |
| // used to perform an early return), we fake it by wrapping the function in a single- |
| // iteration for loop, and use a continue statement to jump to the end of the loop |
| // prematurely. |
| |
| // int _1_loop = 0; |
| symbolTable = std::make_shared<SymbolTable>(std::move(symbolTable), caller->isBuiltin()); |
| const Type* intType = fContext->fTypes.fInt.get(); |
| std::unique_ptr<Expression> initialValue = std::make_unique<IntLiteral>(/*offset=*/-1, |
| /*value=*/0, |
| intType); |
| InlineVariable loopVar = this->makeInlineVariable("loop", intType, symbolTable.get(), |
| Modifiers{}, caller->isBuiltin(), |
| &initialValue); |
| |
| // _1_loop < 1; |
| std::unique_ptr<Expression> test = std::make_unique<BinaryExpression>( |
| /*offset=*/-1, |
| std::make_unique<VariableReference>(/*offset=*/-1, loopVar.fVarSymbol), |
| Token::Kind::TK_LT, |
| std::make_unique<IntLiteral>(/*offset=*/-1, /*value=*/1, intType), |
| fContext->fTypes.fBool.get()); |
| |
| // _1_loop++ |
| std::unique_ptr<Expression> increment = std::make_unique<PostfixExpression>( |
| std::make_unique<VariableReference>(/*offset=*/-1, loopVar.fVarSymbol, |
| VariableReference::RefKind::kReadWrite), |
| Token::Kind::TK_PLUSPLUS); |
| |
| // {...} |
| auto innerBlock = std::make_unique<Block>(offset, StatementArray{}, |
| /*symbols=*/nullptr, /*isScope=*/true); |
| inlineStatements = &innerBlock->children(); |
| |
| // for (int _1_loop = 0; _1_loop < 1; _1_loop++) {...} |
| inlinedBody.children().push_back(std::make_unique<ForStatement>(/*offset=*/-1, |
| std::move(loopVar.fVarDecl), |
| std::move(test), |
| std::move(increment), |
| std::move(innerBlock), |
| symbolTable)); |
| } else { |
| // No early returns, so we can just dump the code into our existing scopeless block. |
| inlineStatements = &inlinedBody.children(); |
| } |
| |
| inlineStatements->reserve_back(body.children().size() + argsToCopyBack.size()); |
| for (const std::unique_ptr<Statement>& stmt : body.children()) { |
| inlineStatements->push_back(this->inlineStatement(offset, &varMap, symbolTable.get(), |
| &resultExpr, returnComplexity, *stmt, |
| caller->isBuiltin())); |
| } |
| |
| // Copy back the values of `out` parameters into their real destinations. |
| for (int i : argsToCopyBack) { |
| const Variable* p = function.declaration().parameters()[i]; |
| SkASSERT(varMap.find(p) != varMap.end()); |
| inlineStatements->push_back( |
| std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>( |
| offset, |
| clone_with_ref_kind(*arguments[i], VariableReference::RefKind::kWrite), |
| Token::Kind::TK_EQ, |
| std::move(varMap[p]), |
| &arguments[i]->type()))); |
| } |
| |
| if (resultExpr != nullptr) { |
| // Return our result variable as our replacement expression. |
| inlinedCall.fReplacementExpr = std::move(resultExpr); |
| } else { |
| // It's a void function, so it doesn't actually result in anything, but we have to return |
| // something non-null as a standin. |
| inlinedCall.fReplacementExpr = std::make_unique<BoolLiteral>(*fContext, |
| offset, |
| /*value=*/false); |
| } |
| |
| return inlinedCall; |
| } |
| |
| bool Inliner::isSafeToInline(const FunctionDefinition* functionDef) { |
| SkASSERT(fSettings); |
| |
| // A threshold of zero indicates that the inliner is completely disabled, so we can just return. |
| if (fSettings->fInlineThreshold <= 0) { |
| return false; |
| } |
| |
| // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl) |
| if (fInlinedStatementCounter >= kInlinedStatementLimit) { |
| return false; |
| } |
| |
| if (functionDef == nullptr) { |
| // Can't inline something if we don't actually have its definition. |
| return false; |
| } |
| |
| // We don't have any mechanism to simulate early returns within a construct that supports |
| // continues (for/do/while), so we can't inline if there's a return inside one. |
| bool hasReturnInContinuableConstruct = |
| (count_returns_in_continuable_constructs(*functionDef) > 0); |
| return !hasReturnInContinuableConstruct; |
| } |
| |
| // A candidate function for inlining, containing everything that `inlineCall` needs. |
| struct InlineCandidate { |
