blob: 66fea1ffd40463057451c5b72c49fac3c1d21033 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLMetalCodeGenerator.h"
#include "src/core/SkScopeExit.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLMemoryLayout.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExtension.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLModifiersDeclaration.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLStructDefinition.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include <algorithm>
namespace SkSL {
const char* MetalCodeGenerator::OperatorName(Token::Kind op) {
switch (op) {
case Token::Kind::TK_LOGICALXOR: return "!=";
default: return Compiler::OperatorName(op);
}
}
class MetalCodeGenerator::GlobalStructVisitor {
public:
virtual ~GlobalStructVisitor() = default;
virtual void visitInterfaceBlock(const InterfaceBlock& block, const String& blockName) = 0;
virtual void visitTexture(const Type& type, const String& name) = 0;
virtual void visitSampler(const Type& type, const String& name) = 0;
virtual void visitVariable(const Variable& var, const Expression* value) = 0;
};
void MetalCodeGenerator::setupIntrinsics() {
fIntrinsicMap[String("atan")] = kAtan_IntrinsicKind;
fIntrinsicMap[String("floatBitsToInt")] = kBitcast_IntrinsicKind;
fIntrinsicMap[String("floatBitsToUint")] = kBitcast_IntrinsicKind;
fIntrinsicMap[String("intBitsToFloat")] = kBitcast_IntrinsicKind;
fIntrinsicMap[String("uintBitsToFloat")] = kBitcast_IntrinsicKind;
fIntrinsicMap[String("equal")] = kCompareEqual_IntrinsicKind;
fIntrinsicMap[String("notEqual")] = kCompareNotEqual_IntrinsicKind;
fIntrinsicMap[String("lessThan")] = kCompareLessThan_IntrinsicKind;
fIntrinsicMap[String("lessThanEqual")] = kCompareLessThanEqual_IntrinsicKind;
fIntrinsicMap[String("greaterThan")] = kCompareGreaterThan_IntrinsicKind;
fIntrinsicMap[String("greaterThanEqual")] = kCompareGreaterThanEqual_IntrinsicKind;
fIntrinsicMap[String("degrees")] = kDegrees_IntrinsicKind;
fIntrinsicMap[String("dFdx")] = kDFdx_IntrinsicKind;
fIntrinsicMap[String("dFdy")] = kDFdy_IntrinsicKind;
fIntrinsicMap[String("distance")] = kDistance_IntrinsicKind;
fIntrinsicMap[String("dot")] = kDot_IntrinsicKind;
fIntrinsicMap[String("faceforward")] = kFaceforward_IntrinsicKind;
fIntrinsicMap[String("bitCount")] = kBitCount_IntrinsicKind;
fIntrinsicMap[String("findLSB")] = kFindLSB_IntrinsicKind;
fIntrinsicMap[String("findMSB")] = kFindMSB_IntrinsicKind;
fIntrinsicMap[String("inverse")] = kInverse_IntrinsicKind;
fIntrinsicMap[String("inversesqrt")] = kInversesqrt_IntrinsicKind;
fIntrinsicMap[String("length")] = kLength_IntrinsicKind;
fIntrinsicMap[String("matrixCompMult")] = kMatrixCompMult_IntrinsicKind;
fIntrinsicMap[String("mod")] = kMod_IntrinsicKind;
fIntrinsicMap[String("normalize")] = kNormalize_IntrinsicKind;
fIntrinsicMap[String("radians")] = kRadians_IntrinsicKind;
fIntrinsicMap[String("reflect")] = kReflect_IntrinsicKind;
fIntrinsicMap[String("refract")] = kRefract_IntrinsicKind;
fIntrinsicMap[String("roundEven")] = kRoundEven_IntrinsicKind;
fIntrinsicMap[String("sample")] = kTexture_IntrinsicKind;
}
void MetalCodeGenerator::write(const char* s) {
if (!s[0]) {
return;
}
if (fAtLineStart) {
for (int i = 0; i < fIndentation; i++) {
fOut->writeText(" ");
}
}
fOut->writeText(s);
fAtLineStart = false;
}
void MetalCodeGenerator::writeLine(const char* s) {
this->write(s);
fOut->writeText(fLineEnding);
fAtLineStart = true;
}
void MetalCodeGenerator::write(const String& s) {
this->write(s.c_str());
}
void MetalCodeGenerator::writeLine(const String& s) {
this->writeLine(s.c_str());
}
void MetalCodeGenerator::writeLine() {
this->writeLine("");
}
void MetalCodeGenerator::writeExtension(const Extension& ext) {
this->writeLine("#extension " + ext.name() + " : enable");
}
String MetalCodeGenerator::typeName(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kVector:
return this->typeName(type.componentType()) + to_string(type.columns());
case Type::TypeKind::kMatrix:
return this->typeName(type.componentType()) + to_string(type.columns()) + "x" +
to_string(type.rows());
case Type::TypeKind::kSampler:
return "texture2d<float>"; // FIXME - support other texture types
case Type::TypeKind::kEnum:
return "int";
default:
if (type == *fContext.fTypes.fHalf) {
// FIXME - Currently only supporting floats in MSL to avoid type coercion issues.
return fContext.fTypes.fFloat->name();
} else if (type == *fContext.fTypes.fByte) {
return "char";
} else if (type == *fContext.fTypes.fUByte) {
return "uchar";
} else {
return type.name();
}
}
}
bool MetalCodeGenerator::writeStructDefinition(const Type& type) {
for (const Type* search : fWrittenStructs) {
if (*search == type) {
// already written
return false;
}
}
fWrittenStructs.push_back(&type);
this->writeLine("struct " + type.name() + " {");
fIndentation++;
this->writeFields(type.fields(), type.fOffset);
fIndentation--;
this->write("}");
return true;
}
// Flags an error if an array type is found. Meant to be used in places where an array type might
// appear in the SkSL/IR, but can't be represented by Metal.
void MetalCodeGenerator::disallowArrayTypes(const Type& type, int offset) {
if (type.isArray()) {
fErrors.error(offset, "Metal does not support array types in this context");
}
}
// Writes the base type, stripping array suffixes. e.g. `float[2]` will output `float`.
// Call `writeArrayDimensions` to write the type's accompanying array sizes.
void MetalCodeGenerator::writeBaseType(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kStruct:
if (!this->writeStructDefinition(type)) {
this->write(type.name());
}
break;
case Type::TypeKind::kArray:
this->writeBaseType(type.componentType());
break;
default:
this->write(this->typeName(type));
break;
}
}
// Writes the array suffix of a type, if one exists. e.g. `float[2][4]` will output `[2][4]`.
void MetalCodeGenerator::writeArrayDimensions(const Type& type) {
if (type.isArray()) {
this->write("[");
if (type.columns() != Type::kUnsizedArray) {
this->write(to_string(type.columns()));
}
this->write("]");
}
}
void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) {
switch (expr.kind()) {
case Expression::Kind::kBinary:
this->writeBinaryExpression(expr.as<BinaryExpression>(), parentPrecedence);
break;
case Expression::Kind::kBoolLiteral:
this->writeBoolLiteral(expr.as<BoolLiteral>());
break;
case Expression::Kind::kConstructor:
this->writeConstructor(expr.as<Constructor>(), parentPrecedence);
break;
case Expression::Kind::kIntLiteral:
this->writeIntLiteral(expr.as<IntLiteral>());
break;
case Expression::Kind::kFieldAccess:
this->writeFieldAccess(expr.as<FieldAccess>());
break;
case Expression::Kind::kFloatLiteral:
this->writeFloatLiteral(expr.as<FloatLiteral>());
break;
case Expression::Kind::kFunctionCall:
this->writeFunctionCall(expr.as<FunctionCall>());
break;
case Expression::Kind::kPrefix:
this->writePrefixExpression(expr.as<PrefixExpression>(), parentPrecedence);
break;
case Expression::Kind::kPostfix:
this->writePostfixExpression(expr.as<PostfixExpression>(), parentPrecedence);
break;
case Expression::Kind::kSetting:
this->writeSetting(expr.as<Setting>());
break;
case Expression::Kind::kSwizzle:
this->writeSwizzle(expr.as<Swizzle>());
break;
case Expression::Kind::kVariableReference:
this->writeVariableReference(expr.as<VariableReference>());
break;
case Expression::Kind::kTernary:
this->writeTernaryExpression(expr.as<TernaryExpression>(), parentPrecedence);
break;
case Expression::Kind::kIndex:
this->writeIndexExpression(expr.as<IndexExpression>());
break;
default:
#ifdef SK_DEBUG
ABORT("unsupported expression: %s", expr.description().c_str());
#endif
break;
}
}
String MetalCodeGenerator::getOutParamHelper(const FunctionCall& call,
const ExpressionArray& arguments,
const SkTArray<VariableReference*>& outVars) {
AutoOutputStream outputToExtraFunctions(this, &fExtraFunctions, &fIndentation);
const FunctionDeclaration& function = call.function();
String name = "_skOutParamHelper" + to_string(fSwizzleHelperCount++) + "_" + function.name();
const char* separator = "";
// Emit a prototype for the function we'll be calling through to in our helper.
if (!function.isBuiltin()) {
this->writeFunctionDeclaration(function);
this->writeLine(";");
}
// Synthesize a helper function that takes the same inputs as `function`, except in places where
// `outVars` is non-null; in those places, we take the type of the VariableReference.
