blob: d3a1865039a1494aa3a80d2704cd3dd1483c21a0 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <cstddef>
#include <cstring>
#include <type_traits>
#include "SkAutoPixmapStorage.h"
#include "GrBackendSurface.h"
#include "GrBackendTextureImageGenerator.h"
#include "GrAHardwareBufferImageGenerator.h"
#include "GrBitmapTextureMaker.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpu.h"
#include "GrImageTextureMaker.h"
#include "GrRenderTargetContext.h"
#include "GrResourceProvider.h"
#include "GrSemaphore.h"
#include "GrTextureAdjuster.h"
#include "GrTexture.h"
#include "GrTextureProxy.h"
#include "effects/GrNonlinearColorSpaceXformEffect.h"
#include "effects/GrYUVEffect.h"
#include "SkCanvas.h"
#include "SkBitmapCache.h"
#include "SkGr.h"
#include "SkImage_Gpu.h"
#include "SkImageCacherator.h"
#include "SkImageInfoPriv.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkReadPixelsRec.h"
SkImage_Gpu::SkImage_Gpu(GrContext* context, uint32_t uniqueID, SkAlphaType at,
sk_sp<GrTextureProxy> proxy,
sk_sp<SkColorSpace> colorSpace, SkBudgeted budgeted)
: INHERITED(proxy->width(), proxy->height(), uniqueID)
, fContext(context)
, fProxy(std::move(proxy))
, fAlphaType(at)
, fBudgeted(budgeted)
, fColorSpace(std::move(colorSpace))
, fAddedRasterVersionToCache(false) {
}
SkImage_Gpu::~SkImage_Gpu() {
if (fAddedRasterVersionToCache.load()) {
SkNotifyBitmapGenIDIsStale(this->uniqueID());
}
}
SkImageInfo SkImage_Gpu::onImageInfo() const {
SkColorType ct;
if (!GrPixelConfigToColorType(fProxy->config(), &ct)) {
ct = kUnknown_SkColorType;
}
return SkImageInfo::Make(fProxy->width(), fProxy->height(), ct, fAlphaType, fColorSpace);
}
bool SkImage_Gpu::getROPixels(SkBitmap* dst, SkColorSpace*, CachingHint chint) const {
// The SkColorSpace parameter "dstColorSpace" is really just a hint about how/where the bitmap
// will be used. The client doesn't expect that we convert to that color space, it's intended
// for codec-backed images, to drive our decoding heuristic. In theory we *could* read directly
// into that color space (to save the client some effort in whatever they're about to do), but
// that would make our use of the bitmap cache incorrect (or much less efficient, assuming we
// rolled the dstColorSpace into the key).
const auto desc = SkBitmapCacheDesc::Make(this);
if (SkBitmapCache::Find(desc, dst)) {
SkASSERT(dst->getGenerationID() == this->uniqueID());
SkASSERT(dst->isImmutable());
SkASSERT(dst->getPixels());
return true;
}
SkBitmapCache::RecPtr rec = nullptr;
SkPixmap pmap;
if (kAllow_CachingHint == chint) {
rec = SkBitmapCache::Alloc(desc, this->onImageInfo(), &pmap);
if (!rec) {
return false;
}
} else {
if (!dst->tryAllocPixels(this->onImageInfo()) || !dst->peekPixels(&pmap)) {
return false;
}
}
sk_sp<GrSurfaceContext> sContext = fContext->contextPriv().makeWrappedSurfaceContext(
fProxy,
fColorSpace);
if (!sContext) {
return false;
}
if (!sContext->readPixels(pmap.info(), pmap.writable_addr(), pmap.rowBytes(), 0, 0)) {
return false;
}
if (rec) {
SkBitmapCache::Add(std::move(rec), dst);
fAddedRasterVersionToCache.store(true);
}
return true;
}
sk_sp<GrTextureProxy> SkImage_Gpu::asTextureProxyRef(GrContext* context,
const GrSamplerState& params,
SkColorSpace* dstColorSpace,
sk_sp<SkColorSpace>* texColorSpace,
SkScalar scaleAdjust[2]) const {
if (context != fContext) {
SkASSERT(0);
return nullptr;
}
if (texColorSpace) {
*texColorSpace = this->fColorSpace;
}
GrTextureAdjuster adjuster(fContext, fProxy, this->alphaType(), this->bounds(),
this->uniqueID(), this->fColorSpace.get());
return adjuster.refTextureProxySafeForParams(params, nullptr, scaleAdjust);
}
static void apply_premul(const SkImageInfo& info, void* pixels, size_t rowBytes) {
