|  | 
 | /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "Test.h" | 
 | #include "SkCanvas.h" | 
 | #include "SkPaint.h" | 
 | #include "SkPath.h" | 
 | #include "SkParse.h" | 
 | #include "SkParsePath.h" | 
 | #include "SkPathEffect.h" | 
 | #include "SkRandom.h" | 
 | #include "SkReader32.h" | 
 | #include "SkSize.h" | 
 | #include "SkWriter32.h" | 
 | #include "SkSurface.h" | 
 |  | 
 | #if defined(WIN32) | 
 |     #define SUPPRESS_VISIBILITY_WARNING | 
 | #else | 
 |     #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) | 
 | #endif | 
 |  | 
 | static SkSurface* new_surface(int w, int h) { | 
 |     SkImage::Info info = { | 
 |         w, h, SkImage::kPMColor_ColorType, SkImage::kPremul_AlphaType | 
 |     }; | 
 |     return SkSurface::NewRaster(info); | 
 | } | 
 |  | 
 | // This used to assert in the debug build, as the edges did not all line-up. | 
 | static void test_bad_cubic_crbug234190() { | 
 |     SkPath path; | 
 |     path.moveTo(13.8509f, 3.16858f); | 
 |     path.cubicTo(-2.35893e+08f, -4.21044e+08f, | 
 |                  -2.38991e+08f, -4.26573e+08f, | 
 |                  -2.41016e+08f, -4.30188e+08f); | 
 |  | 
 |     SkPaint paint; | 
 |     paint.setAntiAlias(true); | 
 |     SkAutoTUnref<SkSurface> surface(new_surface(84, 88)); | 
 |     surface->getCanvas()->drawPath(path, paint); | 
 | } | 
 |  | 
 | static void test_bad_cubic_crbug229478() { | 
 |     const SkPoint pts[] = { | 
 |         { 4595.91064f,    -11596.9873f }, | 
 |         { 4597.2168f,    -11595.9414f }, | 
 |         { 4598.52344f,    -11594.8955f }, | 
 |         { 4599.83008f,    -11593.8496f }, | 
 |     }; | 
 |  | 
 |     SkPath path; | 
 |     path.moveTo(pts[0]); | 
 |     path.cubicTo(pts[1], pts[2], pts[3]); | 
 |  | 
 |     SkPaint paint; | 
 |     paint.setStyle(SkPaint::kStroke_Style); | 
 |     paint.setStrokeWidth(20); | 
 |  | 
 |     SkPath dst; | 
 |     // Before the fix, this would infinite-recurse, and run out of stack | 
 |     // because we would keep trying to subdivide a degenerate cubic segment. | 
 |     paint.getFillPath(path, &dst, NULL); | 
 | } | 
 |  | 
 | static void build_path_170666(SkPath& path) { | 
 |     path.moveTo(17.9459f, 21.6344f); | 
 |     path.lineTo(139.545f, -47.8105f); | 
 |     path.lineTo(139.545f, -47.8105f); | 
 |     path.lineTo(131.07f, -47.3888f); | 
 |     path.lineTo(131.07f, -47.3888f); | 
 |     path.lineTo(122.586f, -46.9532f); | 
 |     path.lineTo(122.586f, -46.9532f); | 
 |     path.lineTo(18076.6f, 31390.9f); | 
 |     path.lineTo(18076.6f, 31390.9f); | 
 |     path.lineTo(18085.1f, 31390.5f); | 
 |     path.lineTo(18085.1f, 31390.5f); | 
 |     path.lineTo(18076.6f, 31390.9f); | 
 |     path.lineTo(18076.6f, 31390.9f); | 
 |     path.lineTo(17955, 31460.3f); | 
 |     path.lineTo(17955, 31460.3f); | 
 |     path.lineTo(17963.5f, 31459.9f); | 
 |     path.lineTo(17963.5f, 31459.9f); | 
 |     path.lineTo(17971.9f, 31459.5f); | 
 |     path.lineTo(17971.9f, 31459.5f); | 
 |     path.lineTo(17.9551f, 21.6205f); | 
 |     path.lineTo(17.9551f, 21.6205f); | 
 |     path.lineTo(9.47091f, 22.0561f); | 
 |     path.lineTo(9.47091f, 22.0561f); | 
 |     path.lineTo(17.9459f, 21.6344f); | 
 |     path.lineTo(17.9459f, 21.6344f); | 
 |     path.close();path.moveTo(0.995934f, 22.4779f); | 
 |     path.lineTo(0.986725f, 22.4918f); | 
 |     path.lineTo(0.986725f, 22.4918f); | 
 |     path.lineTo(17955, 31460.4f); | 
 |     path.lineTo(17955, 31460.4f); | 
 |     path.lineTo(17971.9f, 31459.5f); | 
 |     path.lineTo(17971.9f, 31459.5f); | 
 |     path.lineTo(18093.6f, 31390.1f); | 
 |     path.lineTo(18093.6f, 31390.1f); | 
 |     path.lineTo(18093.6f, 31390); | 
 |     path.lineTo(18093.6f, 31390); | 
 |     path.lineTo(139.555f, -47.8244f); | 
 |     path.lineTo(139.555f, -47.8244f); | 
 |     path.lineTo(122.595f, -46.9671f); | 
 |     path.lineTo(122.595f, -46.9671f); | 
 |     path.lineTo(0.995934f, 22.4779f); | 
 |     path.lineTo(0.995934f, 22.4779f); | 
 |     path.close(); | 
 |     path.moveTo(5.43941f, 25.5223f); | 
 |     path.lineTo(798267, -28871.1f); | 
 |     path.lineTo(798267, -28871.1f); | 
 |     path.lineTo(3.12512e+06f, -113102); | 
 |     path.lineTo(3.12512e+06f, -113102); | 