//
// float _skOutParamHelper0_originalFuncName(float _var0, float _var1, float& outParam) {
this->writeBaseType(call.type());
this->write(" ");
this->write(name);
this->write("(");
this->writeFunctionRequirementParams(function, separator);
SkASSERT(outVars.size() == arguments.size());
SkASSERT(outVars.size() == function.parameters().size());
for (int index = 0; index < arguments.count(); ++index) {
this->write(separator);
separator = ", ";
const Variable* param = function.parameters()[index];
this->writeModifiers(param->modifiers(), /*globalContext=*/false);
const Type* type = outVars[index] ? &outVars[index]->type() : &arguments[index]->type();
this->writeBaseType(*type);
if (param->modifiers().fFlags & Modifiers::kOut_Flag) {
this->write("&");
}
if (outVars[index]) {
this->write(" ");
fIgnoreVariableReferenceModifiers = true;
this->writeVariableReference(*outVars[index]);
fIgnoreVariableReferenceModifiers = false;
} else {
this->write(" _var");
this->write(to_string(index));
}
this->writeArrayDimensions(*type);
}
this->writeLine(") {");
++fIndentation;
for (int index = 0; index < outVars.count(); ++index) {
if (!outVars[index]) {
continue;
}
// float3 _var2[ = outParam.zyx];
this->writeBaseType(arguments[index]->type());
this->write(" _var");
this->write(to_string(index));
const Variable* param = function.parameters()[index];
if (param->modifiers().fFlags & Modifiers::kIn_Flag) {
this->write(" = ");
fIgnoreVariableReferenceModifiers = true;
this->writeExpression(*arguments[index], kAssignment_Precedence);
fIgnoreVariableReferenceModifiers = false;
}
this->writeLine(";");
}
// [int _skResult = ] myFunction(inputs, outputs, _globals, _var0, _var1, _var2, _var3);
bool hasResult = (call.type().name() != "void");
if (hasResult) {
this->writeBaseType(call.type());
this->write(" _skResult = ");
}
this->writeName(function.name());
this->write("(");
separator = "";
this->writeFunctionRequirementArgs(function, separator);
for (int index = 0; index < arguments.count(); ++index) {
this->write(separator);
separator = ", ";
this->write("_var");
this->write(to_string(index));
}
this->writeLine(");");
for (int index = 0; index < outVars.count(); ++index) {
if (!outVars[index]) {
continue;
}
// outParam.zyx = _var2;
fIgnoreVariableReferenceModifiers = true;
this->writeExpression(*arguments[index], kAssignment_Precedence);
fIgnoreVariableReferenceModifiers = false;
this->write(" = _var");
this->write(to_string(index));
this->writeLine(";");
}
if (hasResult) {
this->writeLine("return _skResult;");
}
--fIndentation;
this->writeLine("}");
return name;
}
String MetalCodeGenerator::getBitcastIntrinsic(const Type& outType) {
return "as_type<" + outType.displayName() + ">";
}
void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) {
const FunctionDeclaration& function = c.function();
// If this function is a built-in with no declaration, it's probably an intrinsic and might need
// special handling.
if (function.isBuiltin() && !function.definition()) {
auto iter = fIntrinsicMap.find(function.name());
if (iter != fIntrinsicMap.end()) {
this->writeIntrinsicCall(c, iter->second);
return;
}
}
// Determine whether or not we need to emulate GLSL's out-param semantics for Metal using a
// helper function. (Specifically, out-parameters in GLSL are only written back to the original
// variable at the end of the function call; also, swizzles are supported, whereas Metal doesn't
// allow a swizzle to be passed to a `floatN&`.)
const ExpressionArray& arguments = c.arguments();
const std::vector<const Variable*>& parameters = function.parameters();
SkASSERT(arguments.size() == parameters.size());
bool foundOutParam = false;
SkSTArray<16, VariableReference*> outVars;
outVars.push_back_n(arguments.count(), (VariableReference*)nullptr);
for (int index = 0; index < arguments.count(); ++index) {
// If this is an out parameter...
if (parameters[index]->modifiers().fFlags & Modifiers::kOut_Flag) {
// Find the expression's inner variable being written to.
Analysis::AssignmentInfo info;
// Assignability was verified at IRGeneration time, so this should always succeed.
SkAssertResult(Analysis::IsAssignable(*arguments[index], &info));
outVars[index] = info.fAssignedVar;
foundOutParam = true;
}
}
if (foundOutParam) {
// Out parameters need to be written back to at the end of the function. To do this, we
// synthesize a helper function which evaluates the out-param expression into a temporary
// variable, calls the original function, then writes the temp var back into the out param
// using the original out-param expression. (This lets us support things like swizzles and
// array indices.)
this->write(getOutParamHelper(c, arguments, outVars));
} else {
this->write(function.name());
}
this->write("(");
const char* separator = "";
this->writeFunctionRequirementArgs(function, separator);
for (int i = 0; i < arguments.count(); ++i) {
this->write(separator);
separator = ", ";
if (outVars[i]) {
this->writeExpression(*outVars[i], kSequence_Precedence);
} else {
this->writeExpression(*arguments[i], kSequence_Precedence);
}
}
this->write(")");
}
static constexpr char kInverse2x2[] = R"(
float2x2 float2x2_inverse(float2x2 m) {
return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m));
}
)";
static constexpr char kInverse3x3[] = R"(
float3x3 float3x3_inverse(float3x3 m) {
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float det = a00*b01 + a01*b11 + a02*b21;
return float3x3(b01, (-a22*a01 + a02*a21), ( a12*a01 - a02*a11),
b11, ( a22*a00 - a02*a20), (-a12*a00 + a02*a10),
b21, (-a21*a00 + a01*a20), ( a11*a00 - a01*a10)) * (1/det);
}
)";
static constexpr char kInverse4x4[] = R"(
float4x4 float4x4_inverse(float4x4 m) {
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];
float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];
float b00 = a00*a11 - a01*a10;
float b01 = a00*a12 - a02*a10;
float b02 = a00*a13 - a03*a10;
float b03 = a01*a12 - a02*a11;
float b04 = a01*a13 - a03*a11;
float b05 = a02*a13 - a03*a12;
float b06 = a20*a31 - a21*a30;
float b07 = a20*a32 - a22*a30;
float b08 = a20*a33 - a23*a30;
float b09 = a21*a32 - a22*a31;
float b10 = a21*a33 - a23*a31;
float b11 = a22*a33 - a23*a32;
float det = b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06;
return float4x4(a11*b11 - a12*b10 + a13*b09,
a02*b10 - a01*b11 - a03*b09,
a31*b05 - a32*b04 + a33*b03,
a22*b04 - a21*b05 - a23*b03,
a12*b08 - a10*b11 - a13*b07,
a00*b11 - a02*b08 + a03*b07,
a32*b02 - a30*b05 - a33*b01,
a20*b05 - a22*b02 + a23*b01,
a10*b10 - a11*b08 + a13*b06,
a01*b08 - a00*b10 - a03*b06,
a30*b04 - a31*b02 + a33*b00,
a21*b02 - a20*b04 - a23*b00,
a11*b07 - a10*b09 - a12*b06,
a00*b09 - a01*b07 + a02*b06,
a31*b01 - a30*b03 - a32*b00,
a20*b03 - a21*b01 + a22*b00) * (1/det);
}
)";
String MetalCodeGenerator::getInversePolyfill(const ExpressionArray& arguments) {
// Only use polyfills for a function taking a single-argument square matrix.
if (arguments.size() == 1) {
const Type& type = arguments.front()->type();
if (type.isMatrix() && type.rows() == type.columns()) {
// Inject the correct polyfill based on the matrix size.
String name = this->typeName(type) + "_inverse";
auto [iter, didInsert] = fWrittenIntrinsics.insert(name);
if (didInsert) {
switch (type.rows()) {
case 2:
fExtraFunctions.writeText(kInverse2x2);
break;
case 3:
fExtraFunctions.writeText(kInverse3x3);
break;
case 4:
fExtraFunctions.writeText(kInverse4x4);
break;
}
}
return name;
}
}
// This isn't the built-in `inverse`. We don't want to polyfill it at all.
return "inverse";
}
static constexpr char kMatrixCompMult[] = R"(
template <int C, int R>
matrix<float, C, R> matrixCompMult(matrix<float, C, R> a, matrix<float, C, R> b) {
matrix<float, C, R> result;
for (int c = 0; c < C; ++c) {
result[c] = a[c] * b[c];
}
return result;
}
)";
void MetalCodeGenerator::writeMatrixCompMult() {
String name = "matrixCompMult";
if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
fWrittenIntrinsics.insert(name);
fExtraFunctions.writeText(kMatrixCompMult);
}
}
String MetalCodeGenerator::getTempVariable(const Type& type) {
String tempVar = "_skTemp" + to_string(fVarCount++);
this->fFunctionHeader += " " + this->typeName(type) + " " + tempVar + ";\n";
return tempVar;
}
void MetalCodeGenerator::writeSimpleIntrinsic(const FunctionCall& c) {
// Write out an intrinsic function call exactly as-is. No muss no fuss.