| std::shared_ptr<SymbolTable> fSymbols; // the SymbolTable of the candidate |
| std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt |
| std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate |
| std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined |
| FunctionDefinition* fEnclosingFunction; // the Function containing the candidate |
| }; |
| |
| struct InlineCandidateList { |
| std::vector<InlineCandidate> fCandidates; |
| }; |
| |
| class InlineCandidateAnalyzer { |
| public: |
| // A list of all the inlining candidates we found during analysis. |
| InlineCandidateList* fCandidateList; |
| |
| // A stack of the symbol tables; since most nodes don't have one, expected to be shallower than |
| // the enclosing-statement stack. |
| std::vector<std::shared_ptr<SymbolTable>> fSymbolTableStack; |
| // A stack of "enclosing" statements--these would be suitable for the inliner to use for adding |
| // new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The |
| // inliner might replace a statement with a block containing the statement. |
| std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack; |
| // The function that we're currently processing (i.e. inlining into). |
| FunctionDefinition* fEnclosingFunction = nullptr; |
| |
| void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements, |
| std::shared_ptr<SymbolTable> symbols, |
| InlineCandidateList* candidateList) { |
| fCandidateList = candidateList; |
| fSymbolTableStack.push_back(symbols); |
| |
| for (const std::unique_ptr<ProgramElement>& pe : elements) { |
| this->visitProgramElement(pe.get()); |
| } |
| |
| fSymbolTableStack.pop_back(); |
| fCandidateList = nullptr; |
| } |
| |
| void visitProgramElement(ProgramElement* pe) { |
| switch (pe->kind()) { |
| case ProgramElement::Kind::kFunction: { |
| FunctionDefinition& funcDef = pe->as<FunctionDefinition>(); |
| fEnclosingFunction = &funcDef; |
| this->visitStatement(&funcDef.body()); |
| break; |
| } |
| default: |
| // The inliner can't operate outside of a function's scope. |
| break; |
| } |
| } |
| |
| void visitStatement(std::unique_ptr<Statement>* stmt, |
| bool isViableAsEnclosingStatement = true) { |
| if (!*stmt) { |
| return; |
| } |
| |
| size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size(); |
| size_t oldSymbolStackSize = fSymbolTableStack.size(); |
| |
| if (isViableAsEnclosingStatement) { |
| fEnclosingStmtStack.push_back(stmt); |
| } |
| |
| switch ((*stmt)->kind()) { |
| case Statement::Kind::kBreak: |
| case Statement::Kind::kContinue: |
| case Statement::Kind::kDiscard: |
| case Statement::Kind::kInlineMarker: |
| case Statement::Kind::kNop: |
| break; |
| |
| case Statement::Kind::kBlock: { |
| Block& block = (*stmt)->as<Block>(); |
| if (block.symbolTable()) { |
| fSymbolTableStack.push_back(block.symbolTable()); |
| } |
| |
| for (std::unique_ptr<Statement>& stmt : block.children()) { |
| this->visitStatement(&stmt); |
| } |
| break; |
| } |
| case Statement::Kind::kDo: { |
| DoStatement& doStmt = (*stmt)->as<DoStatement>(); |
| // The loop body is a candidate for inlining. |
| this->visitStatement(&doStmt.statement()); |
| // The inliner isn't smart enough to inline the test-expression for a do-while |
| // loop at this time. There are two limitations: |
| // - We would need to insert the inlined-body block at the very end of the do- |
| // statement's inner fStatement. We don't support that today, but it's doable. |
| // - We cannot inline the test expression if the loop uses `continue` anywhere; that |
| // would skip over the inlined block that evaluates the test expression. There |
| // isn't a good fix for this--any workaround would be more complex than the cost |
| // of a function call. However, loops that don't use `continue` would still be |
| // viable candidates for inlining. |
| break; |
| } |
| case Statement::Kind::kExpression: { |
| ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>(); |
| this->visitExpression(&expr.expression()); |
| break; |
| } |
| case Statement::Kind::kFor: { |
| ForStatement& forStmt = (*stmt)->as<ForStatement>(); |
| if (forStmt.symbols()) { |
| fSymbolTableStack.push_back(forStmt.symbols()); |
