blob: 604e9fbda4da01d65bad64925483818e5961d61d [file] [log] [blame]
#include "SkPdfNativeTokenizer.h"
#include "SkPdfObject.h"
#include "SkPdfConfig.h"
#include "SkPdfStreamCommonDictionary_autogen.h"
static unsigned char* skipPdfWhiteSpaces(unsigned char* start, unsigned char* end) {
while (start < end && isPdfWhiteSpace(*start)) {
if (*start == kComment_PdfDelimiter) {
// skip the comment until end of line
while (start < end && !isPdfEOL(*start)) {
*start = '\0';
start++;
}
} else {
*start = '\0';
start++;
}
}
return start;
}
// TODO(edisonn) '(' can be used, will it break the string a delimiter or space inside () ?
static unsigned char* endOfPdfToken(unsigned char* start, unsigned char* end) {
//int opened brackets
//TODO(edisonn): what out for special chars, like \n, \032
SkASSERT(!isPdfWhiteSpace(*start));
if (start < end && isPdfDelimiter(*start)) {
start++;
return start;
}
while (start < end && !isPdfWhiteSpaceOrPdfDelimiter(*start)) {
start++;
}
return start;
}
// last elem has to be ]
static unsigned char* readArray(unsigned char* start, unsigned char* end, SkPdfObject* array, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
while (start < end) {
// skip white spaces
start = skipPdfWhiteSpaces(start, end);
unsigned char* endOfToken = endOfPdfToken(start, end);
if (endOfToken == start) {
// TODO(edisonn): report error in pdf file (end of stream with ] for end of aray
return start;
}
if (endOfToken == start + 1 && *start == kClosedSquareBracket_PdfDelimiter) {
return endOfToken;
}
SkPdfObject* newObj = allocator->allocObject();
start = nextObject(start, end, newObj, allocator, doc);
// TODO(edisonn): perf/memory: put the variables on the stack, and flush them on the array only when
// we are sure they are not references!
if (newObj->isKeywordReference() && array->size() >= 2 && array->objAtAIndex(array->size() - 1)->isInteger() && array->objAtAIndex(array->size() - 2)->isInteger()) {
SkPdfObject* gen = array->removeLastInArray();
SkPdfObject* id = array->removeLastInArray();
newObj->reset();
SkPdfObject::makeReference((unsigned int)id->intValue(), (unsigned int)gen->intValue(), newObj);
}
array->appendInArray(newObj);
}
// TODO(edisonn): report not reached, we should never get here
// TODO(edisonn): there might be a bug here, enable an assert and run it on files
// or it might be that the files were actually corrupted
return start;
}
// When we read strings we will rewrite the string so we will reuse the memory
// when we start to read the string, we already consumed the opened bracket
static unsigned char* readString(unsigned char* start, unsigned char* end, SkPdfObject* str) {
unsigned char* out = start;
unsigned char* in = start;
int openRoundBrackets = 0;
while (in < end && (*in != kClosedRoundBracket_PdfDelimiter || openRoundBrackets > 0)) {
openRoundBrackets += ((*in) == kOpenedRoundBracket_PdfDelimiter);
openRoundBrackets -= ((*in) == kClosedRoundBracket_PdfDelimiter);
if (*in == kEscape_PdfSpecial) {
if (in + 1 < end) {
switch (in[1]) {
case 'n':
*out = kLF_PdfWhiteSpace;
out++;
in += 2;
break;
case 'r':
*out = kCR_PdfWhiteSpace;
out++;
in += 2;
break;
case 't':
*out = kHT_PdfWhiteSpace;
out++;
in += 2;
break;
case 'b':
// TODO(edisonn): any special meaning to backspace?
*out = kBackspace_PdfSpecial;
out++;
in += 2;
break;
case 'f':
*out = kFF_PdfWhiteSpace;
out++;
in += 2;
break;
case kOpenedRoundBracket_PdfDelimiter:
*out = kOpenedRoundBracket_PdfDelimiter;
out++;
in += 2;
break;
case kClosedRoundBracket_PdfDelimiter:
*out = kClosedRoundBracket_PdfDelimiter;
out++;
in += 2;
break;
case kEscape_PdfSpecial:
*out = kEscape_PdfSpecial;
out++;
in += 2;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7': {
//read octals
in++; // consume backslash
int code = 0;
int i = 0;
while (in < end && *in >= '0' && *in < '8') {
code = (code << 3) + ((*in) - '0'); // code * 8 + d
i++;
in++;
if (i == 3) {
*out = code & 0xff;
out++;
i = 0;
}
}
if (i > 0) {
*out = code & 0xff;
out++;
}
}
break;
default:
// Per spec, backslash is ignored is escaped ch is unknown
in++;
break;
}
} else {
in++;
}
} else {
// TODO(edisonn): perf, avoid copy into itself, maybe first do a simple scan until found backslash ?