this->write(c.function().name());
this->writeArgumentList(c.arguments());
}
void MetalCodeGenerator::writeArgumentList(const ExpressionArray& arguments) {
this->write("(");
const char* separator = "";
for (const std::unique_ptr<Expression>& arg : arguments) {
this->write(separator);
separator = ", ";
this->writeExpression(*arg, kSequence_Precedence);
}
this->write(")");
}
void MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind) {
const ExpressionArray& arguments = c.arguments();
switch (kind) {
case kTexture_IntrinsicKind: {
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(".sample(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(SAMPLER_SUFFIX);
this->write(", ");
const Type& arg1Type = arguments[1]->type();
if (arg1Type == *fContext.fTypes.fFloat3) {
// have to store the vector in a temp variable to avoid double evaluating it
String tmpVar = this->getTempVariable(arg1Type);
this->write("(" + tmpVar + " = ");
this->writeExpression(*arguments[1], kSequence_Precedence);
this->write(", " + tmpVar + ".xy / " + tmpVar + ".z))");
} else {
SkASSERT(arg1Type == *fContext.fTypes.fFloat2);
this->writeExpression(*arguments[1], kSequence_Precedence);
this->write(")");
}
break;
}
case kMod_IntrinsicKind: {
// fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y)
String tmpX = this->getTempVariable(arguments[0]->type());
String tmpY = this->getTempVariable(arguments[1]->type());
this->write("(" + tmpX + " = ");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(", " + tmpY + " = ");
this->writeExpression(*arguments[1], kSequence_Precedence);
this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))");
break;
}
// GLSL declares scalar versions of most geometric intrinsics, but these don't exist in MSL
case kDistance_IntrinsicKind: {
if (arguments[0]->type().columns() == 1) {
this->write("abs(");
this->writeExpression(*arguments[0], kAdditive_Precedence);
this->write(" - ");
this->writeExpression(*arguments[1], kAdditive_Precedence);
this->write(")");
} else {
this->writeSimpleIntrinsic(c);
}
break;
}
case kDot_IntrinsicKind: {
if (arguments[0]->type().columns() == 1) {
this->write("(");
this->writeExpression(*arguments[0], kMultiplicative_Precedence);
this->write(" * ");
this->writeExpression(*arguments[1], kMultiplicative_Precedence);
this->write(")");
} else {
this->writeSimpleIntrinsic(c);
}
break;
}
case kFaceforward_IntrinsicKind: {
if (arguments[0]->type().columns() == 1) {
// ((((Nref) * (I) < 0) ? 1 : -1) * (N))
this->write("((((");
this->writeExpression(*arguments[2], kSequence_Precedence);
this->write(") * (");
this->writeExpression(*arguments[1], kSequence_Precedence);
this->write(") < 0) ? 1 : -1) * (");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write("))");
} else {
this->writeSimpleIntrinsic(c);
}
break;
}
case kLength_IntrinsicKind: {
this->write(arguments[0]->type().columns() == 1 ? "abs(" : "length(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(")");
break;
}
case kNormalize_IntrinsicKind: {
this->write(arguments[0]->type().columns() == 1 ? "sign(" : "normalize(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(")");
break;
}
case kBitcast_IntrinsicKind: {
this->write(this->getBitcastIntrinsic(c.type()));
this->write("(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(")");
break;
}
case kDegrees_IntrinsicKind: {
this->write("((");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(") * 57.2957795)");
break;
}
case kRadians_IntrinsicKind: {
this->write("((");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(") * 0.0174532925)");
break;
}
case kDFdx_IntrinsicKind: {
this->write("dfdx");
this->writeArgumentList(c.arguments());
break;
}
case kDFdy_IntrinsicKind: {
// Flipping Y also negates the Y derivatives.
if (fProgram.fSettings.fFlipY) {
this->write("-");
}
this->write("dfdy");
this->writeArgumentList(c.arguments());
break;
}
case kInverse_IntrinsicKind: {
this->write(this->getInversePolyfill(arguments));
this->writeArgumentList(c.arguments());
break;
}
case kInversesqrt_IntrinsicKind: {
this->write("rsqrt");
this->writeArgumentList(c.arguments());
break;
}
case kAtan_IntrinsicKind: {
this->write(c.arguments().size() == 2 ? "atan2" : "atan");
this->writeArgumentList(c.arguments());
break;
}
case kReflect_IntrinsicKind: {
if (arguments[0]->type().columns() == 1) {
// We need to synthesize `I - 2 * N * I * N`.
String tmpI = this->getTempVariable(arguments[0]->type());
String tmpN = this->getTempVariable(arguments[1]->type());
// (_skTempI = ...
this->write("(" + tmpI + " = ");
this->writeExpression(*arguments[0], kSequence_Precedence);
// , _skTempN = ...
this->write(", " + tmpN + " = ");
this->writeExpression(*arguments[1], kSequence_Precedence);
// , _skTempI - 2 * _skTempN * _skTempI * _skTempN)
this->write(", " + tmpI + " - 2 * " + tmpN + " * " + tmpI + " * " + tmpN + ")");
} else {
this->writeSimpleIntrinsic(c);
}
break;
}
case kRefract_IntrinsicKind: {
if (arguments[0]->type().columns() == 1) {
// Metal does implement refract for vectors; rather than reimplementing refract from
// scratch, we can replace the call with `refract(float2(I,0), float2(N,0), eta).x`.
this->write("(refract(float2(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(", 0), float2(");
this->writeExpression(*arguments[1], kSequence_Precedence);
this->write(", 0), ");
this->writeExpression(*arguments[2], kSequence_Precedence);
this->write(").x)");
} else {
this->writeSimpleIntrinsic(c);
}
break;
}
case kRoundEven_IntrinsicKind: {
this->write("rint");
this->writeArgumentList(c.arguments());
break;
}
case kBitCount_IntrinsicKind: {
this->write("popcount(");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write(")");
break;
}
case kFindLSB_IntrinsicKind: {
// Create a temp variable to store the expression, to avoid double-evaluating it.
String skTemp = this->getTempVariable(arguments[0]->type());
String exprType = this->typeName(arguments[0]->type());
// ctz returns numbits(type) on zero inputs; GLSL documents it as generating -1 instead.
// Use select to detect zero inputs and force a -1 result.
// (_skTemp1 = (.....), select(ctz(_skTemp1), int4(-1), _skTemp1 == int4(0)))
this->write("(");
this->write(skTemp);
this->write(" = (");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write("), select(ctz(");
this->write(skTemp);
this->write("), ");
this->write(exprType);
this->write("(-1), ");
this->write(skTemp);
this->write(" == ");
this->write(exprType);
this->write("(0)))");
break;
}
case kFindMSB_IntrinsicKind: {
// Create a temp variable to store the expression, to avoid double-evaluating it.
String skTemp1 = this->getTempVariable(arguments[0]->type());
String exprType = this->typeName(arguments[0]->type());
// GLSL findMSB is actually quite different from Metal's clz:
// - For signed negative numbers, it returns the first zero bit, not the first one bit!
// - For an empty input (0/~0 depending on sign), findMSB gives -1; clz is numbits(type)
// (_skTemp1 = (.....),
this->write("(");
this->write(skTemp1);
this->write(" = (");
this->writeExpression(*arguments[0], kSequence_Precedence);
this->write("), ");
// Signed input types might be negative; we need another helper variable to negate the
// input (since we can only find one bits, not zero bits).
String skTemp2;
if (arguments[0]->type().isSigned()) {
// ... _skTemp2 = (select(_skTemp1, ~_skTemp1, _skTemp1 < 0)),
skTemp2 = this->getTempVariable(arguments[0]->type());
this->write(skTemp2);
this->write(" = (select(");
this->write(skTemp1);
this->write(", ~");
this->write(skTemp1);
this->write(", ");
this->write(skTemp1);
this->write(" < 0)), ");
} else {
skTemp2 = skTemp1;
}
// ... select(int4(clz(_skTemp2)), int4(-1), _skTemp2 == int4(0)))
this->write("select(");
this->write(this->typeName(c.type()));
this->write("(clz(");
this->write(skTemp2);
this->write(")), ");
this->write(this->typeName(c.type()));
this->write("(-1), ");
this->write(skTemp2);
this->write(" == ");
this->write(exprType);
this->write("(0)))");
break;
}
case kMatrixCompMult_IntrinsicKind: {
this->writeMatrixCompMult();
this->writeSimpleIntrinsic(c);
break;
}
case kCompareEqual_IntrinsicKind:
case kCompareGreaterThan_IntrinsicKind:
case kCompareGreaterThanEqual_IntrinsicKind:
case kCompareLessThan_IntrinsicKind:
case kCompareLessThanEqual_IntrinsicKind:
case kCompareNotEqual_IntrinsicKind: {
this->write("(");
this->writeExpression(*c.arguments()[0], kRelational_Precedence);
switch (kind) {
case kCompareEqual_IntrinsicKind:
this->write(" == ");
break;
case kCompareNotEqual_IntrinsicKind:
this->write(" != ");
break;
case kCompareLessThan_IntrinsicKind:
this->write(" < ");
break;
case kCompareLessThanEqual_IntrinsicKind:
this->write(" <= ");
break;
case kCompareGreaterThan_IntrinsicKind:
this->write(" > ");
break;
case kCompareGreaterThanEqual_IntrinsicKind:
this->write(" >= ");
break;
default:
ABORT("unsupported comparison intrinsic kind");
}
this->writeExpression(*c.arguments()[1], kRelational_Precedence);
this->write(")");
break;
}
default:
ABORT("unsupported intrinsic kind");
}
}
// Assembles a matrix of type floatRxC by resizing another matrix named `x0`.