| } |
| |
| // The initializer and loop body are candidates for inlining. |
| this->visitStatement(&forStmt.initializer(), |
| /*isViableAsEnclosingStatement=*/false); |
| this->visitStatement(&forStmt.statement()); |
| |
| // The inliner isn't smart enough to inline the test- or increment-expressions |
| // of a for loop loop at this time. There are a handful of limitations: |
| // - We would need to insert the test-expression block at the very beginning of the |
| // for-loop's inner fStatement, and the increment-expression block at the very |
| // end. We don't support that today, but it's doable. |
| // - The for-loop's built-in test-expression would need to be dropped entirely, |
| // and the loop would be halted via a break statement at the end of the inlined |
| // test-expression. This is again something we don't support today, but it could |
| // be implemented. |
| // - We cannot inline the increment-expression if the loop uses `continue` anywhere; |
| // that would skip over the inlined block that evaluates the increment expression. |
| // There isn't a good fix for this--any workaround would be more complex than the |
| // cost of a function call. However, loops that don't use `continue` would still |
| // be viable candidates for increment-expression inlining. |
| break; |
| } |
| case Statement::Kind::kIf: { |
| IfStatement& ifStmt = (*stmt)->as<IfStatement>(); |
| this->visitExpression(&ifStmt.test()); |
| this->visitStatement(&ifStmt.ifTrue()); |
| this->visitStatement(&ifStmt.ifFalse()); |
| break; |
| } |
| case Statement::Kind::kReturn: { |
| ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>(); |
| this->visitExpression(&returnStmt.expression()); |
| break; |
| } |
| case Statement::Kind::kSwitch: { |
| SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>(); |
| if (switchStmt.symbols()) { |
| fSymbolTableStack.push_back(switchStmt.symbols()); |
| } |
| |
| this->visitExpression(&switchStmt.value()); |
| for (const std::unique_ptr<SwitchCase>& switchCase : switchStmt.cases()) { |
| // The switch-case's fValue cannot be a FunctionCall; skip it. |
| for (std::unique_ptr<Statement>& caseBlock : switchCase->statements()) { |
| this->visitStatement(&caseBlock); |
| } |
| } |
| break; |
| } |
| case Statement::Kind::kVarDeclaration: { |
| VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>(); |
| // Don't need to scan the declaration's sizes; those are always IntLiterals. |
| this->visitExpression(&varDeclStmt.value()); |
| break; |
| } |
| default: |
| SkUNREACHABLE; |
| } |
| |
| // Pop our symbol and enclosing-statement stacks. |
| fSymbolTableStack.resize(oldSymbolStackSize); |
| fEnclosingStmtStack.resize(oldEnclosingStmtStackSize); |
| } |
| |
| void visitExpression(std::unique_ptr<Expression>* expr) { |
| if (!*expr) { |
| return; |
| } |
| |
| switch ((*expr)->kind()) { |
| case Expression::Kind::kBoolLiteral: |
| case Expression::Kind::kDefined: |
| case Expression::Kind::kExternalFunctionReference: |
| case Expression::Kind::kFieldAccess: |
| case Expression::Kind::kFloatLiteral: |
| case Expression::Kind::kFunctionReference: |
| case Expression::Kind::kIntLiteral: |
| case Expression::Kind::kSetting: |
| case Expression::Kind::kTypeReference: |
| case Expression::Kind::kVariableReference: |
| // Nothing to scan here. |
| break; |
| |
| case Expression::Kind::kBinary: { |
| BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>(); |
| this->visitExpression(&binaryExpr.left()); |
| |
| // Logical-and and logical-or binary expressions do not inline the right side, |
| // because that would invalidate short-circuiting. That is, when evaluating |
| // expressions like these: |
| // (false && x()) // always false |
| // (true || y()) // always true |
| // It is illegal for side-effects from x() or y() to occur. The simplest way to |
| // enforce that rule is to avoid inlining the right side entirely. However, it is |
| // safe for other types of binary expression to inline both sides. |
| Token::Kind op = binaryExpr.getOperator(); |
| bool shortCircuitable = (op == Token::Kind::TK_LOGICALAND || |
| op == Token::Kind::TK_LOGICALOR); |
