| #include <ctype.h> |
| #include "SkPath.h" |
| #include "SkParse.h" |
| #include "SkPoint.h" |
| #include "SkUtils.h" |
| #define QUADRATIC_APPROXIMATION 0 |
| |
| const char logoStr[] = |
| "<path fill=\"#0081C6\"" |
| "d=\"M440.51,289.479c1.623,1.342,5.01,4.164,5.01,9.531c0,5.223-2.965,7.697-5.93,10.024" |
| "c-0.918,0.916-1.977,1.907-1.977,3.462c0,1.551,1.059,2.397,1.834,3.035l2.545,1.973c3.105,2.613,5.928,5.016,5.928,9.889" |
| "c0,6.635-6.426,13.341-18.566,13.341c-10.238,0-15.178-4.87-15.178-10.097c0-2.543,1.268-6.139,5.438-8.613" |
| "c4.373-2.682,10.307-3.033,13.482-3.249c-0.99-1.271-2.119-2.61-2.119-4.798c0-1.199,0.355-1.907,0.707-2.754" |
| "c-0.779,0.07-1.553,0.141-2.26,0.141c-7.482,0-11.719-5.579-11.719-11.082c0-3.247,1.484-6.851,4.518-9.461" |
| "c4.025-3.318,8.824-3.883,12.639-3.883h14.541l-4.518,2.541H440.51z" |
| "M435.494,320.826c-0.562-0.072-0.916-0.072-1.619-0.072" |
| "c-0.637,0-4.451,0.143-7.416,1.132c-1.553,0.564-6.07,2.257-6.07,7.271c0,5.013,4.873,8.615,12.426,8.615" |
| "c6.775,0,10.379-3.253,10.379-7.624C443.193,326.54,440.863,324.64,435.494,320.826z" |
| "M437.543,307.412" |
| "c1.623-1.627,1.764-3.883,1.764-5.154c0-5.083-3.035-12.99-8.893-12.99c-1.838,0-3.812,0.918-4.945,2.331" |
| "c-1.199,1.483-1.551,3.387-1.551,5.225c0,4.729,2.754,12.565,8.826,12.565C434.508,309.389,436.41,308.543,437.543,307.412z\"/>" |
| "<path fill=\"#FFD200\"" |
| "d=\"M396.064,319.696c-11.206,0-17.198-8.739-17.198-16.636c0-9.233,7.542-17.126,18.258-17.126" |
| "c10.357,0,16.844,8.104,16.844,16.635C413.969,310.884,407.557,319.696,396.064,319.696z" |
| "M404.873,313.987" |
| "c1.695-2.257,2.119-5.074,2.119-7.826c0-6.202-2.961-18.042-11.701-18.042c-2.326,0-4.652,0.918-6.342,2.399" |
| "c-2.749,2.465-3.245,5.566-3.245,8.599c0,6.977,3.454,18.463,11.984,18.463C400.436,317.58,403.256,316.242,404.873,313.987z\"/>" |
| "<path fill=\"#ED174F\"" |
| "d=\"M357.861,319.696c-11.207,0-17.199-8.739-17.199-16.636c0-9.233,7.544-17.126,18.258-17.126" |
| "c10.359,0,16.845,8.104,16.845,16.635C375.764,310.884,369.351,319.696,357.861,319.696z" |
| "M366.671,313.987" |
| "c1.693-2.257,2.116-5.074,2.116-7.826c0-6.202-2.961-18.042-11.701-18.042c-2.325,0-4.652,0.918-6.344,2.399" |
| "c-2.749,2.465-3.241,5.566-3.241,8.599c0,6.977,3.452,18.463,11.983,18.463C362.234,317.58,365.053,316.242,366.671,313.987z\"/>" |
| "<path fill=\"#0081C6\"" |
| "d=\"M335.278,318.591l-10.135,2.339c-4.111,0.638-7.795,1.204-11.69,1.204" |
| "c-19.56,0-26.998-14.386-26.998-25.654c0-13.746,10.558-26.498,28.629-26.498c3.827,0,7.51,0.564,10.839,1.486" |
| "c5.316,1.488,7.796,3.331,9.355,4.394l-5.883,5.599l-2.479,0.565l1.771-2.837c-2.408-2.336-6.805-6.658-15.164-6.658" |
| "c-11.196,0-19.63,8.507-19.63,20.906c0,13.319,9.638,25.861,25.084,25.861c4.539,0,6.874-0.918,9-1.771v-11.407l-10.698,0.566" |
| "l5.667-3.047h15.023l-1.841,1.77c-0.5,0.424-0.567,0.57-0.71,1.133c-0.073,0.64-0.141,2.695-0.141,3.403V318.591z\"/>" |
| "<path fill=\"#49A942\"" |
| "d=\"M462.908,316.552c-2.342-0.214-2.832-0.638-2.832-3.401v-0.782v-39.327c0.014-0.153,0.025-0.31,0.041-0.457" |
