blob: 6218a6570288eaf0ce9bce7ac4c07e4aa5586990 [file] [log] [blame]
#ifndef __DataTypes_h__
#define __DataTypes_h__
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/types.h>
bool AlmostEqualUlps(float A, float B, int maxUlpsDiff);
int UlpsDiff(float A, float B);
int FloatAsInt(float A);
#define USE_EPSILON 0
#if USE_EPSILON
extern const double PointEpsilon;
extern const double SquaredEpsilon;
inline bool approximately_equal(double x, double y) {
return fabs(x - y) < PointEpsilon;
}
inline bool approximately_equal_squared(double x, double y) {
return fabs(x - y) < SquaredEpsilon;
}
inline bool approximately_greater(double x, double y) {
return x > y - PointEpsilon;
}
inline bool approximately_lesser(double x, double y) {
return x < y + PointEpsilon;
}
inline bool approximately_zero(double x) {
return fabs(x) < PointEpsilon;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < SquaredEpsilon;
}
inline bool approximately_negative(double x) {
return x < PointEpsilon;
}
#else
extern const int UlpsEpsilon;
#if defined(IN_TEST)
// FIXME: move to test-only header
const double PointEpsilon = 0.000001;
const double SquaredEpsilon = PointEpsilon * PointEpsilon;
#endif
inline bool approximately_zero(double x) {
return fabs(x) < FLT_EPSILON;
}
inline bool approximately_equal(double x, double y) {
if (approximately_zero(x - y)) {
return true;
}
return AlmostEqualUlps((float) x, (float) y, UlpsEpsilon);
}
inline bool approximately_equal_squared(double x, double y) {
return approximately_equal(x, y);
}
inline bool approximately_greater(double x, double y) {
return approximately_equal(x, y) ? false : x > y;
}
inline bool approximately_lesser(double x, double y) {
return approximately_equal(x, y) ? false : x < y;
}
inline bool approximately_zero_squared(double x) {
return approximately_zero(x);
}
inline bool approximately_negative(double x) {
return x < FLT_EPSILON;
}
#endif
struct _Point {
double x;
double y;
void operator-=(const _Point& v) {
x -= v.x;
y -= v.y;
}
friend bool operator==(const _Point& a, const _Point& b) {
return a.x == b.x && a.y == b.y;
}
friend bool operator!=(const _Point& a, const _Point& b) {
return a.x!= b.x || a.y != b.y;
}
bool approximatelyEqual(const _Point& a) const {
return approximately_equal(a.y, y) && approximately_equal(a.x, x);
}
};
typedef _Point _Line[2];
typedef _Point Quadratic[3];
typedef _Point Cubic[4];
struct _Rect {
double left;
double top;
double right;
double bottom;
void add(const _Point& pt) {
if (left > pt.x) {
left = pt.x;
}
if (top > pt.y) {
top = pt.y;
}
if (right < pt.x) {
right = pt.x;
}
if (bottom < pt.y) {
bottom = pt.y;
}
}
void set(const _Point& pt) {
left = right = pt.x;
top = bottom = pt.y;
}
void setBounds(const _Line& line) {
set(line[0]);
add(line[1]);
}
void setBounds(const Cubic& );
void setBounds(const Quadratic& );
void setRawBounds(const Cubic& );
void setRawBounds(const Quadratic& );
};
struct CubicPair {
const Cubic& first() const { return (const Cubic&) pts[0]; }
const Cubic& second() const { return (const Cubic&) pts[3]; }
_Point pts[7];
};
struct QuadraticPair {
const Quadratic& first() const { return (const Quadratic&) pts[0]; }
const Quadratic& second() const { return (const Quadratic&) pts[2]; }
_Point pts[5];
};
#endif // __DataTypes_h__