| if (!shortCircuitable) { |
| this->visitExpression(&binaryExpr.right()); |
| } |
| break; |
| } |
| case Expression::Kind::kConstructor: { |
| Constructor& constructorExpr = (*expr)->as<Constructor>(); |
| for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) { |
| this->visitExpression(&arg); |
| } |
| break; |
| } |
| case Expression::Kind::kExternalFunctionCall: { |
| ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>(); |
| for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) { |
| this->visitExpression(&arg); |
| } |
| break; |
| } |
| case Expression::Kind::kFunctionCall: { |
| FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>(); |
| for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) { |
| this->visitExpression(&arg); |
| } |
| this->addInlineCandidate(expr); |
| break; |
| } |
| case Expression::Kind::kIndex:{ |
| IndexExpression& indexExpr = (*expr)->as<IndexExpression>(); |
| this->visitExpression(&indexExpr.base()); |
| this->visitExpression(&indexExpr.index()); |
| break; |
| } |
| case Expression::Kind::kPostfix: { |
| PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>(); |
| this->visitExpression(&postfixExpr.operand()); |
| break; |
| } |
| case Expression::Kind::kPrefix: { |
| PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>(); |
| this->visitExpression(&prefixExpr.operand()); |
| break; |
| } |
| case Expression::Kind::kSwizzle: { |
| Swizzle& swizzleExpr = (*expr)->as<Swizzle>(); |
| this->visitExpression(&swizzleExpr.base()); |
| break; |
| } |
| case Expression::Kind::kTernary: { |
| TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>(); |
| // The test expression is a candidate for inlining. |
| this->visitExpression(&ternaryExpr.test()); |
| // The true- and false-expressions cannot be inlined, because we are only allowed to |
| // evaluate one side. |
| break; |
| } |
| default: |
| SkUNREACHABLE; |
| } |
| } |
| |
| void addInlineCandidate(std::unique_ptr<Expression>* candidate) { |
| fCandidateList->fCandidates.push_back( |
| InlineCandidate{fSymbolTableStack.back(), |
| find_parent_statement(fEnclosingStmtStack), |
| fEnclosingStmtStack.back(), |
| candidate, |
| fEnclosingFunction}); |
| } |
| }; |
| |
| static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) { |
| return (*candidate.fCandidateExpr)->as<FunctionCall>().function(); |
| } |
| |
| bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate, InlinabilityCache* cache) { |
| const FunctionDeclaration& funcDecl = candidate_func(candidate); |
| auto [iter, wasInserted] = cache->insert({&funcDecl, false}); |
| if (wasInserted) { |
| // Recursion is forbidden here to avoid an infinite death spiral of inlining. |
| iter->second = this->isSafeToInline(funcDecl.definition()) && |
| !contains_recursive_call(funcDecl); |
| } |
| |
| return iter->second; |
| } |
| |
| int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) { |
| auto [iter, wasInserted] = cache->insert({&funcDecl, 0}); |
| if (wasInserted) { |
| iter->second = Analysis::NodeCountUpToLimit(*funcDecl.definition(), |
| fSettings->fInlineThreshold); |
| } |
| return iter->second; |
| } |
| |
| void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements, |
| std::shared_ptr<SymbolTable> symbols, ProgramUsage* usage, |
| InlineCandidateList* candidateList) { |
| // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor. |
| // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so |
| // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a |
| // `const T&`. |
| InlineCandidateAnalyzer analyzer; |
| analyzer.visit(elements, symbols, candidateList); |
| |
| // Early out if there are no inlining candidates. |
| std::vector<InlineCandidate>& candidates = candidateList->fCandidates; |
| if (candidates.empty()) { |
| return; |
| } |
| |
| // Remove candidates that are not safe to inline. |
| InlinabilityCache cache; |
| candidates.erase(std::remove_if(candidates.begin(), |
| candidates.end(), |
| [&](const InlineCandidate& candidate) { |
| return !this->candidateCanBeInlined(candidate, &cache); |
| }), |
| candidates.end()); |
| |
| // If the inline threshold is unlimited, or if we have no candidates left, our candidate list is |