 |     path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); | 
 |     path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); | 
 |     path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); | 
 |     path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); | 
 |     path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); | 
 |     path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); | 
 |     path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); | 
 |     path.lineTo(2.78271e+08f, -1.00733e+07f); | 
 |     path.lineTo(2.78271e+08f, -1.00733e+07f); | 
 |     path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); | 
 |     path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); | 
 |     path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); | 
 |     path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | 
 |     path.lineTo(2.77473e+08f, -1.00444e+07f); | 
 |     path.lineTo(2.77473e+08f, -1.00444e+07f); | 
 |     path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); | 
 |     path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); | 
 |     path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); | 
 |     path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); | 
 |     path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); | 
 |     path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); | 
 |     path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); | 
 |     path.lineTo(798284, -28872); | 
 |     path.lineTo(798284, -28872); | 
 |     path.lineTo(22.4044f, 24.6677f); | 
 |     path.lineTo(22.4044f, 24.6677f); | 
 |     path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); | 
 |     path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); | 
 |     path.close(); | 
 | } | 
 |  | 
 | static void build_path_simple_170666(SkPath& path) { | 
 |     path.moveTo(126.677f, 24.1591f); | 
 |     path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | 
 | } | 
 |  | 
 | // This used to assert in the SK_DEBUG build, as the clip step would fail with | 
 | // too-few interations in our cubic-line intersection code. That code now runs | 
 | // 24 interations (instead of 16). | 
 | static void test_crbug_170666() { | 
 |     SkPath path; | 
 |     SkPaint paint; | 
 |     paint.setAntiAlias(true); | 
 |  | 
 |     SkAutoTUnref<SkSurface> surface(new_surface(1000, 1000)); | 
 |  | 
 |     build_path_simple_170666(path); | 
 |     surface->getCanvas()->drawPath(path, paint); | 
 |  | 
 |     build_path_170666(path); | 
 |     surface->getCanvas()->drawPath(path, paint); | 
 | } | 
 |  | 
 | // Make sure we stay non-finite once we get there (unless we reset or rewind). | 
 | static void test_addrect_isfinite(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |  | 
 |     path.addRect(SkRect::MakeWH(50, 100)); | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 |  | 
 |     path.moveTo(0, 0); | 
 |     path.lineTo(SK_ScalarInfinity, 42); | 
 |     REPORTER_ASSERT(reporter, !path.isFinite()); | 
 |  | 
 |     path.addRect(SkRect::MakeWH(50, 100)); | 
 |     REPORTER_ASSERT(reporter, !path.isFinite()); | 
 |  | 
 |     path.reset(); | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 |  | 
 |     path.addRect(SkRect::MakeWH(50, 100)); | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 | } | 
 |  | 
 | static void build_big_path(SkPath* path, bool reducedCase) { | 
 |     if (reducedCase) { | 
 |         path->moveTo(577330, 1971.72f); | 
 |         path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | 
 |     } else { | 
 |         path->moveTo(60.1631f, 7.70567f); | 
 |         path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); | 
 |         path->lineTo(577379, 1977.77f); | 
 |         path->quadTo(577364, 1979.57f, 577325, 1980.26f); | 
 |         path->quadTo(577286, 1980.95f, 577245, 1980.13f); | 
 |         path->quadTo(577205, 1979.3f, 577187, 1977.45f); | 
 |         path->quadTo(577168, 1975.6f, 577183, 1973.8f); | 
 |         path->quadTo(577198, 1972, 577238, 1971.31f); | 
 |         path->quadTo(577277, 1970.62f, 577317, 1971.45f); | 
 |         path->quadTo(577330, 1971.72f, 577341, 1972.11f); | 