// we could have one look that first just inc current, and when we find the backslash
// we go to this loop
*in = *out;
in++;
out++;
}
}
SkPdfObject::makeString(start, out, str);
return in + 1; // consume ) at the end of the string
}
static unsigned char* readHexString(unsigned char* start, unsigned char* end, SkPdfObject* str) {
unsigned char* out = start;
unsigned char* in = start;
unsigned char code = 0;
while (in < end) {
while (in < end && isPdfWhiteSpace(*in)) {
in++;
}
if (*in == kClosedInequityBracket_PdfDelimiter) {
*in = '\0';
in++;
// normal exit
break;
}
if (in >= end) {
// end too soon
break;
}
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code = (*in - '0') << 4;
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code = (*in - 'a' + 10) << 4;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code = (*in - 'A' + 10) << 4;
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
in++; // advance
while (in < end && isPdfWhiteSpace(*in)) {
in++;
}
// TODO(edisonn): report error
if (in >= end) {
*out = code;
out++;
break;
}
if (*in == kClosedInequityBracket_PdfDelimiter) {
*out = code;
out++;
break;
}
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code += (*in - '0');
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code += (*in - 'a' + 10);
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code += (*in - 'A' + 10);
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
*out = code;
out++;
in++;
}
if (out < in) {
*out = '\0';
}
SkPdfObject::makeHexString(start, out, str);
return in; // consume > at the end of the string
}
// TODO(edisonn): before PDF 1.2 name could not have special characters, add version parameter
static unsigned char* readName(unsigned char* start, unsigned char* end, SkPdfObject* name) {
unsigned char* out = start;
unsigned char* in = start;
unsigned char code = 0;
while (in < end) {
if (isPdfWhiteSpaceOrPdfDelimiter(*in)) {
break;
}
if (*in == '#' && in + 2 < end) {
in++;
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code = (*in - '0') << 4;
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code = (*in - 'a' + 10) << 4;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code = (*in - 'A' + 10) << 4;
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
in++; // advance
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code += (*in - '0');
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code += (*in - 'a' + 10);
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code += (*in - 'A' + 10);
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
*out = code;
out++;
in++;
} else {
*out = *in;
out++;
in++;
}
}
SkPdfObject::makeName(start, out, name);
return in;
}
// TODO(edisonn): pdf spec let Length to be an indirect object define after the stream
// that makes for an interesting scenario, where the stream itself contains endstream, together
// with a reference object with the length, but the real length object would be somewhere else
// it could confuse the parser
/*example:
7 0 obj
<< /length 8 0 R>>
stream
...............
endstream
8 0 obj #we are in stream actually, not a real object
<< 10 >> #we are in stream actually, not a real object
endobj
endstream
8 0 obj #real obj
<< 100 >> #real obj
endobj
and it could get worse, with multiple object like this
*/
// right now implement the silly algorithm that assumes endstream is finishing the stream
static unsigned char* readStream(unsigned char* start, unsigned char* end, SkPdfObject* dict, SkNativeParsedPDF* doc) {
start = skipPdfWhiteSpaces(start, end);
if (!(start[0] == 's' && start[1] == 't' && start[2] == 'r' && start[3] == 'e' && start[4] == 'a' && start[5] == 'm')) {
// no stream. return.
return start;
}
start += 6; // strlen("stream")
if (start[0] == kCR_PdfWhiteSpace && start[1] == kLF_PdfWhiteSpace) {
start += 2;
} else if (start[0] == kLF_PdfWhiteSpace) {
start += 1;
}
SkPdfStreamCommonDictionary* stream = (SkPdfStreamCommonDictionary*) dict;
// TODO(edisonn): load Length
int64_t length = -1;
// TODO(edisonn): very basic implementation
if (stream->has_Length() && stream->Length(doc) > 0) {
length = stream->Length(doc);
}
// TODO(edisonn): laod external streams
// TODO(edisonn): look at the last filter, to determione how to deal with possible issue
if (length < 0) {
// scan the buffer, until we find first endstream
// TODO(edisonn): all buffers must have a 0 at the end now,
// TODO(edisonn): hack (mark end of content with 0)
unsigned char lastCh = *end;
*end = '\0';
//SkASSERT(*end == '\0');
unsigned char* endstream = (unsigned char*)strstr((const char*)start, "endstream");
*end = lastCh;
if (endstream) {
length = endstream - start;
if (*(endstream-1) == kLF_PdfWhiteSpace) length--;
if (*(endstream-1) == kCR_PdfWhiteSpace) length--;
}
}
if (length >= 0) {
unsigned char* endstream = start + length;
if (endstream[0] == kCR_PdfWhiteSpace && endstream[1] == kLF_PdfWhiteSpace) {
endstream += 2;
} else if (endstream[0] == kLF_PdfWhiteSpace) {
endstream += 1;
}
// TODO(edisonn): verify the next bytes are "endstream"
endstream += strlen("endstream");
// TODO(edisonn): Assert? report error/warning?