| "c0.283-2.479,0.992-2.903,3.189-4.182h-10.135l-5.316,2.552h5.418v0.032l-0.004-0.024v41.406v2.341" |
| "c0,1.416-0.281,1.629-1.912,3.753H463.9l2.623-1.557C465.318,316.763,464.113,316.692,462.908,316.552z\"/>" |
| "<path fill=\"#ED174F\"" |
| "d=\"M491.742,317.203c-0.771,0.422-1.547,0.916-2.318,1.268c-2.326,1.055-4.719,1.336-6.83,1.336" |
| "c-2.25,0-5.77-0.143-9.361-2.744c-4.992-3.521-7.176-9.572-7.176-14.851c0-10.906,8.869-16.255,16.115-16.255" |
| "c2.533,0,5.141,0.633,7.252,1.972c3.516,2.318,4.43,5.344,4.922,6.963l-16.535,6.688l-5.422,0.422" |
| "c1.758,8.938,7.812,14.145,14.498,14.145c3.59,0,6.193-1.266,8.586-2.461L491.742,317.203z" |
| "M485.129,296.229" |
| "c1.336-0.493,2.039-0.914,2.039-1.899c0-2.812-3.166-6.053-6.967-6.053c-2.818,0-8.094,2.183-8.094,9.783" |
| "c0,1.197,0.141,2.464,0.213,3.73L485.129,296.229z\"/>" |
| "<path fill=\"#77787B\"" |
| "d=\"M498.535,286.439v4.643h-0.564v-4.643h-1.537v-0.482h3.637v0.482H498.535z\"/>" |
| "<path fill=\"#77787B\"" |
| "d=\"M504.863,291.082v-4.687h-0.023l-1.432,4.687h-0.439l-1.443-4.687h-0.02v4.687h-0.512v-5.125h0.877" |
| "l1.307,4.143h0.018l1.285-4.143h0.891v5.125H504.863z\"/>" |
| ; |
| |
| size_t logoStrLen = sizeof(logoStr); |
| |
| #if QUADRATIC_APPROXIMATION |
| //////////////////////////////////////////////////////////////////////////////////// |
| //functions to approximate a cubic using two quadratics |
| |
| // midPt sets the first argument to be the midpoint of the other two |
| // it is used by quadApprox |
| static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b) |
| { |
| dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY)); |
| } |
| // quadApprox - makes an approximation, which we hope is faster |
| static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2) |
| { |
| //divide the cubic up into two cubics, then convert them into quadratics |
| //define our points |
| SkPoint c,j,k,l,m,n,o,p,q, mid; |
| fPath.getLastPt(&c); |
| midPt(j, p0, c); |
| midPt(k, p0, p1); |
| midPt(l, p1, p2); |
| midPt(o, j, k); |
| midPt(p, k, l); |
| midPt(q, o, p); |
| //compute the first half |
| m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY)); |
| n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY)); |
| midPt(mid,m,n); |
| fPath.quadTo(mid,q); |
| c = q; |
| //compute the second half |
| m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY)); |
| n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY)); |
| midPt(mid,m,n); |
| fPath.quadTo(mid,p2); |
| } |
| #endif |
| |
| |
| static inline bool is_between(int c, int min, int max) |
| { |
| return (unsigned)(c - min) <= (unsigned)(max - min); |
| } |
| |
| static inline bool is_ws(int c) |
| { |
| return is_between(c, 1, 32); |
| } |
| |
| static inline bool is_digit(int c) |
| { |
| return is_between(c, '0', '9'); |
| } |
| |
| static inline bool is_sep(int c) |
| { |
| return is_ws(c) || c == ','; |
| } |
| |
| static const char* skip_ws(const char str[]) |
| { |
| SkASSERT(str); |
| while (is_ws(*str)) |
| str++; |