// Cells that don't exist in the source matrix will be populated with identity-matrix values.
void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int rows, int columns) {
SkASSERT(rows <= 4);
SkASSERT(columns <= 4);
const char* columnSeparator = "";
for (int c = 0; c < columns; ++c) {
fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows);
columnSeparator = "), ";
// Determine how many values to take from the source matrix for this row.
int swizzleLength = 0;
if (c < sourceMatrix.columns()) {
swizzleLength = std::min<>(rows, sourceMatrix.rows());
}
// Emit all the values from the source matrix row.
bool firstItem;
switch (swizzleLength) {
case 0: firstItem = true; break;
case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break;
case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break;
case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break;
case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break;
default: SkUNREACHABLE;
}
// Emit the placeholder identity-matrix cells.
for (int r = swizzleLength; r < rows; ++r) {
fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0");
firstItem = false;
}
}
fExtraFunctions.writeText(")");
}
// Assembles a matrix of type floatRxC by concatenating an arbitrary mix of values, named `x0`,
// `x1`, etc. An error is written if the expression list don't contain exactly R*C scalars.
void MetalCodeGenerator::assembleMatrixFromExpressions(const ExpressionArray& args,
int rows, int columns) {
size_t argIndex = 0;
int argPosition = 0;
const char* columnSeparator = "";
for (int c = 0; c < columns; ++c) {
fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows);
columnSeparator = "), ";
const char* rowSeparator = "";
for (int r = 0; r < rows; ++r) {
fExtraFunctions.writeText(rowSeparator);
rowSeparator = ", ";
if (argIndex < args.size()) {
const Type& argType = args[argIndex]->type();
switch (argType.typeKind()) {
case Type::TypeKind::kScalar: {
fExtraFunctions.printf("x%zu", argIndex);
break;
}
case Type::TypeKind::kVector: {
fExtraFunctions.printf("x%zu[%d]", argIndex, argPosition);
break;
}
case Type::TypeKind::kMatrix: {
fExtraFunctions.printf("x%zu[%d][%d]", argIndex,
argPosition / argType.rows(),
argPosition % argType.rows());
break;
}
default: {
SkDEBUGFAIL("incorrect type of argument for matrix constructor");
fExtraFunctions.writeText("<error>");
break;
}
}
++argPosition;
if (argPosition >= argType.columns() * argType.rows()) {
++argIndex;
argPosition = 0;
}
} else {
SkDEBUGFAIL("not enough arguments for matrix constructor");
fExtraFunctions.writeText("<error>");
}
}
}
if (argPosition != 0 || argIndex != args.size()) {
SkDEBUGFAIL("incorrect number of arguments for matrix constructor");
fExtraFunctions.writeText(", <error>");
}
fExtraFunctions.writeText(")");
}
// Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape.
// Keeps track of previously generated constructors so that we won't generate more than one
// constructor for any given permutation of input argument types. Returns the name of the
// generated constructor method.
String MetalCodeGenerator::getMatrixConstructHelper(const Constructor& c) {
const Type& matrix = c.type();
int columns = matrix.columns();
int rows = matrix.rows();
const ExpressionArray& args = c.arguments();
// Create the helper-method name and use it as our lookup key.
String name;
name.appendf("float%dx%d_from", columns, rows);
for (const std::unique_ptr<Expression>& expr : args) {
name.appendf("_%s", this->typeName(expr->type()).c_str());
}
// If a helper-method has already been synthesized, we don't need to synthesize it again.
auto [iter, newlyCreated] = fHelpers.insert(name);
if (!newlyCreated) {
return name;
}
// Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C
// components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot
// supply a mixture of scalars and vectors.)
fExtraFunctions.printf("float%dx%d %s(", columns, rows, name.c_str());
size_t argIndex = 0;
const char* argSeparator = "";
for (const std::unique_ptr<Expression>& expr : args) {
fExtraFunctions.printf("%s%s x%zu", argSeparator,
this->typeName(expr->type()).c_str(), argIndex++);
argSeparator = ", ";
}
fExtraFunctions.printf(") {\n return float%dx%d(", columns, rows);
if (args.size() == 1 && args.front()->type().isMatrix()) {
this->assembleMatrixFromMatrix(args.front()->type(), rows, columns);
} else {
this->assembleMatrixFromExpressions(args, rows, columns);
}
fExtraFunctions.writeText(");\n}\n");
return name;
}
bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) {
if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) {
return false;
}
if (t1.columns() > 1) {
return this->canCoerce(t1.componentType(), t2.componentType());
}
return t1.isFloat() && t2.isFloat();
}
bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const Constructor& c) {
// A matrix construct helper is only necessary if we are, in fact, constructing a matrix.
if (!c.type().isMatrix()) {
return false;
}
// GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it
// expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C
// scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of
// scalars can be constructed trivially. In more complex cases, we generate a helper function
// that converts our inputs into a properly-shaped matrix.
// A matrix construct helper method is always used if any input argument is a matrix.
// Helper methods are also necessary when any argument would span multiple rows. For instance:
//
// float2 x = (1, 2);
// float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline
// | 2 4 6 |
//
// float2 x = (2, 3);
// float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used
// | 2 4 6 |
//
// float4 x = (1, 2, 3, 4);
// float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used
// | 2 4 |
//
int position = 0;
for (const std::unique_ptr<Expression>& expr : c.arguments()) {
// If an input argument is a matrix, we need a helper function.
if (expr->type().isMatrix()) {
return true;
}
position += expr->type().columns();
if (position > c.type().rows()) {
// An input argument would span multiple rows; a helper function is required.
return true;
}
if (position == c.type().rows()) {
// We've advanced to the end of a row. Wrap to the start of the next row.
position = 0;
}
}
return false;
}
void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
const Type& constructorType = c.type();
// Handle special cases for single-argument constructors.
if (c.arguments().size() == 1) {
// If the type is coercible, emit it directly.
const Expression& arg = *c.arguments().front();
const Type& argType = arg.type();
if (this->canCoerce(constructorType, argType)) {
this->writeExpression(arg, parentPrecedence);
return;
}
// Metal supports creating matrices with a scalar on the diagonal via the single-argument
// matrix constructor.
if (constructorType.isMatrix() && argType.isNumber()) {
const Type& matrix = constructorType;
this->write("float");
this->write(to_string(matrix.columns()));
this->write("x");
this->write(to_string(matrix.rows()));
this->write("(");
this->writeExpression(arg, parentPrecedence);
this->write(")");
return;
}
}
// Emit and invoke a matrix-constructor helper method if one is necessary.
if (this->matrixConstructHelperIsNeeded(c)) {
this->write(this->getMatrixConstructHelper(c));
this->write("(");
const char* separator = "";
for (const std::unique_ptr<Expression>& expr : c.arguments()) {
this->write(separator);
separator = ", ";
this->writeExpression(*expr, kSequence_Precedence);
}
this->write(")");
return;
}
// Explicitly invoke the constructor, passing in the necessary arguments.
this->writeBaseType(constructorType);
this->disallowArrayTypes(constructorType, c.fOffset);
this->write("(");
const char* separator = "";
int scalarCount = 0;
for (const std::unique_ptr<Expression>& arg : c.arguments()) {
const Type& argType = arg->type();
this->write(separator);
separator = ", ";
if (constructorType.isMatrix() &&
argType.columns() < constructorType.rows()) {
// Merge scalars and smaller vectors together.
if (!scalarCount) {
this->writeBaseType(constructorType.componentType());
this->write(to_string(constructorType.rows()));
this->write("(");
}
scalarCount += argType.columns();
}
this->writeExpression(*arg, kSequence_Precedence);
if (scalarCount && scalarCount == constructorType.rows()) {
this->write(")");
scalarCount = 0;
}
}
this->write(")");
}
void MetalCodeGenerator::writeFragCoord() {
if (fRTHeightName.length()) {
this->write("float4(_fragCoord.x, ");
this->write(fRTHeightName.c_str());
this->write(" - _fragCoord.y, 0.0, _fragCoord.w)");
} else {
this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)");
}
}
void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) {
// When assembling out-param helper functions, we copy variables into local clones with matching
// names. We never want to prepend "_in." or "_globals." when writing these variables since
// we're actually targeting the clones.
if (fIgnoreVariableReferenceModifiers) {
this->writeName(ref.variable()->name());
return;
}
switch (ref.variable()->modifiers().fLayout.fBuiltin) {
case SK_FRAGCOLOR_BUILTIN:
this->write("_out.sk_FragColor");
break;
case SK_FRAGCOORD_BUILTIN:
this->writeFragCoord();
break;
case SK_VERTEXID_BUILTIN:
this->write("sk_VertexID");
break;
case SK_INSTANCEID_BUILTIN:
this->write("sk_InstanceID");
break;
case SK_CLOCKWISE_BUILTIN:
// We'd set the front facing winding in the MTLRenderCommandEncoder to be counter
// clockwise to match Skia convention.