 |         path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | 
 |         path->moveTo(306.718f, -32.912f); | 
 |         path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); | 
 |     } | 
 | } | 
 |  | 
 | static void test_clipped_cubic() { | 
 |     SkAutoTUnref<SkSurface> surface(new_surface(640, 480)); | 
 |  | 
 |     // This path used to assert, because our cubic-chopping code incorrectly | 
 |     // moved control points after the chop. This test should be run in SK_DEBUG | 
 |     // mode to ensure that we no long assert. | 
 |     SkPath path; | 
 |     for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { | 
 |         build_big_path(&path, SkToBool(doReducedCase)); | 
 |  | 
 |         SkPaint paint; | 
 |         for (int doAA = 0; doAA <= 1; ++doAA) { | 
 |             paint.setAntiAlias(SkToBool(doAA)); | 
 |             surface->getCanvas()->drawPath(path, paint); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ | 
 | // which triggered an assert, from a tricky cubic. This test replicates that | 
 | // example, so we can ensure that we handle it (in SkEdge.cpp), and don't | 
 | // assert in the SK_DEBUG build. | 
 | static void test_tricky_cubic() { | 
 |     const SkPoint pts[] = { | 
 |         { SkDoubleToScalar(18.8943768),    SkDoubleToScalar(129.121277) }, | 
 |         { SkDoubleToScalar(18.8937435),    SkDoubleToScalar(129.121689) }, | 
 |         { SkDoubleToScalar(18.8950119),    SkDoubleToScalar(129.120422) }, | 
 |         { SkDoubleToScalar(18.5030727),    SkDoubleToScalar(129.13121)  }, | 
 |     }; | 
 |  | 
 |     SkPath path; | 
 |     path.moveTo(pts[0]); | 
 |     path.cubicTo(pts[1], pts[2], pts[3]); | 
 |  | 
 |     SkPaint paint; | 
 |     paint.setAntiAlias(true); | 
 |  | 
 |     SkSurface* surface = new_surface(19, 130); | 
 |     surface->getCanvas()->drawPath(path, paint); | 
 |     surface->unref(); | 
 | } | 
 |  | 
 | // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 | 
 | // | 
 | static void test_isfinite_after_transform(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |     path.quadTo(157, 366, 286, 208); | 
 |     path.arcTo(37, 442, 315, 163, 957494590897113.0f); | 
 |  | 
 |     SkMatrix matrix; | 
 |     matrix.setScale(1000*1000, 1000*1000); | 
 |  | 
 |     // Be sure that path::transform correctly updates isFinite and the bounds | 
 |     // if the transformation overflows. The previous bug was that isFinite was | 
 |     // set to true in this case, but the bounds were not set to empty (which | 
 |     // they should be). | 
 |     while (path.isFinite()) { | 
 |         REPORTER_ASSERT(reporter, path.getBounds().isFinite()); | 
 |         REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); | 
 |         path.transform(matrix); | 
 |     } | 
 |     REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | 
 |  | 
 |     matrix.setTranslate(SK_Scalar1, SK_Scalar1); | 
 |     path.transform(matrix); | 
 |     // we need to still be non-finite | 
 |     REPORTER_ASSERT(reporter, !path.isFinite()); | 
 |     REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | 
 | } | 
 |  | 
 | static void add_corner_arc(SkPath* path, const SkRect& rect, | 
 |                            SkScalar xIn, SkScalar yIn, | 
 |                            int startAngle) | 
 | { | 
 |  | 
 |     SkScalar rx = SkMinScalar(rect.width(), xIn); | 
 |     SkScalar ry = SkMinScalar(rect.height(), yIn); | 
 |  | 
 |     SkRect arcRect; | 
 |     arcRect.set(-rx, -ry, rx, ry); | 
 |     switch (startAngle) { | 
 |     case 0: | 
 |         arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); | 
 |         break; | 
 |     case 90: | 
 |         arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); | 
 |         break; | 
 |     case 180: | 
 |         arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); | 
 |         break; | 
 |     case 270: | 
 |         arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); | 
 |         break; | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); | 
 | } | 
 |  | 
 | static void make_arb_round_rect(SkPath* path, const SkRect& r, | 
 |                                 SkScalar xCorner, SkScalar yCorner) { | 
 |     // we are lazy here and use the same x & y for each corner | 