| return str; |
| } |
| |
| static const char* skip_sep(const char str[]) |
| { |
| SkASSERT(str); |
| while (is_sep(*str)) |
| str++; |
| return str; |
| } |
| |
| static const char* find_points(const char str[], SkPoint value[], int count, |
| bool isRelative, SkPoint* relative) |
| { |
| str = SkParse::FindScalars(str, &value[0].fX, count * 2); |
| if (isRelative) { |
| for (int index = 0; index < count; index++) { |
| value[index].fX += relative->fX; |
| value[index].fY += relative->fY; |
| } |
| } |
| return str; |
| } |
| |
| static const char* find_scalar(const char str[], SkScalar* value, |
| bool isRelative, SkScalar relative) |
| { |
| str = SkParse::FindScalar(str, value); |
| if (isRelative) |
| *value += relative; |
| return str; |
| } |
| |
| static void showPathContour(SkPath::Iter& iter) { |
| uint8_t verb; |
| SkPoint pts[4]; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| SkDebugf("path.moveTo(%1.9gf,%1.9gf);\n", pts[0].fX, pts[0].fY); |
| continue; |
| case SkPath::kLine_Verb: |
| SkDebugf("path.lineTo(%1.9gf,%1.9gf);\n", pts[1].fX, pts[1].fY); |
| break; |
| case SkPath::kQuad_Verb: |
| SkDebugf("path.quadTo(%1.9gf,%1.9gf, %1.9gf,%1.9gf);\n", |
| pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); |
| break; |
| case SkPath::kCubic_Verb: |
| SkDebugf("path.cubicTo(%1.9gf,%1.9gf, %1.9gf,%1.9gf, %1.9gf,%1.9gf);\n", |
| pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY); |
| break; |
| case SkPath::kClose_Verb: |
| SkDebugf("path.close();\n"); |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| } |
| } |
| |
| static void showPath(const SkPath& path) { |
| SkPath::Iter iter(path, true); |
| int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0; |
| if (rectCount > 0) { |
| SkTDArray<SkRect> rects; |
| SkTDArray<SkPath::Direction> directions; |
| rects.setCount(rectCount); |
| directions.setCount(rectCount); |
| path.rectContours(rects.begin(), directions.begin()); |
| for (int contour = 0; contour < rectCount; ++contour) { |
| const SkRect& rect = rects[contour]; |
| SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop, |
| rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction |
| ? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction"); |
| } |
| return; |
| } |
| iter.setPath(path, true); |
| showPathContour(iter); |
| } |
| |
| static const char* parsePath(const char* data) { |
| SkPath fPath; |
| SkPoint f = {0, 0}; |
| SkPoint c = {0, 0}; |
| SkPoint lastc = {0, 0}; |
| SkPoint points[3]; |
| char op = '\0'; |
| char previousOp = '\0'; |
| bool relative = false; |
| do { |
| data = skip_ws(data); |
| if (data[0] == '\0') |
| break; |
| char ch = data[0]; |
| if (is_digit(ch) || ch == '-' || ch == '+') { |
| if (op == '\0') { |
| SkASSERT(0); |
| return 0; |
| } |
| } |
| else { |
| op = ch; |
| relative = false; |
| if (islower(op)) { |
| op = (char) toupper(op); |
| relative = true; |
| } |
| data++; |
| data = skip_sep(data); |
| } |
| switch (op) { |
| case 'M': |
| data = find_points(data, points, 1, relative, &c); |