dict->addStream(start, (size_t)length);
return endstream;
}
return start;
}
static unsigned char* readDictionary(unsigned char* start, unsigned char* end, SkPdfObject* dict, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
SkPdfObject::makeEmptyDictionary(dict);
start = skipPdfWhiteSpaces(start, end);
while (start < end && *start == kNamed_PdfDelimiter) {
SkPdfObject key;
*start = '\0';
start++;
start = readName(start, end, &key);
start = skipPdfWhiteSpaces(start, end);
if (start < end) {
SkPdfObject* value = allocator->allocObject();
start = nextObject(start, end, value, allocator, doc);
start = skipPdfWhiteSpaces(start, end);
if (start < end) {
// seems we have an indirect reference
if (isPdfDigit(*start)) {
SkPdfObject generation;
start = nextObject(start, end, &generation, allocator, doc);
SkPdfObject keywordR;
start = nextObject(start, end, &keywordR, allocator, doc);
if (value->isInteger() && generation.isInteger() && keywordR.isKeywordReference()) {
int64_t id = value->intValue();
value->reset();
SkPdfObject::makeReference((unsigned int)id, (unsigned int)generation.intValue(), value);
dict->set(&key, value);
} else {
// error, ignore
dict->set(&key, value);
}
} else {
// next elem is not a digit, but it might not be / either!
dict->set(&key, value);
}
} else {
// /key >>
dict->set(&key, value);
return end;
}
start = skipPdfWhiteSpaces(start, end);
} else {
dict->set(&key, &SkPdfObject::kNull);
return end;
}
}
// TODO(edisonn): options to ignore these errors
// now we should expect >>
start = skipPdfWhiteSpaces(start, end);
start = endOfPdfToken(start, end); // >
start = endOfPdfToken(start, end); // >
// TODO(edisonn): read stream ... put dict and stream in a struct, and have a pointer to struct ...
// or alocate 2 objects, and if there is no stream, free it to be used by someone else? or just leave it ?
start = readStream(start, end, dict, doc);
return start;
}
unsigned char* nextObject(unsigned char* start, unsigned char* end, SkPdfObject* token, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
unsigned char* current;
// skip white spaces
start = skipPdfWhiteSpaces(start, end);
current = endOfPdfToken(start, end);
// no token, len would be 0
if (current == start) {
return NULL;
}
int tokenLen = current - start;
if (tokenLen == 1) {
// start array
switch (*start) {
case kOpenedSquareBracket_PdfDelimiter:
*start = '\0';
SkPdfObject::makeEmptyArray(token);
return readArray(current, end, token, allocator, doc);
case kOpenedRoundBracket_PdfDelimiter:
*start = '\0';
return readString(start, end, token);
case kOpenedInequityBracket_PdfDelimiter:
*start = '\0';
if (end > start + 1 && start[1] == kOpenedInequityBracket_PdfDelimiter) {
// TODO(edisonn): pass here the length somehow?
return readDictionary(start + 2, end, token, allocator, doc); // skip <<
} else {
return readHexString(start + 1, end, token); // skip <
}
case kNamed_PdfDelimiter:
*start = '\0';
return readName(start + 1, end, token);
// TODO(edisonn): what to do curly brackets? read spec!
case kOpenedCurlyBracket_PdfDelimiter:
default:
break;
}
SkASSERT(!isPdfWhiteSpace(*start));
if (isPdfDelimiter(*start)) {
// TODO(edisonn): how stream ] } > ) will be handled?