 |     add_corner_arc(path, r, xCorner, yCorner, 270); | 
 |     add_corner_arc(path, r, xCorner, yCorner, 0); | 
 |     add_corner_arc(path, r, xCorner, yCorner, 90); | 
 |     add_corner_arc(path, r, xCorner, yCorner, 180); | 
 |     path->close(); | 
 | } | 
 |  | 
 | // Chrome creates its own round rects with each corner possibly being different. | 
 | // Performance will suffer if they are not convex. | 
 | // Note: PathBench::ArbRoundRectBench performs almost exactly | 
 | // the same test (but with drawing) | 
 | static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { | 
 |     SkMWCRandom rand; | 
 |     SkRect r; | 
 |  | 
 |     for (int i = 0; i < 5000; ++i) { | 
 |  | 
 |         SkScalar size = rand.nextUScalar1() * 30; | 
 |         if (size < SK_Scalar1) { | 
 |             continue; | 
 |         } | 
 |         r.fLeft = rand.nextUScalar1() * 300; | 
 |         r.fTop =  rand.nextUScalar1() * 300; | 
 |         r.fRight =  r.fLeft + 2 * size; | 
 |         r.fBottom = r.fTop + 2 * size; | 
 |  | 
 |         SkPath temp; | 
 |  | 
 |         make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); | 
 |  | 
 |         REPORTER_ASSERT(reporter, temp.isConvex()); | 
 |     } | 
 | } | 
 |  | 
 | // Chrome will sometimes create a 0 radius round rect. The degenerate | 
 | // quads prevent the path from being converted to a rect | 
 | // Note: PathBench::ArbRoundRectBench performs almost exactly | 
 | // the same test (but with drawing) | 
 | static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { | 
 |     SkMWCRandom rand; | 
 |     SkRect r; | 
 |  | 
 |     for (int i = 0; i < 5000; ++i) { | 
 |  | 
 |         SkScalar size = rand.nextUScalar1() * 30; | 
 |         if (size < SK_Scalar1) { | 
 |             continue; | 
 |         } | 
 |         r.fLeft = rand.nextUScalar1() * 300; | 
 |         r.fTop =  rand.nextUScalar1() * 300; | 
 |         r.fRight =  r.fLeft + 2 * size; | 
 |         r.fBottom = r.fTop + 2 * size; | 
 |  | 
 |         SkPath temp; | 
 |  | 
 |         make_arb_round_rect(&temp, r, 0, 0); | 
 |  | 
 |         SkRect result; | 
 |         REPORTER_ASSERT(reporter, temp.isRect(&result)); | 
 |         REPORTER_ASSERT(reporter, r == result); | 
 |     } | 
 | } | 
 |  | 
 | static void test_rect_isfinite(skiatest::Reporter* reporter) { | 
 |     const SkScalar inf = SK_ScalarInfinity; | 
 |     const SkScalar negInf = SK_ScalarNegativeInfinity; | 
 |     const SkScalar nan = SK_ScalarNaN; | 
 |  | 
 |     SkRect r; | 
 |     r.setEmpty(); | 
 |     REPORTER_ASSERT(reporter, r.isFinite()); | 
 |     r.set(0, 0, inf, negInf); | 
 |     REPORTER_ASSERT(reporter, !r.isFinite()); | 
 |     r.set(0, 0, nan, 0); | 
 |     REPORTER_ASSERT(reporter, !r.isFinite()); | 
 |  | 
 |     SkPoint pts[] = { | 
 |         { 0, 0 }, | 
 |         { SK_Scalar1, 0 }, | 
 |         { 0, SK_Scalar1 }, | 
 |     }; | 
 |  | 
 |     bool isFine = r.setBoundsCheck(pts, 3); | 
 |     REPORTER_ASSERT(reporter, isFine); | 
 |     REPORTER_ASSERT(reporter, !r.isEmpty()); | 
 |  | 
 |     pts[1].set(inf, 0); | 
 |     isFine = r.setBoundsCheck(pts, 3); | 
 |     REPORTER_ASSERT(reporter, !isFine); | 
 |     REPORTER_ASSERT(reporter, r.isEmpty()); | 
 |  | 
 |     pts[1].set(nan, 0); | 
 |     isFine = r.setBoundsCheck(pts, 3); | 
 |     REPORTER_ASSERT(reporter, !isFine); | 
 |     REPORTER_ASSERT(reporter, r.isEmpty()); | 
 | } | 
 |  | 
 | static void test_path_isfinite(skiatest::Reporter* reporter) { | 
 |     const SkScalar inf = SK_ScalarInfinity; | 
 |     const SkScalar negInf = SK_ScalarNegativeInfinity; | 
 |     const SkScalar nan = SK_ScalarNaN; | 
 |  | 
 |     SkPath path; | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 |  | 
 |     path.reset(); | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 |  | 
 |     path.reset(); | 
 |     path.moveTo(SK_Scalar1, 0); | 
 |     REPORTER_ASSERT(reporter, path.isFinite()); | 
 |  | 
 |     path.reset(); | 
 |     path.moveTo(inf, negInf); | 
 |     REPORTER_ASSERT(reporter, !path.isFinite()); | 
 |  | 
 |     path.reset(); | 
 |     path.moveTo(nan, 0); | 
 |     REPORTER_ASSERT(reporter, !path.isFinite()); | 
 | } | 
 |  | 
