| #include <cmath> |
| |
| #include "SkBitmap.h" |
| #include "skpdiff_util.h" |
| #include "SkPMetric.h" |
| #include "SkPMetricUtil_generated.h" |
| |
| struct RGB { |
| float r, g, b; |
| }; |
| |
| struct LAB { |
| float l, a, b; |
| }; |
| |
| template<class T> |
| struct Image2D { |
| int width; |
| int height; |
| T* image; |
| |
| Image2D(int w, int h) |
| : width(w), |
| height(h) { |
| SkASSERT(w > 0); |
| SkASSERT(h > 0); |
| image = SkNEW_ARRAY(T, w * h); |
| } |
| |
| ~Image2D() { |
| SkDELETE_ARRAY(image); |
| } |
| |
| void readPixel(int x, int y, T* pixel) const { |
| SkASSERT(x >= 0); |
| SkASSERT(y >= 0); |
| SkASSERT(x < width); |
| SkASSERT(y < height); |
| *pixel = image[y * width + x]; |
| } |
| |
| T* getRow(int y) const { |
| return &image[y * width]; |
| } |
| |
| void writePixel(int x, int y, const T& pixel) { |
| SkASSERT(x >= 0); |
| SkASSERT(y >= 0); |
| SkASSERT(x < width); |
| SkASSERT(y < height); |
| image[y * width + x] = pixel; |
| } |
| }; |
| |
| typedef Image2D<float> ImageL; |
| typedef Image2D<RGB> ImageRGB; |
| typedef Image2D<LAB> ImageLAB; |
| |
| template<class T> |
| struct ImageArray |
| { |
| int slices; |
| Image2D<T>** image; |
| |
| ImageArray(int w, int h, int s) |
| : slices(s) { |
| SkASSERT(s > 0); |
| image = SkNEW_ARRAY(Image2D<T>*, s); |
| for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
| image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h)); |
| } |
| } |
| |
| ~ImageArray() { |
| for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
| SkDELETE(image[sliceIndex]); |
| } |
| SkDELETE_ARRAY(image); |
| } |
| |
| Image2D<T>* getLayer(int z) const { |
| SkASSERT(z >= 0); |
| SkASSERT(z < slices); |
| return image[z]; |
| } |
| }; |
| |
| typedef ImageArray<float> ImageL3D; |
| |
| |
| #define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc |
| |
| static void adobergb_to_cielab(float r, float g, float b, LAB* lab) { |
| // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding" |
| // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf |
| // Section: 4.3.5.3 |
| // See Also: http://en.wikipedia.org/wiki/Adobe_rgb |
| float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f); |
| float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f); |
| float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f); |
| |
| // The following is the white point in XYZ, so it's simply the row wise addition of the above |
| // matrix. |
| const float xw = 0.5767f + 0.185556f + 0.188212f; |
| const float yw = 0.297361f + 0.627355f + 0.0752847f; |
| const float zw = 0.0270328f + 0.0706879f + 0.991248f; |
| |
| // This is the XYZ color point relative to the white point |
| float f[3] = { x / xw, y / yw, z / zw }; |
| |
| // Conversion from XYZ to LAB taken from |
| // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation |
| for (int i = 0; i < 3; i++) { |
| if (f[i] >= 0.008856f) { |
| f[i] = SkPMetricUtil::get_cube_root(f[i]); |
| } else { |
| f[i] = 7.787f * f[i] + 4.0f / 29.0f; |
| } |
| } |
| lab->l = 116.0f * f[1] - 16.0f; |
| lab->a = 500.0f * (f[0] - f[1]); |
| lab->b = 200.0f * (f[1] - f[2]); |
| } |
| |
| /// Converts a 8888 bitmap to LAB color space and puts it into the output |
| static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) { |
| SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config); |
| |
| int width = bitmap->width(); |
| int height = bitmap->height(); |
| SkASSERT(outImageLAB->width == width); |
| SkASSERT(outImageLAB->height == height); |
| |
| bitmap->lockPixels(); |
| RGB rgb; |
| LAB lab; |
| for (int y = 0; y < height; y++) { |
| unsigned char* row = (unsigned char*)bitmap->getAddr(0, y); |