switch (info.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
break;
default:
return; // nothing to do
}
// SkColor is not necesarily RGBA or BGRA, but it is one of them on little-endian,
// and in either case, the alpha-byte is always in the same place, so we can safely call
// SkPreMultiplyColor()
//
SkColor* row = (SkColor*)pixels;
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
row[x] = SkPreMultiplyColor(row[x]);
}
}
}
GrBackendObject SkImage_Gpu::onGetTextureHandle(bool flushPendingGrContextIO,
GrSurfaceOrigin* origin) const {
SkASSERT(fProxy);
if (!fProxy->instantiate(fContext->resourceProvider())) {
return 0;
}
GrTexture* texture = fProxy->priv().peekTexture();
if (texture) {
if (flushPendingGrContextIO) {
fContext->contextPriv().prepareSurfaceForExternalIO(fProxy.get());
}
if (origin) {
*origin = fProxy->origin();
}
return texture->getTextureHandle();
}
return 0;
}
GrTexture* SkImage_Gpu::onGetTexture() const {
GrTextureProxy* proxy = this->peekProxy();
if (!proxy) {
return nullptr;
}
if (!proxy->instantiate(fContext->resourceProvider())) {
return nullptr;
}
return proxy->priv().peekTexture();
}
bool SkImage_Gpu::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB,
int srcX, int srcY, CachingHint) const {
if (!SkImageInfoValidConversion(dstInfo, this->onImageInfo())) {
return false;
}
SkReadPixelsRec rec(dstInfo, dstPixels, dstRB, srcX, srcY);
if (!rec.trim(this->width(), this->height())) {
return false;
}
// TODO: this seems to duplicate code in GrTextureContext::onReadPixels and
// GrRenderTargetContext::onReadPixels
uint32_t flags = 0;
if (kUnpremul_SkAlphaType == rec.fInfo.alphaType() && kPremul_SkAlphaType == fAlphaType) {
// let the GPU perform this transformation for us
flags = GrContextPriv::kUnpremul_PixelOpsFlag;
}
// This hack allows us to call makeNonTextureImage on images with arbitrary color spaces.
// Otherwise, we'll be unable to create a render target context.
// TODO: This shouldn't be necessary - we need more robust support for images (and surfaces)
// with arbitrary color spaces. Unfortunately, this is one spot where we go from image to
// surface (rather than the opposite), and our lenient image rules break our (currently) more
// strict surface rules.
sk_sp<SkColorSpace> surfaceColorSpace = fColorSpace;
if (!flags && SkColorSpace::Equals(fColorSpace.get(), dstInfo.colorSpace())) {
surfaceColorSpace = nullptr;
}
sk_sp<GrSurfaceContext> sContext = fContext->contextPriv().makeWrappedSurfaceContext(
fProxy, surfaceColorSpace);
if (!sContext) {
return false;
}
if (!sContext->readPixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY, flags)) {
return false;
}
// do we have to manually fix-up the alpha channel?
// src dst
// unpremul premul fix manually
// premul unpremul done by kUnpremul_PixelOpsFlag
// all other combos need to change.
//
// Should this be handled by Ganesh? todo:?
//
if (kPremul_SkAlphaType == rec.fInfo.alphaType() && kUnpremul_SkAlphaType == fAlphaType) {
apply_premul(rec.fInfo, rec.fPixels, rec.fRowBytes);
}
return true;
}
sk_sp<SkImage> SkImage_Gpu::onMakeSubset(const SkIRect& subset) const {
GrSurfaceDesc desc;
desc.fOrigin = fProxy->origin();
desc.fWidth = subset.width();
desc.fHeight = subset.height();
desc.fConfig = fProxy->config();
sk_sp<GrSurfaceContext> sContext(fContext->contextPriv().makeDeferredSurfaceContext(
desc,
SkBackingFit::kExact,
fBudgeted));
if (!sContext) {
return nullptr;
}
if (!sContext->copy(fProxy.get(), subset, SkIPoint::Make(0, 0))) {
return nullptr;
}
// MDB: this call is okay bc we know 'sContext' was kExact
return sk_make_sp<SkImage_Gpu>(fContext, kNeedNewImageUniqueID,
fAlphaType, sContext->asTextureProxyRef(),