 | static void test_isfinite(skiatest::Reporter* reporter) { | 
 |     test_rect_isfinite(reporter); | 
 |     test_path_isfinite(reporter); | 
 | } | 
 |  | 
 | // assert that we always | 
 | //  start with a moveTo | 
 | //  only have 1 moveTo | 
 | //  only have Lines after that | 
 | //  end with a single close | 
 | //  only have (at most) 1 close | 
 | // | 
 | static void test_poly(skiatest::Reporter* reporter, const SkPath& path, | 
 |                       const SkPoint srcPts[], bool expectClose) { | 
 |     SkPath::RawIter iter(path); | 
 |     SkPoint         pts[4]; | 
 |  | 
 |     bool firstTime = true; | 
 |     bool foundClose = false; | 
 |     for (;;) { | 
 |         switch (iter.next(pts)) { | 
 |             case SkPath::kMove_Verb: | 
 |                 REPORTER_ASSERT(reporter, firstTime); | 
 |                 REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); | 
 |                 srcPts++; | 
 |                 firstTime = false; | 
 |                 break; | 
 |             case SkPath::kLine_Verb: | 
 |                 REPORTER_ASSERT(reporter, !firstTime); | 
 |                 REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); | 
 |                 srcPts++; | 
 |                 break; | 
 |             case SkPath::kQuad_Verb: | 
 |                 REPORTER_ASSERT(reporter, !"unexpected quad verb"); | 
 |                 break; | 
 |             case SkPath::kConic_Verb: | 
 |                 REPORTER_ASSERT(reporter, !"unexpected conic verb"); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: | 
 |                 REPORTER_ASSERT(reporter, !"unexpected cubic verb"); | 
 |                 break; | 
 |             case SkPath::kClose_Verb: | 
 |                 REPORTER_ASSERT(reporter, !firstTime); | 
 |                 REPORTER_ASSERT(reporter, !foundClose); | 
 |                 REPORTER_ASSERT(reporter, expectClose); | 
 |                 foundClose = true; | 
 |                 break; | 
 |             case SkPath::kDone_Verb: | 
 |                 goto DONE; | 
 |         } | 
 |     } | 
 | DONE: | 
 |     REPORTER_ASSERT(reporter, foundClose == expectClose); | 
 | } | 
 |  | 
 | static void test_addPoly(skiatest::Reporter* reporter) { | 
 |     SkPoint pts[32]; | 
 |     SkMWCRandom rand; | 
 |  | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { | 
 |         pts[i].fX = rand.nextSScalar1(); | 
 |         pts[i].fY = rand.nextSScalar1(); | 
 |     } | 
 |  | 
 |     for (int doClose = 0; doClose <= 1; ++doClose) { | 
 |         for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { | 
 |             SkPath path; | 
 |             path.addPoly(pts, count, SkToBool(doClose)); | 
 |             test_poly(reporter, path, pts, SkToBool(doClose)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_strokerec(skiatest::Reporter* reporter) { | 
 |     SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); | 
 |     REPORTER_ASSERT(reporter, rec.isFillStyle()); | 
 |  | 
 |     rec.setHairlineStyle(); | 
 |     REPORTER_ASSERT(reporter, rec.isHairlineStyle()); | 
 |  | 
 |     rec.setStrokeStyle(SK_Scalar1, false); | 
 |     REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); | 
 |  | 
 |     rec.setStrokeStyle(SK_Scalar1, true); | 
 |     REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); | 
 |  | 
 |     rec.setStrokeStyle(0, false); | 
 |     REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); | 
 |  | 
 |     rec.setStrokeStyle(0, true); | 
 |     REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); | 
 | } | 
 |  | 
 | // Set this for paths that don't have a consistent direction such as a bowtie. | 
 | // (cheapComputeDirection is not expected to catch these.) | 
 | static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1); | 
 |  | 
 | static void check_direction(skiatest::Reporter* reporter, const SkPath& path, | 
 |                             SkPath::Direction expected) { | 
 |     if (expected == kDontCheckDir) { | 
 |         return; | 
 |     } | 
 |     SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | 
 |  | 
 |     SkPath::Direction dir; | 
 |     if (copy.cheapComputeDirection(&dir)) { | 
 |         REPORTER_ASSERT(reporter, dir == expected); | 