| for (int x = 0; x < width; x++) { |
| // Perform gamma correction which is assumed to be 2.2 |
| rgb.r = SkPMetricUtil::get_gamma(row[x * 4 + 2]); |
| rgb.g = SkPMetricUtil::get_gamma(row[x * 4 + 1]); |
| rgb.b = SkPMetricUtil::get_gamma(row[x * 4 + 0]); |
| adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab); |
| outImageLAB->writePixel(x, y, lab); |
| } |
| } |
| bitmap->unlockPixels(); |
| } |
| |
| // From Barten SPIE 1989 |
| static float contrast_sensitivity(float cyclesPerDegree, float luminance) { |
| float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f); |
| float b = 0.3f * powf(1.0f + 100.0f / luminance, 0.15f); |
| return a * |
| cyclesPerDegree * |
| expf(-b * cyclesPerDegree) * |
| sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree)); |
| } |
| |
| #if 0 |
| // We're keeping these around for reference and in case the lookup tables are no longer desired. |
| // They are no longer called by any code in this file. |
| |
| // From Daly 1993 |
| static float visual_mask(float contrast) { |
| float x = powf(392.498f * contrast, 0.7f); |
| x = powf(0.0153f * x, 4.0f); |
| return powf(1.0f + x, 0.25f); |
| } |
| |
| // From Ward Larson Siggraph 1997 |
| static float threshold_vs_intensity(float adaptationLuminance) { |
| float logLum = log10f(adaptationLuminance); |
| float x; |
| if (logLum < -3.94f) { |
| x = -2.86f; |
| } else if (logLum < -1.44f) { |
| x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f; |
| } else if (logLum < -0.0184f) { |
| x = logLum - 0.395f; |
| } else if (logLum < 1.9f) { |
| x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f; |
| } else { |
| x = logLum - 1.255f; |
| } |
| return powf(10.0f, x); |
| } |
| |
| #endif |
| |
| /// Simply takes the L channel from the input and puts it into the output |
| static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) { |
| for (int y = 0; y < imageLAB->height; y++) { |
| for (int x = 0; x < imageLAB->width; x++) { |
| LAB lab; |
| imageLAB->readPixel(x, y, &lab); |
| outImageL->writePixel(x, y, lab.l); |
| } |
| } |
| } |
| |
| /// Convolves an image with the given filter in one direction and saves it to the output image |
| static void convolve(const ImageL* imageL, bool vertical, ImageL* outImageL) { |
| SkASSERT(imageL->width == outImageL->width); |
| SkASSERT(imageL->height == outImageL->height); |
| |
| const float matrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f }; |
| const int matrixCount = sizeof(matrix) / sizeof(float); |
| const int radius = matrixCount / 2; |
| |
| // Keep track of what rows are being operated on for quick access. |
| float* rowPtrs[matrixCount]; // Because matrixCount is constant, this won't create a VLA |
| for (int y = radius; y < matrixCount; y++) { |
| rowPtrs[y] = imageL->getRow(y - radius); |
| } |
| float* writeRow = outImageL->getRow(0); |
| |
| for (int y = 0; y < imageL->height; y++) { |
| for (int x = 0; x < imageL->width; x++) { |
| float lSum = 0.0f; |
| for (int xx = -radius; xx <= radius; xx++) { |
| int nx = x; |
| int ny = y; |
| |
| // We mirror at edges so that edge pixels that the filter weighting still makes |
| // sense. |
| if (vertical) { |
| ny += xx; |
| if (ny < 0) { |
| ny = -ny; |
| } |
| if (ny >= imageL->height) { |
| ny = imageL->height + (imageL->height - ny - 1); |
| } |
| } else { |
| nx += xx; |
| if (nx < 0) { |
| nx = -nx; |
| } |
| if (nx >= imageL->width) { |
| nx = imageL->width + (imageL->width - nx - 1); |
| } |
| } |
| |
| float weight = matrix[xx + radius]; |
| lSum += rowPtrs[ny - y + radius][nx] * weight; |
| } |
| writeRow[x] = lSum; |
| } |