this->write(fProgram.fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)");
break;
default:
const Variable& var = *ref.variable();
if (var.storage() == Variable::Storage::kGlobal) {
if (var.modifiers().fFlags & Modifiers::kIn_Flag) {
this->write("_in.");
} else if (var.modifiers().fFlags & Modifiers::kOut_Flag) {
this->write("_out.");
} else if (var.modifiers().fFlags & Modifiers::kUniform_Flag &&
var.type().typeKind() != Type::TypeKind::kSampler) {
this->write("_uniforms.");
} else {
this->write("_globals.");
}
}
this->writeName(var.name());
}
}
void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) {
this->writeExpression(*expr.base(), kPostfix_Precedence);
this->write("[");
this->writeExpression(*expr.index(), kTopLevel_Precedence);
this->write("]");
}
void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) {
const Type::Field* field = &f.base()->type().fields()[f.fieldIndex()];
if (FieldAccess::OwnerKind::kDefault == f.ownerKind()) {
this->writeExpression(*f.base(), kPostfix_Precedence);
this->write(".");
}
switch (field->fModifiers.fLayout.fBuiltin) {
case SK_POSITION_BUILTIN:
this->write("_out.sk_Position");
break;
default:
if (field->fName == "sk_PointSize") {
this->write("_out.sk_PointSize");
} else {
if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) {
this->write("_globals.");
this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]);
this->write("->");
}
this->writeName(field->fName);
}
}
}
void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
this->writeExpression(*swizzle.base(), kPostfix_Precedence);
this->write(".");
for (int c : swizzle.components()) {
SkASSERT(c >= 0 && c <= 3);
this->write(&("x\0y\0z\0w\0"[c * 2]));
}
}
MetalCodeGenerator::Precedence MetalCodeGenerator::GetBinaryPrecedence(Token::Kind op) {
switch (op) {
case Token::Kind::TK_STAR: // fall through
case Token::Kind::TK_SLASH: // fall through
case Token::Kind::TK_PERCENT: return MetalCodeGenerator::kMultiplicative_Precedence;
case Token::Kind::TK_PLUS: // fall through
case Token::Kind::TK_MINUS: return MetalCodeGenerator::kAdditive_Precedence;
case Token::Kind::TK_SHL: // fall through
case Token::Kind::TK_SHR: return MetalCodeGenerator::kShift_Precedence;
case Token::Kind::TK_LT: // fall through
case Token::Kind::TK_GT: // fall through
case Token::Kind::TK_LTEQ: // fall through
case Token::Kind::TK_GTEQ: return MetalCodeGenerator::kRelational_Precedence;
case Token::Kind::TK_EQEQ: // fall through
case Token::Kind::TK_NEQ: return MetalCodeGenerator::kEquality_Precedence;
case Token::Kind::TK_BITWISEAND: return MetalCodeGenerator::kBitwiseAnd_Precedence;
case Token::Kind::TK_BITWISEXOR: return MetalCodeGenerator::kBitwiseXor_Precedence;
case Token::Kind::TK_BITWISEOR: return MetalCodeGenerator::kBitwiseOr_Precedence;
case Token::Kind::TK_LOGICALAND: return MetalCodeGenerator::kLogicalAnd_Precedence;
case Token::Kind::TK_LOGICALXOR: return MetalCodeGenerator::kLogicalXor_Precedence;
case Token::Kind::TK_LOGICALOR: return MetalCodeGenerator::kLogicalOr_Precedence;
case Token::Kind::TK_EQ: // fall through
case Token::Kind::TK_PLUSEQ: // fall through
case Token::Kind::TK_MINUSEQ: // fall through
case Token::Kind::TK_STAREQ: // fall through
case Token::Kind::TK_SLASHEQ: // fall through
case Token::Kind::TK_PERCENTEQ: // fall through
case Token::Kind::TK_SHLEQ: // fall through
case Token::Kind::TK_SHREQ: // fall through
case Token::Kind::TK_BITWISEANDEQ: // fall through
case Token::Kind::TK_BITWISEXOREQ: // fall through
case Token::Kind::TK_BITWISEOREQ: return MetalCodeGenerator::kAssignment_Precedence;
case Token::Kind::TK_COMMA: return MetalCodeGenerator::kSequence_Precedence;
default: ABORT("unsupported binary operator");
}
}
void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right,
const Type& result) {
String key = "TimesEqual" + this->typeName(left) + this->typeName(right);
if (fHelpers.find(key) == fHelpers.end()) {
fExtraFunctions.printf("thread %s& operator*=(thread %s& left, thread const %s& right) {\n"
" left = left * right;\n"
" return left;\n"
"}\n",
this->typeName(result).c_str(), this->typeName(left).c_str(),
this->typeName(right).c_str());
}
}
void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
Precedence parentPrecedence) {
const Expression& left = *b.left();
const Expression& right = *b.right();
const Type& leftType = left.type();
const Type& rightType = right.type();
Token::Kind op = b.getOperator();
Precedence precedence = GetBinaryPrecedence(b.getOperator());
bool needParens = precedence >= parentPrecedence;
switch (op) {
case Token::Kind::TK_EQEQ:
if (leftType.isVector()) {
this->write("all");
needParens = true;
}
break;
case Token::Kind::TK_NEQ:
if (leftType.isVector()) {
this->write("any");
needParens = true;
}
break;
default:
break;
}
if (needParens) {
this->write("(");
}
if (op == Token::Kind::TK_STAREQ && leftType.isMatrix() && rightType.isMatrix()) {
this->writeMatrixTimesEqualHelper(leftType, rightType, b.type());
}
this->writeExpression(left, precedence);
if (op != Token::Kind::TK_EQ && Compiler::IsAssignment(op) &&
left.kind() == Expression::Kind::kSwizzle && !left.hasSideEffects()) {
// This doesn't compile in Metal:
// float4 x = float4(1);
// x.xy *= float2x2(...);
// with the error message "non-const reference cannot bind to vector element",
// but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation
// as long as the LHS has no side effects, and hope for the best otherwise.
this->write(" = ");
this->writeExpression(left, kAssignment_Precedence);
this->write(" ");
String opName = OperatorName(op);
SkASSERT(opName.endsWith("="));
this->write(opName.substr(0, opName.size() - 1).c_str());
this->write(" ");
} else {
this->write(String(" ") + OperatorName(op) + " ");
}
this->writeExpression(right, precedence);
if (needParens) {
this->write(")");
}
}
void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t,
Precedence parentPrecedence) {
if (kTernary_Precedence >= parentPrecedence) {
this->write("(");
}
this->writeExpression(*t.test(), kTernary_Precedence);
this->write(" ? ");
this->writeExpression(*t.ifTrue(), kTernary_Precedence);
this->write(" : ");
this->writeExpression(*t.ifFalse(), kTernary_Precedence);
if (kTernary_Precedence >= parentPrecedence) {
this->write(")");
}
}
void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p,
Precedence parentPrecedence) {
if (kPrefix_Precedence >= parentPrecedence) {
this->write("(");
}
this->write(OperatorName(p.getOperator()));
this->writeExpression(*p.operand(), kPrefix_Precedence);
if (kPrefix_Precedence >= parentPrecedence) {
this->write(")");
}
}
void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p,
Precedence parentPrecedence) {
if (kPostfix_Precedence >= parentPrecedence) {
this->write("(");
}
this->writeExpression(*p.operand(), kPostfix_Precedence);
this->write(OperatorName(p.getOperator()));
if (kPostfix_Precedence >= parentPrecedence) {
this->write(")");
}
}
void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
this->write(b.value() ? "true" : "false");
}
void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) {
const Type& type = i.type();
if (type == *fContext.fTypes.fUInt) {
this->write(to_string(i.value() & 0xffffffff) + "u");
} else if (type == *fContext.fTypes.fUShort) {
this->write(to_string(i.value() & 0xffff) + "u");
} else if (type == *fContext.fTypes.fUByte) {
this->write(to_string(i.value() & 0xff) + "u");
} else {
this->write(to_string(i.value()));
}
}
void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
this->write(to_string(f.value()));
}
void MetalCodeGenerator::writeSetting(const Setting& s) {
ABORT("internal error; setting was not folded to a constant during compilation\n");
}
void MetalCodeGenerator::writeFunctionRequirementArgs(const FunctionDeclaration& f,
const char*& separator) {
Requirements requirements = this->requirements(f);
if (requirements & kInputs_Requirement) {
this->write(separator);
this->write("_in");
separator = ", ";
}
if (requirements & kOutputs_Requirement) {
this->write(separator);
this->write("_out");
separator = ", ";
}
if (requirements & kUniforms_Requirement) {
this->write(separator);
this->write("_uniforms");
separator = ", ";
}
if (requirements & kGlobals_Requirement) {
this->write(separator);
this->write("_globals");
separator = ", ";
}
if (requirements & kFragCoord_Requirement) {
this->write(separator);
this->write("_fragCoord");
separator = ", ";
}
}
void MetalCodeGenerator::writeFunctionRequirementParams(const FunctionDeclaration& f,
const char*& separator) {
Requirements requirements = this->requirements(f);
if (requirements & kInputs_Requirement) {
this->write(separator);
this->write("Inputs _in");
separator = ", ";
}
if (requirements & kOutputs_Requirement) {
this->write(separator);
this->write("thread Outputs& _out");
separator = ", ";
}
if (requirements & kUniforms_Requirement) {
this->write(separator);
this->write("Uniforms _uniforms");
separator = ", ";
}
if (requirements & kGlobals_Requirement) {
this->write(separator);
this->write("thread Globals& _globals");
separator = ", ";
}
if (requirements & kFragCoord_Requirement) {
this->write(separator);
this->write("float4 _fragCoord");
separator = ", ";
}
}
bool MetalCodeGenerator::writeFunctionDeclaration(const FunctionDeclaration& f) {
fRTHeightName = fProgram.fInputs.fRTHeight ? "_globals._anonInterface0->u_skRTHeight" : "";
const char* separator = "";
if ("main" == f.name()) {
switch (fProgram.fKind) {
case Program::kFragment_Kind:
this->write("fragment Outputs fragmentMain");
break;
case Program::kVertex_Kind:
this->write("vertex Outputs vertexMain");
break;
default:
fErrors.error(-1, "unsupported kind of program");
return false;
}
this->write("(Inputs _in [[stage_in]]");
if (-1 != fUniformBuffer) {
this->write(", constant Uniforms& _uniforms [[buffer(" +
to_string(fUniformBuffer) + ")]]");
}
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
const VarDeclaration& var = decls.declaration()->as<VarDeclaration>();
if (var.var().type().typeKind() == Type::TypeKind::kSampler) {
if (var.var().modifiers().fLayout.fBinding < 0) {
fErrors.error(decls.fOffset,
"Metal samplers must have 'layout(binding=...)'");
return false;
}
if (var.var().type().dimensions() != SpvDim2D) {
// Not yet implemented--Skia currently only uses 2D textures.