| fPath.moveTo(points[0]); |
| op = 'L'; |
| c = points[0]; |
| break; |
| case 'L': |
| data = find_points(data, points, 1, relative, &c); |
| fPath.lineTo(points[0]); |
| c = points[0]; |
| break; |
| case 'H': { |
| SkScalar x; |
| data = find_scalar(data, &x, relative, c.fX); |
| fPath.lineTo(x, c.fY); |
| c.fX = x; |
| } |
| break; |
| case 'V': { |
| SkScalar y; |
| data = find_scalar(data, &y, relative, c.fY); |
| fPath.lineTo(c.fX, y); |
| c.fY = y; |
| } |
| break; |
| case 'C': |
| data = find_points(data, points, 3, relative, &c); |
| goto cubicCommon; |
| case 'S': |
| data = find_points(data, &points[1], 2, relative, &c); |
| points[0] = c; |
| if (previousOp == 'C' || previousOp == 'S') { |
| points[0].fX -= lastc.fX - c.fX; |
| points[0].fY -= lastc.fY - c.fY; |
| } |
| cubicCommon: |
| // if (data[0] == '\0') |
| // return; |
| #if QUADRATIC_APPROXIMATION |
| quadApprox(fPath, points[0], points[1], points[2]); |
| #else //this way just does a boring, slow old cubic |
| fPath.cubicTo(points[0], points[1], points[2]); |
| #endif |
| //if we are using the quadApprox, lastc is what it would have been if we had used |
| //cubicTo |
| lastc = points[1]; |
| c = points[2]; |
| break; |
| case 'Q': // Quadratic Bezier Curve |
| data = find_points(data, points, 2, relative, &c); |
| goto quadraticCommon; |
| case 'T': |
| data = find_points(data, &points[1], 1, relative, &c); |
| points[0] = points[1]; |
| if (previousOp == 'Q' || previousOp == 'T') { |
| points[0].fX = c.fX * 2 - lastc.fX; |
| points[0].fY = c.fY * 2 - lastc.fY; |
| } |
| quadraticCommon: |
| fPath.quadTo(points[0], points[1]); |
| lastc = points[0]; |
| c = points[1]; |
| break; |
| case 'Z': |
| fPath.close(); |
| #if 0 // !!! still a bug? |
| if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) { |
| c.fX -= SkScalar.Epsilon; // !!! enough? |
| fPath.moveTo(c); |
| fPath.lineTo(f); |
| fPath.close(); |
| } |
| #endif |
| c = f; |
| op = '\0'; |
| break; |
| case '~': { |
| SkPoint args[2]; |
| data = find_points(data, args, 2, false, NULL); |
| fPath.moveTo(args[0].fX, args[0].fY); |
| fPath.lineTo(args[1].fX, args[1].fY); |
| } |
| break; |
| default: |
| SkASSERT(0); |
| return 0; |
| } |
| if (previousOp == 0) |
| f = c; |
| previousOp = op; |
| } while (data[0] != '"'); |
| showPath(fPath); |
| return data; |
| } |
| |
| const char pathPrefix[] = "<path fill=\""; |
| |
| void parseSVG(); |
| void parseSVG() { |
| const char* data = logoStr; |
| const char* dataEnd = logoStr + logoStrLen - 1; |
| while (data < dataEnd) { |
| SkASSERT(strncmp(data, pathPrefix, sizeof(pathPrefix) - 1) == 0); |
| data += sizeof(pathPrefix) - 1; |
| SkDebugf("paint.setColor(0xFF%c%c%c%c%c%c);\n", data[1], data[2], data[3], data[4], |
| data[5], data[6]); |
| data += 8; |
| SkASSERT(strncmp(data, "d=\"", 3) == 0); |
| data += 3; |
| SkDebugf("path.reset();\n"); |
| data = parsePath(data); |
| SkDebugf("canvas->drawPath(path, paint);\n"); |
| SkASSERT(strncmp(data, "\"/>", 3) == 0); |
| data += 3; |
| } |
| } |