fColorSpace, fBudgeted);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkImage> new_wrapped_texture_common(GrContext* ctx,
const GrBackendTexture& backendTex,
GrSurfaceOrigin origin,
SkAlphaType at, sk_sp<SkColorSpace> colorSpace,
GrWrapOwnership ownership,
SkImage::TextureReleaseProc releaseProc,
SkImage::ReleaseContext releaseCtx) {
if (backendTex.width() <= 0 || backendTex.height() <= 0) {
return nullptr;
}
sk_sp<GrTexture> tex = ctx->resourceProvider()->wrapBackendTexture(backendTex, ownership);
if (!tex) {
return nullptr;
}
if (releaseProc) {
tex->setRelease(releaseProc, releaseCtx);
}
const SkBudgeted budgeted = SkBudgeted::kNo;
sk_sp<GrTextureProxy> proxy(GrSurfaceProxy::MakeWrapped(std::move(tex), origin));
return sk_make_sp<SkImage_Gpu>(ctx, kNeedNewImageUniqueID,
at, std::move(proxy), std::move(colorSpace), budgeted);
}
sk_sp<SkImage> SkImage::MakeFromTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkAlphaType at, sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP, ReleaseContext releaseC) {
return new_wrapped_texture_common(ctx, tex, origin, at, std::move(cs), kBorrow_GrWrapOwnership,
releaseP, releaseC);
}
sk_sp<SkImage> SkImage::MakeFromAdoptedTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkAlphaType at, sk_sp<SkColorSpace> cs) {
return new_wrapped_texture_common(ctx, tex, origin, at, std::move(cs), kAdopt_GrWrapOwnership,
nullptr, nullptr);
}
static GrBackendTexture make_backend_texture_from_handle(GrBackend backend,
int width, int height,
GrPixelConfig config,
GrBackendObject handle) {
switch (backend) {
case kOpenGL_GrBackend: {
const GrGLTextureInfo* glInfo = (const GrGLTextureInfo*)(handle);
return GrBackendTexture(width, height, config, *glInfo);
}
#ifdef SK_VULKAN
case kVulkan_GrBackend: {
const GrVkImageInfo* vkInfo = (const GrVkImageInfo*)(handle);
return GrBackendTexture(width, height, *vkInfo);
}
#endif
case kMock_GrBackend: {
const GrMockTextureInfo* mockInfo = (const GrMockTextureInfo*)(handle);
return GrBackendTexture(width, height, config, *mockInfo);
}
default:
return GrBackendTexture();
}
}
static sk_sp<SkImage> make_from_yuv_textures_copy(GrContext* ctx, SkYUVColorSpace colorSpace,
bool nv12,
const GrBackendObject yuvTextureHandles[],
const SkISize yuvSizes[],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
const SkBudgeted budgeted = SkBudgeted::kYes;
if (yuvSizes[0].fWidth <= 0 || yuvSizes[0].fHeight <= 0 || yuvSizes[1].fWidth <= 0 ||
yuvSizes[1].fHeight <= 0) {
return nullptr;
}
if (!nv12 && (yuvSizes[2].fWidth <= 0 || yuvSizes[2].fHeight <= 0)) {
return nullptr;
}
const GrPixelConfig kConfig = nv12 ? kRGBA_8888_GrPixelConfig : kAlpha_8_GrPixelConfig;
GrBackend backend = ctx->contextPriv().getBackend();
GrBackendTexture yTex = make_backend_texture_from_handle(backend,
yuvSizes[0].fWidth,
yuvSizes[0].fHeight,
kConfig,
yuvTextureHandles[0]);
GrBackendTexture uTex = make_backend_texture_from_handle(backend,
yuvSizes[1].fWidth,
yuvSizes[1].fHeight,
kConfig,
yuvTextureHandles[1]);
sk_sp<GrTextureProxy> yProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, yTex, origin);
sk_sp<GrTextureProxy> uProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, uTex, origin);
sk_sp<GrTextureProxy> vProxy;
if (nv12) {
vProxy = uProxy;
} else {
GrBackendTexture vTex = make_backend_texture_from_handle(backend,
yuvSizes[2].fWidth,
yuvSizes[2].fHeight,
kConfig,
yuvTextureHandles[2]);
vProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, vTex, origin);
}
if (!yProxy || !uProxy || !vProxy) {
return nullptr;
}
const int width = yuvSizes[0].fWidth;
const int height = yuvSizes[0].fHeight;
// Needs to be a render target in order to draw to it for the yuv->rgb conversion.
sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeDeferredRenderTargetContext(
SkBackingFit::kExact,
width, height,
kRGBA_8888_GrPixelConfig,
std::move(imageColorSpace),
0,
origin));
if (!renderTargetContext) {
return nullptr;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
paint.addColorFragmentProcessor(GrYUVEffect::MakeYUVToRGB(yProxy, uProxy, vProxy,
yuvSizes, colorSpace, nv12));
const SkRect rect = SkRect::MakeIWH(width, height);
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), rect);
if (!renderTargetContext->asSurfaceProxy()) {
return nullptr;
}
ctx->contextPriv().flushSurfaceWrites(renderTargetContext->asSurfaceProxy());
// MDB: this call is okay bc we know 'renderTargetContext' was exact
return sk_make_sp<SkImage_Gpu>(ctx, kNeedNewImageUniqueID,
kOpaque_SkAlphaType, renderTargetContext->asTextureProxyRef(),
renderTargetContext->refColorSpace(), budgeted);
}
sk_sp<SkImage> SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace,
const GrBackendObject yuvTextureHandles[3],
const SkISize yuvSizes[3], GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return make_from_yuv_textures_copy(ctx, colorSpace, false, yuvTextureHandles, yuvSizes, origin,
std::move(imageColorSpace));
}
sk_sp<SkImage> SkImage::MakeFromNV12TexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace,
const GrBackendObject yuvTextureHandles[2],
const SkISize yuvSizes[2],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return make_from_yuv_textures_copy(ctx, colorSpace, true, yuvTextureHandles, yuvSizes, origin,
std::move(imageColorSpace));
}
static sk_sp<SkImage> create_image_from_maker(GrContext* context, GrTextureMaker* maker,
SkAlphaType at, uint32_t id,
SkColorSpace* dstColorSpace) {
sk_sp<SkColorSpace> texColorSpace;
sk_sp<GrTextureProxy> proxy(maker->refTextureProxyForParams(
GrSamplerState::ClampNearest(), dstColorSpace, &texColorSpace, nullptr));
if (!proxy) {
return nullptr;
}
return sk_make_sp<SkImage_Gpu>(context, id, at,
std::move(proxy), std::move(texColorSpace), SkBudgeted::kNo);
}
sk_sp<SkImage> SkImage::makeTextureImage(GrContext* context, SkColorSpace* dstColorSpace) const {
if (!context) {
return nullptr;
}
if (GrContext* incumbent = as_IB(this)->context()) {
return incumbent == context ? sk_ref_sp(const_cast<SkImage*>(this)) : nullptr;
}
if (this->isLazyGenerated()) {
GrImageTextureMaker maker(context, this, kDisallow_CachingHint);
return create_image_from_maker(context, &maker, this->alphaType(),
this->uniqueID(), dstColorSpace);
}
if (const SkBitmap* bmp = as_IB(this)->onPeekBitmap()) {
GrBitmapTextureMaker maker(context, *bmp);
return create_image_from_maker(context, &maker, this->alphaType(),
this->uniqueID(), dstColorSpace);
}
return nullptr;
}
sk_sp<SkImage> SkImage::MakeCrossContextFromEncoded(GrContext* context, sk_sp<SkData> encoded,
bool buildMips, SkColorSpace* dstColorSpace) {
sk_sp<SkImage> codecImage = SkImage::MakeFromEncoded(std::move(encoded));
if (!codecImage) {
return nullptr;
}
// Some backends or drivers don't support (safely) moving resources between contexts
if (!context || !context->caps()->crossContextTextureSupport()) {
return codecImage;
}
// Turn the codec image into a GrTextureProxy
GrImageTextureMaker maker(context, codecImage.get(), kDisallow_CachingHint);
sk_sp<SkColorSpace> texColorSpace;
GrSamplerState samplerState(
GrSamplerState::WrapMode::kClamp,
buildMips ? GrSamplerState::Filter::kMipMap : GrSamplerState::Filter::kBilerp);
sk_sp<GrTextureProxy> proxy(
maker.refTextureProxyForParams(samplerState, dstColorSpace, &texColorSpace, nullptr));
if (!proxy) {
return codecImage;
}
if (!proxy->instantiate(context->resourceProvider())) {
return codecImage;
}
sk_sp<GrTexture> texture = sk_ref_sp(proxy->priv().peekTexture());
// Flush any writes or uploads
context->contextPriv().prepareSurfaceForExternalIO(proxy.get());
sk_sp<GrSemaphore> sema = context->getGpu()->prepareTextureForCrossContextUsage(texture.get());
auto gen = GrBackendTextureImageGenerator::Make(std::move(texture), proxy->origin(),
std::move(sema), codecImage->alphaType(),
std::move(texColorSpace));
return SkImage::MakeFromGenerator(std::move(gen));
}
#if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26
sk_sp<SkImage> SkImage::MakeFromAHardwareBuffer(AHardwareBuffer* graphicBuffer, SkAlphaType at,
sk_sp<SkColorSpace> cs) {
auto gen = GrAHardwareBufferImageGenerator::Make(graphicBuffer, at, cs);
return SkImage::MakeFromGenerator(std::move(gen));
}
#endif
sk_sp<SkImage> SkImage::makeNonTextureImage() const {
if (!this->isTextureBacked()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
SkImageInfo info = as_IB(this)->onImageInfo();
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
auto data = SkData::MakeUninitialized(size);
if (!data) {
return nullptr;
}
SkPixmap pm(info, data->writable_data(), rowBytes);
if (!this->readPixels(pm, 0, 0, kDisallow_CachingHint)) {
return nullptr;
}
return MakeRasterData(info, data, rowBytes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace {
struct MipMapLevelData {
void* fPixelData;
size_t fRowBytes;
};
struct DeferredTextureImage {
uint32_t fContextUniqueID;
// Right now, the destination color mode is only considered when generating mipmaps
SkDestinationSurfaceColorMode fColorMode;
// We don't store a SkImageInfo because it contains a ref-counted SkColorSpace.