fErrors.error(decls.fOffset, "Unsupported texture dimensions");
return false;
}
this->write(", texture2d<float> ");
this->writeName(var.var().name());
this->write("[[texture(");
this->write(to_string(var.var().modifiers().fLayout.fBinding));
this->write(")]]");
this->write(", sampler ");
this->writeName(var.var().name());
this->write(SAMPLER_SUFFIX);
this->write("[[sampler(");
this->write(to_string(var.var().modifiers().fLayout.fBinding));
this->write(")]]");
}
} else if (e->is<InterfaceBlock>()) {
const InterfaceBlock& intf = e->as<InterfaceBlock>();
if (intf.typeName() == "sk_PerVertex") {
continue;
}
if (intf.variable().modifiers().fLayout.fBinding < 0) {
fErrors.error(intf.fOffset,
"Metal interface blocks must have 'layout(binding=...)'");
return false;
}
this->write(", constant ");
this->writeBaseType(intf.variable().type());
this->write("& " );
this->write(fInterfaceBlockNameMap[&intf]);
this->write(" [[buffer(");
this->write(to_string(intf.variable().modifiers().fLayout.fBinding));
this->write(")]]");
}
}
if (fProgram.fKind == Program::kFragment_Kind) {
if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) {
this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]");
fRTHeightName = "_anonInterface0.u_skRTHeight";
}
this->write(", bool _frontFacing [[front_facing]]");
this->write(", float4 _fragCoord [[position]]");
} else if (fProgram.fKind == Program::kVertex_Kind) {
this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]");
}
separator = ", ";
} else {
this->writeBaseType(f.returnType());
this->disallowArrayTypes(f.returnType(), f.fOffset);
this->write(" ");
this->writeName(f.name());
this->write("(");
this->writeFunctionRequirementParams(f, separator);
}
for (const auto& param : f.parameters()) {
this->write(separator);
separator = ", ";
this->writeModifiers(param->modifiers(), /*globalContext=*/false);
const Type* type = &param->type();
this->writeBaseType(*type);
if (param->modifiers().fFlags & Modifiers::kOut_Flag) {
this->write("&");
}
this->write(" ");
this->writeName(param->name());
this->writeArrayDimensions(*type);
}
this->write(")");
return true;
}
void MetalCodeGenerator::writeFunctionPrototype(const FunctionPrototype& f) {
this->writeFunctionDeclaration(f.declaration());
this->writeLine(";");
}
static bool is_block_ending_with_return(const Statement* stmt) {
// This function detects (potentially nested) blocks that end in a return statement.
if (!stmt->is<Block>()) {
return false;
}
const StatementArray& block = stmt->as<Block>().children();
for (int index = block.count(); index--; ) {
const Statement& stmt = *block[index];
if (stmt.is<ReturnStatement>()) {
return true;
}
if (stmt.is<Block>()) {
return is_block_ending_with_return(&stmt);
}
if (!stmt.is<Nop>()) {
break;
}
}
return false;
}
void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) {
SkASSERT(!fProgram.fSettings.fFragColorIsInOut);
if (!this->writeFunctionDeclaration(f.declaration())) {
return;
}
fCurrentFunction = &f.declaration();
SkScopeExit clearCurrentFunction([&] { fCurrentFunction = nullptr; });
this->writeLine(" {");
if (f.declaration().name() == "main") {
this->writeGlobalInit();
this->writeLine(" Outputs _out;");
this->writeLine(" (void)_out;");
}
fFunctionHeader = "";
StringStream buffer;
{
AutoOutputStream outputToBuffer(this, &buffer);
fIndentation++;
for (const std::unique_ptr<Statement>& stmt : f.body()->as<Block>().children()) {
if (!stmt->isEmpty()) {
this->writeStatement(*stmt);
this->writeLine();
}
}
if (f.declaration().name() == "main") {
// If the main function doesn't end with a return, we need to synthesize one here.
if (!is_block_ending_with_return(f.body().get())) {
this->writeReturnStatementFromMain();
this->writeLine("");
}
}
fIndentation--;
this->writeLine("}");
}
this->write(fFunctionHeader);
this->write(buffer.str());
}
void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers,
bool globalContext) {
if (modifiers.fFlags & Modifiers::kOut_Flag) {
this->write("thread ");
}
if (modifiers.fFlags & Modifiers::kConst_Flag) {
this->write("constant ");
}
}
void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
if ("sk_PerVertex" == intf.typeName()) {
return;
}
this->writeModifiers(intf.variable().modifiers(), /*globalContext=*/true);
this->write("struct ");
this->writeLine(intf.typeName() + " {");
const Type* structType = &intf.variable().type();
if (structType->isArray()) {
structType = &structType->componentType();
}
fWrittenStructs.push_back(structType);
fIndentation++;
this->writeFields(structType->fields(), structType->fOffset, &intf);
if (fProgram.fInputs.fRTHeight) {
this->writeLine("float u_skRTHeight;");
}
fIndentation--;
this->write("}");
if (intf.instanceName().size()) {
this->write(" ");
this->write(intf.instanceName());
if (intf.arraySize() > 0) {
this->write("[");
this->write(to_string(intf.arraySize()));
this->write("]");
} else if (intf.arraySize() == Type::kUnsizedArray){
this->write("[]");
}
fInterfaceBlockNameMap[&intf] = intf.instanceName();
} else {
fInterfaceBlockNameMap[&intf] = "_anonInterface" + to_string(fAnonInterfaceCount++);
}
this->writeLine(";");
}
void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, int parentOffset,
const InterfaceBlock* parentIntf) {
MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard);
int currentOffset = 0;
for (const auto& field: fields) {
int fieldOffset = field.fModifiers.fLayout.fOffset;
const Type* fieldType = field.fType;
if (!MemoryLayout::LayoutIsSupported(*fieldType)) {
fErrors.error(parentOffset, "type '" + fieldType->name() + "' is not permitted here");
return;
}
if (fieldOffset != -1) {
if (currentOffset > fieldOffset) {
fErrors.error(parentOffset,
"offset of field '" + field.fName + "' must be at least " +
to_string((int) currentOffset));
return;
} else if (currentOffset < fieldOffset) {
this->write("char pad");
this->write(to_string(fPaddingCount++));
this->write("[");
this->write(to_string(fieldOffset - currentOffset));
this->writeLine("];");
currentOffset = fieldOffset;
}
int alignment = memoryLayout.alignment(*fieldType);
if (fieldOffset % alignment) {
fErrors.error(parentOffset,
"offset of field '" + field.fName + "' must be a multiple of " +
to_string((int) alignment));
return;
}
}
size_t fieldSize = memoryLayout.size(*fieldType);
if (fieldSize > static_cast<size_t>(std::numeric_limits<int>::max() - currentOffset)) {
fErrors.error(parentOffset, "field offset overflow");
return;
}
currentOffset += fieldSize;
this->writeModifiers(field.fModifiers, /*globalContext=*/false);
this->writeBaseType(*fieldType);
this->write(" ");
this->writeName(field.fName);
this->writeArrayDimensions(*fieldType);
this->writeLine(";");
if (parentIntf) {
fInterfaceBlockMap[&field] = parentIntf;
}
}
}
void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
this->writeExpression(value, kTopLevel_Precedence);
}
void MetalCodeGenerator::writeName(const String& name) {
if (fReservedWords.find(name) != fReservedWords.end()) {
this->write("_"); // adding underscore before name to avoid conflict with reserved words
}
this->write(name);
}
void MetalCodeGenerator::writeVarDeclaration(const VarDeclaration& var, bool global) {
if (global && !(var.var().modifiers().fFlags & Modifiers::kConst_Flag)) {
return;
}
this->writeModifiers(var.var().modifiers(), global);
this->writeBaseType(var.baseType());
this->disallowArrayTypes(var.baseType(), var.fOffset);
this->write(" ");
this->writeName(var.var().name());
if (var.arraySize() > 0) {
this->write("[");
this->write(to_string(var.arraySize()));
this->write("]");
} else if (var.arraySize() == Type::kUnsizedArray){
this->write("[]");
}
if (var.value()) {
this->write(" = ");
this->writeVarInitializer(var.var(), *var.value());
}
this->write(";");
}
void MetalCodeGenerator::writeStatement(const Statement& s) {
switch (s.kind()) {
case Statement::Kind::kBlock:
this->writeBlock(s.as<Block>());
break;
case Statement::Kind::kExpression:
this->writeExpression(*s.as<ExpressionStatement>().expression(), kTopLevel_Precedence);
this->write(";");
break;
case Statement::Kind::kReturn:
this->writeReturnStatement(s.as<ReturnStatement>());
break;
case Statement::Kind::kVarDeclaration:
this->writeVarDeclaration(s.as<VarDeclaration>(), false);
break;
case Statement::Kind::kIf:
this->writeIfStatement(s.as<IfStatement>());
break;
case Statement::Kind::kFor:
this->writeForStatement(s.as<ForStatement>());
break;
case Statement::Kind::kDo:
this->writeDoStatement(s.as<DoStatement>());
break;
case Statement::Kind::kSwitch:
this->writeSwitchStatement(s.as<SwitchStatement>());
break;
case Statement::Kind::kBreak:
this->write("break;");
break;
case Statement::Kind::kContinue:
this->write("continue;");
break;
case Statement::Kind::kDiscard:
this->write("discard_fragment();");
break;
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
this->write(";");
break;
default:
#ifdef SK_DEBUG
ABORT("unsupported statement: %s", s.description().c_str());
#endif
break;
}
}
void MetalCodeGenerator::writeBlock(const Block& b) {
bool isScope = b.isScope();
if (isScope) {
this->writeLine("{");
fIndentation++;
}
for (const std::unique_ptr<Statement>& stmt : b.children()) {
if (!stmt->isEmpty()) {
this->writeStatement(*stmt);
this->writeLine();
}
}
if (isScope) {
fIndentation--;
this->write("}");
}
}
void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) {
this->write("if (");
this->writeExpression(*stmt.test(), kTopLevel_Precedence);
this->write(") ");
this->writeStatement(*stmt.ifTrue());
if (stmt.ifFalse()) {
this->write(" else ");
this->writeStatement(*stmt.ifFalse());
}
}
void MetalCodeGenerator::writeForStatement(const ForStatement& f) {
// Emit loops of the form 'for(;test;)' as 'while(test)', which is probably how they started
if (!f.initializer() && f.test() && !f.next()) {
this->write("while (");
this->writeExpression(*f.test(), kTopLevel_Precedence);
this->write(") ");
this->writeStatement(*f.statement());
return;
}
this->write("for (");
if (f.initializer() && !f.initializer()->isEmpty()) {
this->writeStatement(*f.initializer());
} else {
this->write("; ");
}
if (f.test()) {
this->writeExpression(*f.test(), kTopLevel_Precedence);
}
this->write("; ");
if (f.next()) {
this->writeExpression(*f.next(), kTopLevel_Precedence);
}
this->write(") ");
this->writeStatement(*f.statement());
}
void MetalCodeGenerator::writeDoStatement(const DoStatement& d) {
this->write("do ");
this->writeStatement(*d.statement());
this->write(" while (");
this->writeExpression(*d.test(), kTopLevel_Precedence);
this->write(");");
}
void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
this->write("switch (");
this->writeExpression(*s.value(), kTopLevel_Precedence);
this->writeLine(") {");
fIndentation++;
for (const std::unique_ptr<SwitchCase>& c : s.cases()) {
if (c->value()) {
this->write("case ");
this->writeExpression(*c->value(), kTopLevel_Precedence);
this->writeLine(":");
} else {
this->writeLine("default:");
}
fIndentation++;
for (const auto& stmt : c->statements()) {
this->writeStatement(*stmt);
this->writeLine();
}
fIndentation--;
}
fIndentation--;
this->write("}");
}
void MetalCodeGenerator::writeReturnStatementFromMain() {
// main functions in Metal return a magic _out parameter that doesn't exist in SkSL.
switch (fProgram.fKind) {
case Program::kFragment_Kind:
this->write("return _out;");
break;
case Program::kVertex_Kind:
this->write("return (_out.sk_Position.y = -_out.sk_Position.y, _out);");
break;
default:
SkDEBUGFAIL("unsupported kind of program");
}
}
void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
if (fCurrentFunction && fCurrentFunction->name() == "main") {
if (r.expression()) {
if (r.expression()->type() == *fContext.fTypes.fHalf4) {
this->write("_out.sk_FragColor = ");
this->writeExpression(*r.expression(), kTopLevel_Precedence);
this->writeLine(";");
} else {
fErrors.error(r.fOffset, "Metal does not support returning '" +
r.expression()->type().description() + "' from main()");
}
}
this->writeReturnStatementFromMain();
return;
}
this->write("return");
if (r.expression()) {
this->write(" ");
this->writeExpression(*r.expression(), kTopLevel_Precedence);
}
this->write(";");
}
void MetalCodeGenerator::writeHeader() {
this->write("#include <metal_stdlib>\n");
this->write("#include <simd/simd.h>\n");
this->write("using namespace metal;\n");
}
void MetalCodeGenerator::writeUniformStruct() {
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
const Variable& var = decls.declaration()->as<VarDeclaration>().var();
if (var.modifiers().fFlags & Modifiers::kUniform_Flag &&
var.type().typeKind() != Type::TypeKind::kSampler) {
if (-1 == fUniformBuffer) {
this->write("struct Uniforms {\n");
fUniformBuffer = var.modifiers().fLayout.fSet;
if (-1 == fUniformBuffer) {
fErrors.error(decls.fOffset, "Metal uniforms must have 'layout(set=...)'");
}
} else if (var.modifiers().fLayout.fSet != fUniformBuffer) {
if (-1 == fUniformBuffer) {
fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have "
"the same 'layout(set=...)'");
}
}
this->write(" ");
this->writeBaseType(var.type());
this->write(" ");
this->writeName(var.name());
this->writeArrayDimensions(var.type());
this->write(";\n");
}
}
}
if (-1 != fUniformBuffer) {
this->write("};\n");
}
}
void MetalCodeGenerator::writeInputStruct() {
this->write("struct Inputs {\n");
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
const Variable& var = decls.declaration()->as<VarDeclaration>().var();
if (var.modifiers().fFlags & Modifiers::kIn_Flag &&
-1 == var.modifiers().fLayout.fBuiltin) {
this->write(" ");
this->writeBaseType(var.type());
this->write(" ");
this->writeName(var.name());
this->writeArrayDimensions(var.type());
if (-1 != var.modifiers().fLayout.fLocation) {
if (fProgram.fKind == Program::kVertex_Kind) {
this->write(" [[attribute(" +
to_string(var.modifiers().fLayout.fLocation) + ")]]");
} else if (fProgram.fKind == Program::kFragment_Kind) {
this->write(" [[user(locn" +
to_string(var.modifiers().fLayout.fLocation) + ")]]");
}
}
this->write(";\n");
}
}
}
this->write("};\n");
}
void MetalCodeGenerator::writeOutputStruct() {
this->write("struct Outputs {\n");
if (fProgram.fKind == Program::kVertex_Kind) {
this->write(" float4 sk_Position [[position]];\n");
} else if (fProgram.fKind == Program::kFragment_Kind) {
this->write(" float4 sk_FragColor [[color(0)]];\n");
}
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
const Variable& var = decls.declaration()->as<VarDeclaration>().var();
if (var.modifiers().fFlags & Modifiers::kOut_Flag &&
-1 == var.modifiers().fLayout.fBuiltin) {
this->write(" ");
this->writeBaseType(var.type());
this->write(" ");
this->writeName(var.name());
this->writeArrayDimensions(var.type());
int location = var.modifiers().fLayout.fLocation;
if (location < 0) {
fErrors.error(var.fOffset,
"Metal out variables must have 'layout(location=...)'");
} else if (fProgram.fKind == Program::kVertex_Kind) {
this->write(" [[user(locn" + to_string(location) + ")]]");
} else if (fProgram.fKind == Program::kFragment_Kind) {
this->write(" [[color(" + to_string(location) + ")");
int colorIndex = var.modifiers().fLayout.fIndex;
if (colorIndex) {
this->write(", index(" + to_string(colorIndex) + ")");
}
this->write("]]");
}
this->write(";\n");
}
}
}
if (fProgram.fKind == Program::kVertex_Kind) {
this->write(" float sk_PointSize [[point_size]];\n");
}
this->write("};\n");
}
void MetalCodeGenerator::writeInterfaceBlocks() {
bool wroteInterfaceBlock = false;
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<InterfaceBlock>()) {
this->writeInterfaceBlock(e->as<InterfaceBlock>());
wroteInterfaceBlock = true;
}
}
if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) {
this->writeLine("struct sksl_synthetic_uniforms {");
this->writeLine(" float u_skRTHeight;");
this->writeLine("};");
}
}
void MetalCodeGenerator::writeStructDefinitions() {
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<StructDefinition>()) {
if (this->writeStructDefinition(e->as<StructDefinition>().type())) {
this->writeLine(";");
}
} else if (e->is<GlobalVarDeclaration>()) {
// If a global var declaration introduces a struct type, we need to write that type
// here, since globals are all embedded in a sub-struct.
const Type* type = &e->as<GlobalVarDeclaration>().declaration()
->as<VarDeclaration>().baseType();
if (type->isStruct()) {
if (this->writeStructDefinition(*type)) {
this->writeLine(";");
}
}
}
}
}
void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) {
// Visit the interface blocks.
for (const auto& [interfaceType, interfaceName] : fInterfaceBlockNameMap) {
visitor->visitInterfaceBlock(*interfaceType, interfaceName);
}
for (const ProgramElement* element : fProgram.elements()) {
if (!element->is<GlobalVarDeclaration>()) {
continue;
}
const GlobalVarDeclaration& global = element->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
const Variable& var = decl.var();
if ((!var.modifiers().fFlags && -1 == var.modifiers().fLayout.fBuiltin) ||
var.type().typeKind() == Type::TypeKind::kSampler) {
if (var.type().typeKind() == Type::TypeKind::kSampler) {
// Samplers are represented as a "texture/sampler" duo in the global struct.
visitor->visitTexture(var.type(), var.name());
visitor->visitSampler(var.type(), String(var.name()) + SAMPLER_SUFFIX);
} else {
// Visit a regular variable.