 |     } else { | 
 |         REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected); | 
 |     } | 
 | } | 
 |  | 
 | static void test_direction(skiatest::Reporter* reporter) { | 
 |     size_t i; | 
 |     SkPath path; | 
 |     REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); | 
 |     REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction)); | 
 |     REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction)); | 
 |     REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction)); | 
 |  | 
 |     static const char* gDegen[] = { | 
 |         "M 10 10", | 
 |         "M 10 10 M 20 20", | 
 |         "M 10 10 L 20 20", | 
 |         "M 10 10 L 10 10 L 10 10", | 
 |         "M 10 10 Q 10 10 10 10", | 
 |         "M 10 10 C 10 10 10 10 10 10", | 
 |     }; | 
 |     for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { | 
 |         path.reset(); | 
 |         bool valid = SkParsePath::FromSVGString(gDegen[i], &path); | 
 |         REPORTER_ASSERT(reporter, valid); | 
 |         REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); | 
 |     } | 
 |  | 
 |     static const char* gCW[] = { | 
 |         "M 10 10 L 10 10 Q 20 10 20 20", | 
 |         "M 10 10 C 20 10 20 20 20 20", | 
 |         "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max | 
 |         // rect with top two corners replaced by cubics with identical middle | 
 |         // control points | 
 |         "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", | 
 |         "M 20 10 L 0 10 Q 10 10 20 0",  // left, degenerate serif | 
 |     }; | 
 |     for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { | 
 |         path.reset(); | 
 |         bool valid = SkParsePath::FromSVGString(gCW[i], &path); | 
 |         REPORTER_ASSERT(reporter, valid); | 
 |         check_direction(reporter, path, SkPath::kCW_Direction); | 
 |     } | 
 |  | 
 |     static const char* gCCW[] = { | 
 |         "M 10 10 L 10 10 Q 20 10 20 -20", | 
 |         "M 10 10 C 20 10 20 -20 20 -20", | 
 |         "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max | 
 |         // rect with top two corners replaced by cubics with identical middle | 
 |         // control points | 
 |         "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", | 
 |         "M 10 10 L 30 10 Q 20 10 10 0",  // right, degenerate serif | 
 |     }; | 
 |     for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { | 
 |         path.reset(); | 
 |         bool valid = SkParsePath::FromSVGString(gCCW[i], &path); | 
 |         REPORTER_ASSERT(reporter, valid); | 
 |         check_direction(reporter, path, SkPath::kCCW_Direction); | 
 |     } | 
 |  | 
 |     // Test two donuts, each wound a different direction. Only the outer contour | 
 |     // determines the cheap direction | 
 |     path.reset(); | 
 |     path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); | 
 |     path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); | 
 |     check_direction(reporter, path, SkPath::kCW_Direction); | 
 |  | 
 |     path.reset(); | 
 |     path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); | 
 |     path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); | 
 |     check_direction(reporter, path, SkPath::kCCW_Direction); | 
 |  | 
 | #ifdef SK_SCALAR_IS_FLOAT | 
 |     // triangle with one point really far from the origin. | 
 |     path.reset(); | 
 |     // the first point is roughly 1.05e10, 1.05e10 | 
 |     path.moveTo(SkFloatToScalar(SkBits2Float(0x501c7652)), SkFloatToScalar(SkBits2Float(0x501c7652))); | 
 |     path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); | 
 |     path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); | 
 |     check_direction(reporter, path, SkPath::kCCW_Direction); | 
 | #endif | 
 | } | 
 |  | 
 | static void add_rect(SkPath* path, const SkRect& r) { | 
 |     path->moveTo(r.fLeft, r.fTop); | 
 |     path->lineTo(r.fRight, r.fTop); | 
 |     path->lineTo(r.fRight, r.fBottom); | 
 |     path->lineTo(r.fLeft, r.fBottom); | 
 |     path->close(); | 
 | } | 
 |  | 
 | static void test_bounds(skiatest::Reporter* reporter) { | 
 |     static const SkRect rects[] = { | 
 |         { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, | 