int fWidth;
int fHeight;
SkColorType fColorType;
SkAlphaType fAlphaType;
void* fColorSpace;
size_t fColorSpaceSize;
int fMipMapLevelCount;
// The fMipMapLevelData array may contain more than 1 element.
// It contains fMipMapLevelCount elements.
// That means this struct's size is not known at compile-time.
MipMapLevelData fMipMapLevelData[1];
};
} // anonymous namespace
static bool should_use_mip_maps(const SkImage::DeferredTextureImageUsageParams & param) {
// There is a bug in the mipmap pre-generation logic in use in getDeferredTextureImageData.
// This can cause runaway memory leaks, so we are disabling this path until we can
// investigate further. crbug.com/669775
return false;
}
namespace {
class DTIBufferFiller
{
public:
explicit DTIBufferFiller(char* bufferAsCharPtr)
: bufferAsCharPtr_(bufferAsCharPtr) {}
void fillMember(const void* source, size_t memberOffset, size_t size) {
memcpy(bufferAsCharPtr_ + memberOffset, source, size);
}
private:
char* bufferAsCharPtr_;
};
}
#define FILL_MEMBER(bufferFiller, member, source) \
bufferFiller.fillMember(source, \
offsetof(DeferredTextureImage, member), \
sizeof(DeferredTextureImage::member));
static bool SupportsColorSpace(SkColorType colorType) {
switch (colorType) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
case kRGBA_F16_SkColorType:
return true;
default:
return false;
}
}
size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy& proxy,
const DeferredTextureImageUsageParams params[],
int paramCnt, void* buffer,
SkColorSpace* dstColorSpace,
SkColorType dstColorType) const {
// Some quick-rejects where is makes no sense to return CPU data
// e.g.
// - texture backed
// - picture backed
//
if (this->isTextureBacked()) {
return 0;
}
if (as_IB(this)->onCanLazyGenerateOnGPU()) {
return 0;
}
bool supportsColorSpace = SupportsColorSpace(dstColorType);
// Quick reject if the caller requests a color space with an unsupported color type.
if (SkToBool(dstColorSpace) && !supportsColorSpace) {
return 0;
}
// Extract relevant min/max values from the params array.
int lowestPreScaleMipLevel = params[0].fPreScaleMipLevel;
SkFilterQuality highestFilterQuality = params[0].fQuality;
bool useMipMaps = should_use_mip_maps(params[0]);
for (int i = 1; i < paramCnt; ++i) {
if (lowestPreScaleMipLevel > params[i].fPreScaleMipLevel)
lowestPreScaleMipLevel = params[i].fPreScaleMipLevel;
if (highestFilterQuality < params[i].fQuality)
highestFilterQuality = params[i].fQuality;
useMipMaps |= should_use_mip_maps(params[i]);
}
const bool fillMode = SkToBool(buffer);
if (fillMode && !SkIsAlign8(reinterpret_cast<intptr_t>(buffer))) {
return 0;
}
// Calculate scaling parameters.
bool isScaled = lowestPreScaleMipLevel != 0;
SkISize scaledSize;
if (isScaled) {
// SkMipMap::ComputeLevelSize takes an index into an SkMipMap. SkMipMaps don't contain the
// base level, so to get an SkMipMap index we must subtract one from the GL MipMap level.
scaledSize = SkMipMap::ComputeLevelSize(this->width(), this->height(),
lowestPreScaleMipLevel - 1);
} else {
scaledSize = SkISize::Make(this->width(), this->height());
}
// We never want to scale at higher than SW medium quality, as SW medium matches GPU high.
SkFilterQuality scaleFilterQuality = highestFilterQuality;
if (scaleFilterQuality > kMedium_SkFilterQuality) {
scaleFilterQuality = kMedium_SkFilterQuality;
}
const int maxTextureSize = proxy.fCaps->maxTextureSize();
if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) {
return 0;
}
SkAutoPixmapStorage pixmap;
SkImageInfo info;
size_t pixelSize = 0;
if (!isScaled && this->peekPixels(&pixmap) && pixmap.info().colorType() == dstColorType) {
info = pixmap.info();
pixelSize = SkAlign8(pixmap.getSafeSize());
if (!dstColorSpace) {
pixmap.setColorSpace(nullptr);
info = info.makeColorSpace(nullptr);
}
} else {
if (!this->isLazyGenerated() && !this->peekPixels(nullptr)) {
return 0;
}
if (SkImageCacherator* cacher = as_IB(this)->peekCacherator()) {
// Generator backed image. Tweak info to trigger correct kind of decode.