visitor->visitVariable(var, decl.value().get());
}
}
}
}
void MetalCodeGenerator::writeGlobalStruct() {
class : public GlobalStructVisitor {
public:
void visitInterfaceBlock(const InterfaceBlock& block, const String& blockName) override {
this->addElement();
fCodeGen->write(" constant ");
fCodeGen->write(block.typeName());
fCodeGen->write("* ");
fCodeGen->writeName(blockName);
fCodeGen->write(";\n");
}
void visitTexture(const Type& type, const String& name) override {
this->addElement();
fCodeGen->write(" ");
fCodeGen->writeBaseType(type);
fCodeGen->write(" ");
fCodeGen->writeName(name);
fCodeGen->writeArrayDimensions(type);
fCodeGen->write(";\n");
}
void visitSampler(const Type&, const String& name) override {
this->addElement();
fCodeGen->write(" sampler ");
fCodeGen->writeName(name);
fCodeGen->write(";\n");
}
void visitVariable(const Variable& var, const Expression* value) override {
this->addElement();
fCodeGen->write(" ");
fCodeGen->writeBaseType(var.type());
fCodeGen->write(" ");
fCodeGen->writeName(var.name());
fCodeGen->writeArrayDimensions(var.type());
fCodeGen->write(";\n");
}
void addElement() {
if (fFirst) {
fCodeGen->write("struct Globals {\n");
fFirst = false;
}
}
void finish() {
if (!fFirst) {
fCodeGen->writeLine("};");
fFirst = true;
}
}
MetalCodeGenerator* fCodeGen = nullptr;
bool fFirst = true;
} visitor;
visitor.fCodeGen = this;
this->visitGlobalStruct(&visitor);
visitor.finish();
}
void MetalCodeGenerator::writeGlobalInit() {
class : public GlobalStructVisitor {
public:
void visitInterfaceBlock(const InterfaceBlock& blockType,
const String& blockName) override {
this->addElement();
fCodeGen->write("&");
fCodeGen->writeName(blockName);
}
void visitTexture(const Type&, const String& name) override {
this->addElement();
fCodeGen->writeName(name);
}
void visitSampler(const Type&, const String& name) override {
this->addElement();
fCodeGen->writeName(name);
}
void visitVariable(const Variable& var, const Expression* value) override {
this->addElement();
if (value) {
fCodeGen->writeVarInitializer(var, *value);
} else {
fCodeGen->write("{}");
}
}
void addElement() {
if (fFirst) {
fCodeGen->write(" Globals _globals{");
fFirst = false;
} else {
fCodeGen->write(", ");
}
}
void finish() {
if (!fFirst) {
fCodeGen->writeLine("};");
fCodeGen->writeLine(" (void)_globals;");
}
}
MetalCodeGenerator* fCodeGen = nullptr;
bool fFirst = true;
} visitor;
visitor.fCodeGen = this;
this->visitGlobalStruct(&visitor);
visitor.finish();
}
void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) {
switch (e.kind()) {
case ProgramElement::Kind::kExtension:
break;
case ProgramElement::Kind::kGlobalVar: {
const GlobalVarDeclaration& global = e.as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
int builtin = decl.var().modifiers().fLayout.fBuiltin;
if (-1 == builtin) {
// normal var
this->writeVarDeclaration(decl, true);
this->writeLine();
} else if (SK_FRAGCOLOR_BUILTIN == builtin) {
// ignore
}
break;
}
case ProgramElement::Kind::kInterfaceBlock:
// handled in writeInterfaceBlocks, do nothing
break;
case ProgramElement::Kind::kStructDefinition:
// Handled in writeStructDefinitions. Do nothing.
break;
case ProgramElement::Kind::kFunction:
this->writeFunction(e.as<FunctionDefinition>());
break;
case ProgramElement::Kind::kFunctionPrototype:
this->writeFunctionPrototype(e.as<FunctionPrototype>());
break;
case ProgramElement::Kind::kModifiers:
this->writeModifiers(e.as<ModifiersDeclaration>().modifiers(),
/*globalContext=*/true);
this->writeLine(";");
break;
case ProgramElement::Kind::kEnum:
break;
default:
#ifdef SK_DEBUG
ABORT("unsupported program element: %s\n", e.description().c_str());
#endif
break;
}
}
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression* e) {
if (!e) {
return kNo_Requirements;
}
switch (e->kind()) {
case Expression::Kind::kFunctionCall: {
const FunctionCall& f = e->as<FunctionCall>();
Requirements result = this->requirements(f.function());
for (const auto& arg : f.arguments()) {
result |= this->requirements(arg.get());
}
return result;
}
case Expression::Kind::kConstructor: {
const Constructor& c = e->as<Constructor>();
Requirements result = kNo_Requirements;
for (const auto& arg : c.arguments()) {
result |= this->requirements(arg.get());
}
return result;
}
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = e->as<FieldAccess>();
if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) {
return kGlobals_Requirement;
}
return this->requirements(f.base().get());
}
case Expression::Kind::kSwizzle:
return this->requirements(e->as<Swizzle>().base().get());
case Expression::Kind::kBinary: {
const BinaryExpression& bin = e->as<BinaryExpression>();
return this->requirements(bin.left().get()) |
this->requirements(bin.right().get());
}
case Expression::Kind::kIndex: {
const IndexExpression& idx = e->as<IndexExpression>();
return this->requirements(idx.base().get()) | this->requirements(idx.index().get());
}
case Expression::Kind::kPrefix:
return this->requirements(e->as<PrefixExpression>().operand().get());
case Expression::Kind::kPostfix:
return this->requirements(e->as<PostfixExpression>().operand().get());
case Expression::Kind::kTernary: {
const TernaryExpression& t = e->as<TernaryExpression>();
return this->requirements(t.test().get()) | this->requirements(t.ifTrue().get()) |
this->requirements(t.ifFalse().get());
}
case Expression::Kind::kVariableReference: {
const VariableReference& v = e->as<VariableReference>();
const Modifiers& modifiers = v.variable()->modifiers();
Requirements result = kNo_Requirements;
if (modifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
result = kGlobals_Requirement | kFragCoord_Requirement;
} else if (Variable::Storage::kGlobal == v.variable()->storage()) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
result = kInputs_Requirement;
} else if (modifiers.fFlags & Modifiers::kOut_Flag) {
result = kOutputs_Requirement;
} else if (modifiers.fFlags & Modifiers::kUniform_Flag &&
v.variable()->type().typeKind() != Type::TypeKind::kSampler) {
result = kUniforms_Requirement;
} else {
result = kGlobals_Requirement;
}
}
return result;
}
default:
return kNo_Requirements;
}
}
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) {
if (!s) {
return kNo_Requirements;
}
switch (s->kind()) {
case Statement::Kind::kBlock: {
Requirements result = kNo_Requirements;
for (const std::unique_ptr<Statement>& child : s->as<Block>().children()) {
result |= this->requirements(child.get());
}
return result;
}
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& var = s->as<VarDeclaration>();
return this->requirements(var.value().get());
}
case Statement::Kind::kExpression:
return this->requirements(s->as<ExpressionStatement>().expression().get());
case Statement::Kind::kReturn: {
const ReturnStatement& r = s->as<ReturnStatement>();
return this->requirements(r.expression().get());
}
case Statement::Kind::kIf: {
const IfStatement& i = s->as<IfStatement>();
return this->requirements(i.test().get()) |
this->requirements(i.ifTrue().get()) |
this->requirements(i.ifFalse().get());
}
case Statement::Kind::kFor: {
const ForStatement& f = s->as<ForStatement>();
return this->requirements(f.initializer().get()) |
this->requirements(f.test().get()) |
this->requirements(f.next().get()) |
this->requirements(f.statement().get());
}
case Statement::Kind::kDo: {
const DoStatement& d = s->as<DoStatement>();
return this->requirements(d.test().get()) |
this->requirements(d.statement().get());
}
case Statement::Kind::kSwitch: {
const SwitchStatement& sw = s->as<SwitchStatement>();
Requirements result = this->requirements(sw.value().get());
for (const std::unique_ptr<SwitchCase>& sc : sw.cases()) {
for (const auto& st : sc->statements()) {
result |= this->requirements(st.get());
}
}
return result;
}
default:
return kNo_Requirements;
}
}
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) {
if (f.isBuiltin()) {
return kNo_Requirements;
}
auto found = fRequirements.find(&f);
if (found == fRequirements.end()) {
fRequirements[&f] = kNo_Requirements;
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<FunctionDefinition>()) {
const FunctionDefinition& def = e->as<FunctionDefinition>();
if (&def.declaration() == &f) {
Requirements reqs = this->requirements(def.body().get());
fRequirements[&f] = reqs;
return reqs;
}
}
}
// We never found a definition for this declared function, but it's legal to prototype a
// function without ever giving a definition, as long as you don't call it.
return kNo_Requirements;
}
return found->second;
}
bool MetalCodeGenerator::generateCode() {
fProgramKind = fProgram.fKind;
StringStream header;
{
AutoOutputStream outputToHeader(this, &header, &fIndentation);
this->writeHeader();
this->writeStructDefinitions();
this->writeUniformStruct();
this->writeInputStruct();
this->writeOutputStruct();
this->writeInterfaceBlocks();
this->writeGlobalStruct();
}
StringStream body;
{
AutoOutputStream outputToBody(this, &body, &fIndentation);
for (const ProgramElement* e : fProgram.elements()) {
this->writeProgramElement(*e);
}
}
write_stringstream(header, *fOut);
write_stringstream(fExtraFunctions, *fOut);
write_stringstream(body, *fOut);
return 0 == fErrors.errorCount();
}
} // namespace SkSL