 |         { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, | 
 |         { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, | 
 |         { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, | 
 |     }; | 
 |  | 
 |     SkPath path0, path1; | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { | 
 |         path0.addRect(rects[i]); | 
 |         add_rect(&path1, rects[i]); | 
 |     } | 
 |  | 
 |     REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); | 
 | } | 
 |  | 
 | static void stroke_cubic(const SkPoint pts[4]) { | 
 |     SkPath path; | 
 |     path.moveTo(pts[0]); | 
 |     path.cubicTo(pts[1], pts[2], pts[3]); | 
 |  | 
 |     SkPaint paint; | 
 |     paint.setStyle(SkPaint::kStroke_Style); | 
 |     paint.setStrokeWidth(SK_Scalar1 * 2); | 
 |  | 
 |     SkPath fill; | 
 |     paint.getFillPath(path, &fill); | 
 | } | 
 |  | 
 | // just ensure this can run w/o any SkASSERTS firing in the debug build | 
 | // we used to assert due to differences in how we determine a degenerate vector | 
 | // but that was fixed with the introduction of SkPoint::CanNormalize | 
 | static void stroke_tiny_cubic() { | 
 |     SkPoint p0[] = { | 
 |         { 372.0f,   92.0f }, | 
 |         { 372.0f,   92.0f }, | 
 |         { 372.0f,   92.0f }, | 
 |         { 372.0f,   92.0f }, | 
 |     }; | 
 |  | 
 |     stroke_cubic(p0); | 
 |  | 
 |     SkPoint p1[] = { | 
 |         { 372.0f,       92.0f }, | 
 |         { 372.0007f,    92.000755f }, | 
 |         { 371.99927f,   92.003922f }, | 
 |         { 371.99826f,   92.003899f }, | 
 |     }; | 
 |  | 
 |     stroke_cubic(p1); | 
 | } | 
 |  | 
 | static void check_close(skiatest::Reporter* reporter, const SkPath& path) { | 
 |     for (int i = 0; i < 2; ++i) { | 
 |         SkPath::Iter iter(path, SkToBool(i)); | 
 |         SkPoint mv; | 
 |         SkPoint pts[4]; | 
 |         SkPath::Verb v; | 
 |         int nMT = 0; | 
 |         int nCL = 0; | 
 |         mv.set(0, 0); | 
 |         while (SkPath::kDone_Verb != (v = iter.next(pts))) { | 
 |             switch (v) { | 
 |                 case SkPath::kMove_Verb: | 
 |                     mv = pts[0]; | 
 |                     ++nMT; | 
 |                     break; | 
 |                 case SkPath::kClose_Verb: | 
 |                     REPORTER_ASSERT(reporter, mv == pts[0]); | 
 |                     ++nCL; | 
 |                     break; | 
 |                 default: | 
 |                     break; | 
 |             } | 
 |         } | 
 |         // if we force a close on the interator we should have a close | 
 |         // for every moveTo | 
 |         REPORTER_ASSERT(reporter, !i || nMT == nCL); | 
 |     } | 
 | } | 
 |  | 
 | static void test_close(skiatest::Reporter* reporter) { | 
 |     SkPath closePt; | 
 |     closePt.moveTo(0, 0); | 
 |     closePt.close(); | 
 |     check_close(reporter, closePt); | 
 |  | 
 |     SkPath openPt; | 
 |     openPt.moveTo(0, 0); | 
 |     check_close(reporter, openPt); | 
 |  | 
 |     SkPath empty; | 
 |     check_close(reporter, empty); | 
 |     empty.close(); | 
 |     check_close(reporter, empty); | 
 |  | 
 |     SkPath rect; | 
 |     rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
 |     check_close(reporter, rect); | 
 |     rect.close(); | 
 |     check_close(reporter, rect); | 
 |  | 
 |     SkPath quad; | 
 |     quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
 |     check_close(reporter, quad); | 
 |     quad.close(); | 
 |     check_close(reporter, quad); | 
 |  | 
 |     SkPath cubic; | 
 |     quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, | 
 |                  10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); | 
 |     check_close(reporter, cubic); | 
 |     cubic.close(); | 
 |     check_close(reporter, cubic); | 
 |  | 
 |     SkPath line; | 
 |     line.moveTo(SK_Scalar1, SK_Scalar1); | 
 |     line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); | 
 |     check_close(reporter, line); | 
 |     line.close(); | 
 |     check_close(reporter, line); | 
 |  | 
 |     SkPath rect2; | 
 |     rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
 |     rect2.close(); | 
 |     rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | 