SkImageCacherator::CachedFormat cacheFormat = cacher->chooseCacheFormat(
dstColorSpace, proxy.fCaps.get());
info = cacher->buildCacheInfo(cacheFormat).makeWH(scaledSize.width(),
scaledSize.height());
} else {
info = as_IB(this)->onImageInfo().makeWH(scaledSize.width(), scaledSize.height());
if (!dstColorSpace) {
info = info.makeColorSpace(nullptr);
}
}
// Force color type to be the requested type.
info = info.makeColorType(dstColorType);
pixelSize = SkAlign8(SkAutoPixmapStorage::AllocSize(info, nullptr));
if (fillMode) {
// Always decode to N32 and convert to the requested type if necessary.
SkImageInfo decodeInfo = info.makeColorType(kN32_SkColorType);
SkAutoPixmapStorage decodePixmap;
decodePixmap.alloc(decodeInfo);
if (isScaled) {
if (!this->scalePixels(decodePixmap, scaleFilterQuality,
SkImage::kDisallow_CachingHint)) {
return 0;
}
} else {
if (!this->readPixels(decodePixmap, 0, 0, SkImage::kDisallow_CachingHint)) {
return 0;
}
}
if (decodeInfo.colorType() != info.colorType()) {
pixmap.alloc(info);
// Convert and copy the decoded pixmap to the target pixmap.
decodePixmap.readPixels(pixmap.info(), pixmap.writable_addr(), pixmap.rowBytes(), 0,
0);
} else {
pixmap = std::move(decodePixmap);
}
}
}
int mipMapLevelCount = 1;
if (useMipMaps) {
// SkMipMap only deals with the mipmap levels it generates, which does
// not include the base level.
// That means it generates and holds levels 1-x instead of 0-x.
// So the total mipmap level count is 1 more than what
// SkMipMap::ComputeLevelCount returns.
mipMapLevelCount = SkMipMap::ComputeLevelCount(scaledSize.width(), scaledSize.height()) + 1;
// We already initialized pixelSize to the size of the base level.
// SkMipMap will generate the extra mipmap levels. Their sizes need to
// be added to the total.
// Index 0 here does not refer to the base mipmap level -- it is
// SkMipMap's first generated mipmap level (level 1).
for (int currentMipMapLevelIndex = mipMapLevelCount - 2; currentMipMapLevelIndex >= 0;
currentMipMapLevelIndex--) {
SkISize mipSize = SkMipMap::ComputeLevelSize(scaledSize.width(), scaledSize.height(),
currentMipMapLevelIndex);
SkImageInfo mipInfo = info.makeWH(mipSize.fWidth, mipSize.fHeight);
pixelSize += SkAlign8(SkAutoPixmapStorage::AllocSize(mipInfo, nullptr));
}
}
size_t size = 0;
size_t dtiSize = SkAlign8(sizeof(DeferredTextureImage));
size += dtiSize;
size += (mipMapLevelCount - 1) * sizeof(MipMapLevelData);
// We subtract 1 because DeferredTextureImage already includes the base
// level in its size
size_t pixelOffset = size;
size += pixelSize;
size_t colorSpaceOffset = 0;
size_t colorSpaceSize = 0;
SkColorSpaceTransferFn fn;
if (info.colorSpace()) {
SkASSERT(dstColorSpace);
SkASSERT(supportsColorSpace);
colorSpaceOffset = size;
colorSpaceSize = info.colorSpace()->writeToMemory(nullptr);
size += colorSpaceSize;
} else if (supportsColorSpace && this->colorSpace() && this->colorSpace()->isNumericalTransferFn(&fn)) {
// In legacy mode, preserve the color space tag on the SkImage. This is only
// supported if the color space has a parametric transfer function.
SkASSERT(!dstColorSpace);
colorSpaceOffset = size;
colorSpaceSize = this->colorSpace()->writeToMemory(nullptr);
size += colorSpaceSize;
}
if (!fillMode) {
return size;
}
char* bufferAsCharPtr = reinterpret_cast<char*>(buffer);
char* pixelsAsCharPtr = bufferAsCharPtr + pixelOffset;
void* pixels = pixelsAsCharPtr;
memcpy(reinterpret_cast<void*>(SkAlign8(reinterpret_cast<uintptr_t>(pixelsAsCharPtr))),
pixmap.addr(), pixmap.getSafeSize());
// If the context has sRGB support, and we're intending to render to a surface with an attached
// color space, and the image has an sRGB-like color space attached, then use our gamma (sRGB)
// aware mip-mapping.