| // complete. |
| if (fSettings->fInlineThreshold == INT_MAX || candidates.empty()) { |
| return; |
| } |
| |
| // Remove candidates on a per-function basis if the effect of inlining would be to make more |
| // than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is |
| // 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.) |
| FunctionSizeCache functionSizeCache; |
| FunctionSizeCache candidateTotalCost; |
| for (InlineCandidate& candidate : candidates) { |
| const FunctionDeclaration& fnDecl = candidate_func(candidate); |
| candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache); |
| } |
| |
| candidates.erase( |
| std::remove_if(candidates.begin(), |
| candidates.end(), |
| [&](const InlineCandidate& candidate) { |
| const FunctionDeclaration& fnDecl = candidate_func(candidate); |
| if (fnDecl.modifiers().fFlags & Modifiers::kInline_Flag) { |
| // Functions marked `inline` ignore size limitations. |
| return false; |
| } |
| if (usage->get(fnDecl) == 1) { |
| // If a function is only used once, it's cost-free to inline. |
| return false; |
| } |
| if (candidateTotalCost[&fnDecl] <= fSettings->fInlineThreshold) { |
| // We won't exceed the inline threshold by inlining this. |
| return false; |
| } |
| // Inlining this function will add too many IRNodes. |
| return true; |
| }), |
| candidates.end()); |
| } |
| |
| bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements, |
| std::shared_ptr<SymbolTable> symbols, |
| ProgramUsage* usage) { |
| // A threshold of zero indicates that the inliner is completely disabled, so we can just return. |
| if (fSettings->fInlineThreshold <= 0) { |
| return false; |
| } |
| |
| // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl) |
| if (fInlinedStatementCounter >= kInlinedStatementLimit) { |
| return false; |
| } |
| |
| InlineCandidateList candidateList; |
| this->buildCandidateList(elements, symbols, usage, &candidateList); |
| |
| // Inline the candidates where we've determined that it's safe to do so. |
| std::unordered_set<const std::unique_ptr<Statement>*> enclosingStmtSet; |
| bool madeChanges = false; |
| for (const InlineCandidate& candidate : candidateList.fCandidates) { |
| FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>(); |
| |
| // Inlining two expressions using the same enclosing statement in the same inlining pass |
| // does not work properly. If this happens, skip it; we'll get it in the next pass. |
| auto [unusedIter, inserted] = enclosingStmtSet.insert(candidate.fEnclosingStmt); |
| if (!inserted) { |
| continue; |
| } |
| |
| // Convert the function call to its inlined equivalent. |
| InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols, |
| &candidate.fEnclosingFunction->declaration()); |
| if (inlinedCall.fInlinedBody) { |
| // Ensure that the inlined body has a scope if it needs one. |
| this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get()); |
| |
| // Add references within the inlined body |
| usage->add(inlinedCall.fInlinedBody.get()); |
| |
| // Move the enclosing statement to the end of the unscoped Block containing the inlined |
| // function, then replace the enclosing statement with that Block. |
| // Before: |
| // fInlinedBody = Block{ stmt1, stmt2, stmt3 } |
| // fEnclosingStmt = stmt4 |
| // After: |
| // fInlinedBody = null |
| // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 } |
| inlinedCall.fInlinedBody->children().push_back(std::move(*candidate.fEnclosingStmt)); |
| *candidate.fEnclosingStmt = std::move(inlinedCall.fInlinedBody); |
| } |
| |
| // Replace the candidate function call with our replacement expression. |
| usage->replace(candidate.fCandidateExpr->get(), inlinedCall.fReplacementExpr.get()); |
| *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr); |
| madeChanges = true; |
| |
| // Stop inlining if we've reached our hard cap on new statements. |
| if (fInlinedStatementCounter >= kInlinedStatementLimit) { |
| break; |
| } |
| |
| // Note that nothing was destroyed except for the FunctionCall. All other nodes should |
| // remain valid. |
| } |
| |
| return madeChanges; |
| } |
| |
| } // namespace SkSL |