// for now ignore, and it will become a keyword to be ignored
}
}
if (tokenLen == 4 && start[0] == 'n' && start[1] == 'u' && start[2] == 'l' && start[3] == 'l') {
SkPdfObject::makeNull(token);
return current;
}
if (tokenLen == 4 && start[0] == 't' && start[1] == 'r' && start[2] == 'u' && start[3] == 'e') {
SkPdfObject::makeBoolean(true, token);
return current;
}
if (tokenLen == 5 && start[0] == 'f' && start[1] == 'a' && start[2] == 'l' && start[3] == 's' && start[3] == 'e') {
SkPdfObject::makeBoolean(false, token);
return current;
}
if (isPdfNumeric(*start)) {
SkPdfObject::makeNumeric(start, current, token);
} else {
SkPdfObject::makeKeyword(start, current, token);
}
return current;
}
SkPdfObject* SkPdfAllocator::allocBlock() {
return new SkPdfObject[BUFFER_SIZE];
}
SkPdfAllocator::~SkPdfAllocator() {
for (int i = 0 ; i < fHandles.count(); i++) {
free(fHandles[i]);
}
for (int i = 0 ; i < fHistory.count(); i++) {
for (int j = 0 ; j < BUFFER_SIZE; j++) {
fHistory[i][j].reset();
}
delete[] fHistory[i];
}
for (int j = 0 ; j < BUFFER_SIZE; j++) {
fCurrent[j].reset();
}
delete[] fCurrent;
}
SkPdfObject* SkPdfAllocator::allocObject() {
if (fCurrentUsed >= BUFFER_SIZE) {
fHistory.push(fCurrent);
fCurrent = allocBlock();
fCurrentUsed = 0;
}
fCurrentUsed++;
return &fCurrent[fCurrentUsed - 1];
}
// TODO(edisonn): perf: do no copy the buffers, but use them, and mark cache the result, so there is no need of a second pass
SkPdfNativeTokenizer::SkPdfNativeTokenizer(SkPdfObject* objWithStream, const SkPdfMapper* mapper, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) : fDoc(doc), fMapper(mapper), fAllocator(allocator), fUncompressedStream(NULL), fUncompressedStreamEnd(NULL), fEmpty(false), fHasPutBack(false) {
unsigned char* buffer = NULL;
size_t len = 0;
objWithStream->GetFilteredStreamRef(&buffer, &len, fAllocator);
// TODO(edisonn): hack, find end of object
char* endobj = strstr((char*)buffer, "endobj");
if (endobj) {
len = endobj - (char*)buffer + strlen("endobj");
}
fUncompressedStreamStart = fUncompressedStream = (unsigned char*)fAllocator->alloc(len);
fUncompressedStreamEnd = fUncompressedStream + len;
memcpy(fUncompressedStream, buffer, len);
}
SkPdfNativeTokenizer::SkPdfNativeTokenizer(unsigned char* buffer, int len, const SkPdfMapper* mapper, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) : fDoc(doc), fMapper(mapper), fAllocator(allocator), fEmpty(false), fHasPutBack(false) {
// TODO(edisonn): hack, find end of object
char* endobj = strstr((char*)buffer, "endobj");
if (endobj) {
len = endobj - (char*)buffer + strlen("endobj");
}
fUncompressedStreamStart = fUncompressedStream = (unsigned char*)fAllocator->alloc(len);
fUncompressedStreamEnd = fUncompressedStream + len;
memcpy(fUncompressedStream, buffer, len);
}
SkPdfNativeTokenizer::~SkPdfNativeTokenizer() {
}
bool SkPdfNativeTokenizer::readTokenCore(PdfToken* token) {
token->fKeyword = NULL;
token->fObject = NULL;
fUncompressedStream = skipPdfWhiteSpaces(fUncompressedStream, fUncompressedStreamEnd);
if (fUncompressedStream >= fUncompressedStreamEnd) {
return false;
}
SkPdfObject obj;
fUncompressedStream = nextObject(fUncompressedStream, fUncompressedStreamEnd, &obj, fAllocator, fDoc);
// If it is a keyword, we will only get the pointer of the string
if (obj.type() == SkPdfObject::kKeyword_PdfObjectType) {
token->fKeyword = obj.c_str();
token->fKeywordLength = obj.len();
token->fType = kKeyword_TokenType;
} else {
SkPdfObject* pobj = fAllocator->allocObject();
*pobj = obj;
token->fObject = pobj;
token->fType = kObject_TokenType;
}
#ifdef PDF_TRACE
static int read_op = 0;
read_op++;
if (548 == read_op) {
printf("break;\n");
}
printf("%i READ %s %s\n", read_op, token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str());
#endif
return true;
}
void SkPdfNativeTokenizer::PutBack(PdfToken token) {
SkASSERT(!fHasPutBack);
fHasPutBack = true;
fPutBack = token;
#ifdef PDF_TRACE
printf("PUT_BACK %s %s\n", token.fType == kKeyword_TokenType ? "Keyword" : "Object", token.fKeyword ? std::string(token.fKeyword, token.fKeywordLength).c_str(): token.fObject->toString().c_str());
#endif
}
bool SkPdfNativeTokenizer::readToken(PdfToken* token) {
if (fHasPutBack) {
*token = fPutBack;
fHasPutBack = false;
#ifdef PDF_TRACE
printf("READ_BACK %s %s\n", token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str());
#endif
return true;
}
if (fEmpty) {
#ifdef PDF_TRACE
printf("EMPTY TOKENIZER\n");
#endif
return false;
}
return readTokenCore(token);
}