SkDestinationSurfaceColorMode colorMode = SkDestinationSurfaceColorMode::kLegacy;
if (proxy.fCaps->srgbSupport() && SkToBool(dstColorSpace) &&
info.colorSpace() && info.colorSpace()->gammaCloseToSRGB()) {
SkASSERT(supportsColorSpace);
colorMode = SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware;
}
SkASSERT(info == pixmap.info());
size_t rowBytes = pixmap.rowBytes();
static_assert(std::is_standard_layout<DeferredTextureImage>::value,
"offsetof, which we use below, requires the type have standard layout");
auto dtiBufferFiller = DTIBufferFiller{bufferAsCharPtr};
FILL_MEMBER(dtiBufferFiller, fColorMode, &colorMode);
FILL_MEMBER(dtiBufferFiller, fContextUniqueID, &proxy.fContextUniqueID);
int width = info.width();
FILL_MEMBER(dtiBufferFiller, fWidth, &width);
int height = info.height();
FILL_MEMBER(dtiBufferFiller, fHeight, &height);
SkColorType colorType = info.colorType();
FILL_MEMBER(dtiBufferFiller, fColorType, &colorType);
SkAlphaType alphaType = info.alphaType();
FILL_MEMBER(dtiBufferFiller, fAlphaType, &alphaType);
FILL_MEMBER(dtiBufferFiller, fMipMapLevelCount, &mipMapLevelCount);
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fPixelData),
&pixels, sizeof(pixels));
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fRowBytes),
&rowBytes, sizeof(rowBytes));
if (colorSpaceSize) {
void* colorSpace = bufferAsCharPtr + colorSpaceOffset;
FILL_MEMBER(dtiBufferFiller, fColorSpace, &colorSpace);
FILL_MEMBER(dtiBufferFiller, fColorSpaceSize, &colorSpaceSize);
if (info.colorSpace()) {
info.colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset);
} else {
SkASSERT(this->colorSpace() && this->colorSpace()->isNumericalTransferFn(&fn));
SkASSERT(!dstColorSpace);
this->colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset);
}
} else {
memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpace),
0, sizeof(DeferredTextureImage::fColorSpace));
memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpaceSize),
0, sizeof(DeferredTextureImage::fColorSpaceSize));
}
// Fill in the mipmap levels if they exist
char* mipLevelPtr = pixelsAsCharPtr + SkAlign8(pixmap.getSafeSize());
if (useMipMaps) {
static_assert(std::is_standard_layout<MipMapLevelData>::value,
"offsetof, which we use below, requires the type have a standard layout");
std::unique_ptr<SkMipMap> mipmaps(SkMipMap::Build(pixmap, colorMode, nullptr));
// SkMipMap holds only the mipmap levels it generates.
// A programmer can use the data they provided to SkMipMap::Build as level 0.
// So the SkMipMap provides levels 1-x but it stores them in its own
// range 0-(x-1).
for (int generatedMipLevelIndex = 0; generatedMipLevelIndex < mipMapLevelCount - 1;
generatedMipLevelIndex++) {
SkMipMap::Level mipLevel;
mipmaps->getLevel(generatedMipLevelIndex, &mipLevel);
// Make sure the mipmap data is after the start of the buffer
SkASSERT(mipLevelPtr > bufferAsCharPtr);
// Make sure the mipmap data starts before the end of the buffer
SkASSERT(mipLevelPtr < bufferAsCharPtr + pixelOffset + pixelSize);
// Make sure the mipmap data ends before the end of the buffer
SkASSERT(mipLevelPtr + mipLevel.fPixmap.getSafeSize() <=
bufferAsCharPtr + pixelOffset + pixelSize);
// getSafeSize includes rowbyte padding except for the last row,
// right?