| // As we move down, scroll the row pointers down with us |
| for (int y = 0; y < matrixCount - 1; y++) |
| { |
| rowPtrs[y] = rowPtrs[y + 1]; |
| } |
| rowPtrs[matrixCount - 1] += imageL->width; |
| writeRow += imageL->width; |
| } |
| } |
| |
| static double pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB, SkTDArray<SkIPoint>* poi) { |
| int width = baselineLAB->width; |
| int height = baselineLAB->height; |
| int maxLevels = 0; |
| |
| // Calculates how many levels to make by how many times the image can be divided in two |
| int smallerDimension = width < height ? width : height; |
| for ( ; smallerDimension > 1; smallerDimension /= 2) { |
| maxLevels++; |
| } |
| |
| const float fov = SK_ScalarPI / 180.0f * 45.0f; |
| float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f); |
| float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / SK_ScalarPI); |
| |
| ImageL3D baselineL(width, height, maxLevels); |
| ImageL3D testL(width, height, maxLevels); |
| ImageL scratchImageL(width, height); |
| float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels); |
| float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2); |
| float* contrast = SkNEW_ARRAY(float, maxLevels - 2); |
| |
| lab_to_l(baselineLAB, baselineL.getLayer(0)); |
| lab_to_l(testLAB, testL.getLayer(0)); |
| |
| // Compute cpd - Cycles per degree on the pyramid |
| cyclesPerDegree[0] = 0.5f * pixelsPerDegree; |
| for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
| cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f; |
| } |
| |
| // Contrast sensitivity is based on image dimensions. Therefore it cannot be statically |
| // generated. |
| float* contrastSensitivityTable = SkNEW_ARRAY(float, maxLevels * 1000); |
| for (int levelIndex = 0; levelIndex < maxLevels; levelIndex++) { |
| for (int csLum = 0; csLum < 1000; csLum++) { |
| contrastSensitivityTable[levelIndex * 1000 + csLum] = |
| contrast_sensitivity(cyclesPerDegree[levelIndex], (float)csLum / 10.0f + 1e-5f); |
| } |
| } |
| |
| // Compute G - The convolved lum for the baseline |
| for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
| convolve(baselineL.getLayer(levelIndex - 1), false, &scratchImageL); |
| convolve(&scratchImageL, true, baselineL.getLayer(levelIndex)); |
| } |
| for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
| convolve(testL.getLayer(levelIndex - 1), false, &scratchImageL); |
| convolve(&scratchImageL, true, testL.getLayer(levelIndex)); |
| } |
| |
| // Compute F_freq - The elevation f |
| for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
| float cpd = cyclesPerDegree[levelIndex]; |
| thresholdFactorFrequency[levelIndex] = contrastSensitivityMax / |
| contrast_sensitivity(cpd, 100.0f); |
| } |
| |
| int failures = 0; |
| // Calculate F |
| for (int y = 0; y < height; y++) { |
| for (int x = 0; x < width; x++) { |
| float lBaseline; |
| float lTest; |
| baselineL.getLayer(0)->readPixel(x, y, &lBaseline); |
| testL.getLayer(0)->readPixel(x, y, &lTest); |
| |
| float avgLBaseline; |
| float avgLTest; |
| baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline); |
| testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest); |
| |
| float lAdapt = 0.5f * (avgLBaseline + avgLTest); |
| if (lAdapt < 1e-5f) { |
| lAdapt = 1e-5f; |
| } |
| |
| float contrastSum = 0.0f; |
| for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
| float baselineL0, baselineL1, baselineL2; |
| float testL0, testL1, testL2; |
| baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0); |
| testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0); |
| baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1); |
| testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1); |
| baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2); |
| testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2); |
| |
| float baselineContrast1 = fabsf(baselineL0 - baselineL1); |
| float testContrast1 = fabsf(testL0 - testL1); |
| float numerator = (baselineContrast1 > testContrast1) ? |
| baselineContrast1 : testContrast1; |
| |
| float baselineContrast2 = fabsf(baselineL2); |
| float testContrast2 = fabsf(testL2); |
| float denominator = (baselineContrast2 > testContrast2) ? |
| baselineContrast2 : testContrast2; |
| |
| // Avoid divides by close to zero |
| if (denominator < 1e-5f) { |
| denominator = 1e-5f; |
| } |
| contrast[levelIndex] = numerator / denominator; |
| contrastSum += contrast[levelIndex]; |
| } |
| |
| if (contrastSum < 1e-5f) { |
| contrastSum = 1e-5f; |
| } |
| |
| float F = 0.0f; |
| for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
| float contrastSensitivity = contrastSensitivityTable[levelIndex * 1000 + |
| (int)(lAdapt * 10.0)]; |
| float mask = SkPMetricUtil::get_visual_mask(contrast[levelIndex] * |
| contrastSensitivity); |
| |
| F += contrast[levelIndex] + |
| thresholdFactorFrequency[levelIndex] * mask / contrastSum; |
| } |
| |
| if (F < 1.0f) { |
| F = 1.0f; |
| } |
| |
| if (F > 10.0f) { |
| F = 10.0f; |
| } |
| |
| |
| bool isFailure = false; |
| if (fabsf(lBaseline - lTest) > F * SkPMetricUtil::get_threshold_vs_intensity(lAdapt)) { |
| isFailure = true; |
| } else { |
| LAB baselineColor; |
| LAB testColor; |
| baselineLAB->readPixel(x, y, &baselineColor); |
| testLAB->readPixel(x, y, &testColor); |
| float contrastA = baselineColor.a - testColor.a; |
| float contrastB = baselineColor.b - testColor.b; |
| float colorScale = 1.0f; |
| if (lAdapt < 10.0f) { |
| colorScale = lAdapt / 10.0f; |
| } |
| colorScale *= colorScale; |
| |
| if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F) |
| { |
| isFailure = true; |
| } |
| } |
| |
| if (isFailure) { |
| failures++; |
| poi->push()->set(x, y); |
| } |
| } |
| } |
| |
| SkDELETE_ARRAY(cyclesPerDegree); |
| SkDELETE_ARRAY(contrast); |
| SkDELETE_ARRAY(thresholdFactorFrequency); |
| SkDELETE_ARRAY(contrastSensitivityTable); |
| return 1.0 - (double)failures / (width * height); |
| } |
| |
| const char* SkPMetric::getName() { |
| return "perceptual"; |
| } |
| |
| int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) { |
| double startTime = get_seconds(); |
| int diffID = fQueuedDiffs.count(); |
| QueuedDiff& diff = fQueuedDiffs.push_back(); |
| diff.result = 0.0; |
| |
| // Ensure the images are comparable |
| if (baseline->width() != test->width() || baseline->height() != test->height() || |
| baseline->width() <= 0 || baseline->height() <= 0) { |
| diff.finished = true; |
| return diffID; |
| } |
| |
| ImageLAB baselineLAB(baseline->width(), baseline->height()); |
| ImageLAB testLAB(baseline->width(), baseline->height()); |
| |
| bitmap_to_cielab(baseline, &baselineLAB); |
| bitmap_to_cielab(test, &testLAB); |
| |
| diff.result = pmetric(&baselineLAB, &testLAB, &diff.poi); |
| |
| SkDebugf("Time: %f\n", (get_seconds() - startTime)); |
| |
| return diffID; |
| } |
| |
| |
| void SkPMetric::deleteDiff(int id) { |
| |
| } |
| |
| bool SkPMetric::isFinished(int id) { |
| return fQueuedDiffs[id].finished; |
| } |
| |
| double SkPMetric::getResult(int id) { |
| return fQueuedDiffs[id].result; |
| } |
| |
| int SkPMetric::getPointsOfInterestCount(int id) { |
| return fQueuedDiffs[id].poi.count(); |
| } |
| |
| SkIPoint* SkPMetric::getPointsOfInterest(int id) { |
| return fQueuedDiffs[id].poi.begin(); |
| } |