memcpy(mipLevelPtr, mipLevel.fPixmap.addr(), mipLevel.fPixmap.getSafeSize());
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) +
sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) +
offsetof(MipMapLevelData, fPixelData), &mipLevelPtr, sizeof(void*));
size_t rowBytes = mipLevel.fPixmap.rowBytes();
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) +
sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) +
offsetof(MipMapLevelData, fRowBytes), &rowBytes, sizeof(rowBytes));
mipLevelPtr += SkAlign8(mipLevel.fPixmap.getSafeSize());
}
}
return size;
}
sk_sp<SkImage> SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void* data,
SkBudgeted budgeted) {
if (!data) {
return nullptr;
}
const DeferredTextureImage* dti = reinterpret_cast<const DeferredTextureImage*>(data);
if (!context || context->uniqueID() != dti->fContextUniqueID || context->abandoned()) {
return nullptr;
}
int mipLevelCount = dti->fMipMapLevelCount;
SkASSERT(mipLevelCount >= 1);
sk_sp<SkColorSpace> colorSpace;
if (dti->fColorSpaceSize) {
colorSpace = SkColorSpace::Deserialize(dti->fColorSpace, dti->fColorSpaceSize);
}
SkImageInfo info = SkImageInfo::Make(dti->fWidth, dti->fHeight,
dti->fColorType, dti->fAlphaType, colorSpace);
if (mipLevelCount == 1) {
SkPixmap pixmap;
pixmap.reset(info, dti->fMipMapLevelData[0].fPixelData, dti->fMipMapLevelData[0].fRowBytes);
// Pass nullptr for the |dstColorSpace|. This opts in to more lenient color space
// verification. This is ok because we've already verified the color space in
// getDeferredTextureImageData().
sk_sp<GrTextureProxy> proxy(GrUploadPixmapToTextureProxy(
context->resourceProvider(), pixmap, budgeted, nullptr));
if (!proxy) {
return nullptr;
}
return sk_make_sp<SkImage_Gpu>(context, kNeedNewImageUniqueID, pixmap.alphaType(),
std::move(proxy), std::move(colorSpace), budgeted);
} else {
std::unique_ptr<GrMipLevel[]> texels(new GrMipLevel[mipLevelCount]);
for (int i = 0; i < mipLevelCount; i++) {
texels[i].fPixels = dti->fMipMapLevelData[i].fPixelData;
texels[i].fRowBytes = dti->fMipMapLevelData[i].fRowBytes;
}
return SkImage::MakeTextureFromMipMap(context, info, texels.get(),
mipLevelCount, SkBudgeted::kYes,
dti->fColorMode);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::MakeTextureFromMipMap(GrContext* ctx, const SkImageInfo& info,
const GrMipLevel texels[], int mipLevelCount,
SkBudgeted budgeted,
SkDestinationSurfaceColorMode colorMode) {
SkASSERT(mipLevelCount >= 1);
if (!ctx) {
return nullptr;
}
sk_sp<GrTextureProxy> proxy(GrUploadMipMapToTextureProxy(ctx, info, texels, mipLevelCount,
colorMode));
if (!proxy) {
return nullptr;
}
SkASSERT(proxy->priv().isExact());
return sk_make_sp<SkImage_Gpu>(ctx, kNeedNewImageUniqueID,
info.alphaType(), std::move(proxy),
info.refColorSpace(), budgeted);
}
sk_sp<SkImage> SkImage_Gpu::onMakeColorSpace(sk_sp<SkColorSpace> target, SkColorType,
SkTransferFunctionBehavior premulBehavior) const {
if (SkTransferFunctionBehavior::kRespect == premulBehavior) {
// TODO: Implement this.
return nullptr;
}
sk_sp<SkColorSpace> srcSpace = fColorSpace;
if (!fColorSpace) {
if (target->isSRGB()) {
return sk_ref_sp(const_cast<SkImage*>((SkImage*)this));
}
srcSpace = SkColorSpace::MakeSRGB();
}
auto xform = GrNonlinearColorSpaceXformEffect::Make(srcSpace.get(), target.get());
if (!xform) {
return sk_ref_sp(const_cast<SkImage_Gpu*>(this));
}
sk_sp<GrRenderTargetContext> renderTargetContext(fContext->makeDeferredRenderTargetContext(
SkBackingFit::kExact, this->width(), this->height(), kRGBA_8888_GrPixelConfig, nullptr));
if (!renderTargetContext) {
return nullptr;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
paint.addColorTextureProcessor(fProxy, nullptr, SkMatrix::I());
paint.addColorFragmentProcessor(std::move(xform));
const SkRect rect = SkRect::MakeIWH(this->width(), this->height());
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), rect);
if (!renderTargetContext->asTextureProxy()) {
return nullptr;
}
// MDB: this call is okay bc we know 'renderTargetContext' was exact
return sk_make_sp<SkImage_Gpu>(fContext, kNeedNewImageUniqueID,
fAlphaType, renderTargetContext->asTextureProxyRef(),
std::move(target), fBudgeted);
}
bool SkImage_Gpu::onIsValid(GrContext* context) const {
// The base class has already checked that context isn't abandoned (if it's not nullptr)
if (fContext->abandoned()) {
return false;
}
if (context && context != fContext) {
return false;
}
return true;
}