 |     check_close(reporter, rect2); | 
 |     rect2.close(); | 
 |     check_close(reporter, rect2); | 
 |  | 
 |     SkPath oval3; | 
 |     oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); | 
 |     oval3.close(); | 
 |     oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); | 
 |     check_close(reporter, oval3); | 
 |     oval3.close(); | 
 |     check_close(reporter, oval3); | 
 |  | 
 |     SkPath moves; | 
 |     moves.moveTo(SK_Scalar1, SK_Scalar1); | 
 |     moves.moveTo(5 * SK_Scalar1, SK_Scalar1); | 
 |     moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); | 
 |     moves.moveTo(10 *SK_Scalar1, SK_Scalar1); | 
 |     check_close(reporter, moves); | 
 |  | 
 |     stroke_tiny_cubic(); | 
 | } | 
 |  | 
 | static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, | 
 |                             SkPath::Convexity expected) { | 
 |     SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | 
 |     SkPath::Convexity c = copy.getConvexity(); | 
 |     REPORTER_ASSERT(reporter, c == expected); | 
 | } | 
 |  | 
 | static void test_convexity2(skiatest::Reporter* reporter) { | 
 |     SkPath pt; | 
 |     pt.moveTo(0, 0); | 
 |     pt.close(); | 
 |     check_convexity(reporter, pt, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, pt, SkPath::kUnknown_Direction); | 
 |  | 
 |     SkPath line; | 
 |     line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); | 
 |     line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); | 
 |     line.close(); | 
 |     check_convexity(reporter, line, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, line, SkPath::kUnknown_Direction); | 
 |  | 
 |     SkPath triLeft; | 
 |     triLeft.moveTo(0, 0); | 
 |     triLeft.lineTo(SK_Scalar1, 0); | 
 |     triLeft.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     triLeft.close(); | 
 |     check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, triLeft, SkPath::kCW_Direction); | 
 |  | 
 |     SkPath triRight; | 
 |     triRight.moveTo(0, 0); | 
 |     triRight.lineTo(-SK_Scalar1, 0); | 
 |     triRight.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     triRight.close(); | 
 |     check_convexity(reporter, triRight, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, triRight, SkPath::kCCW_Direction); | 
 |  | 
 |     SkPath square; | 
 |     square.moveTo(0, 0); | 
 |     square.lineTo(SK_Scalar1, 0); | 
 |     square.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     square.lineTo(0, SK_Scalar1); | 
 |     square.close(); | 
 |     check_convexity(reporter, square, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, square, SkPath::kCW_Direction); | 
 |  | 
 |     SkPath redundantSquare; | 
 |     redundantSquare.moveTo(0, 0); | 
 |     redundantSquare.lineTo(0, 0); | 
 |     redundantSquare.lineTo(0, 0); | 
 |     redundantSquare.lineTo(SK_Scalar1, 0); | 
 |     redundantSquare.lineTo(SK_Scalar1, 0); | 
 |     redundantSquare.lineTo(SK_Scalar1, 0); | 
 |     redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     redundantSquare.lineTo(0, SK_Scalar1); | 
 |     redundantSquare.lineTo(0, SK_Scalar1); | 
 |     redundantSquare.lineTo(0, SK_Scalar1); | 
 |     redundantSquare.close(); | 
 |     check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); | 
 |     check_direction(reporter, redundantSquare, SkPath::kCW_Direction); | 
 |  | 
 |     SkPath bowTie; | 
 |     bowTie.moveTo(0, 0); | 
 |     bowTie.lineTo(0, 0); | 
 |     bowTie.lineTo(0, 0); | 
 |     bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     bowTie.lineTo(SK_Scalar1, SK_Scalar1); | 
 |     bowTie.lineTo(SK_Scalar1, 0); | 
 |     bowTie.lineTo(SK_Scalar1, 0); | 
 |     bowTie.lineTo(SK_Scalar1, 0); | 
 |     bowTie.lineTo(0, SK_Scalar1); | 
 |     bowTie.lineTo(0, SK_Scalar1); | 
 |     bowTie.lineTo(0, SK_Scalar1); | 
 |     bowTie.close(); | 
 |     check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); | 
 |     check_direction(reporter, bowTie, kDontCheckDir); | 
 |  | 
 |     SkPath spiral; | 
 |     spiral.moveTo(0, 0); | 
 |     spiral.lineTo(100*SK_Scalar1, 0); | 
 |     spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | 
 |     spiral.lineTo(0, 100*SK_Scalar1); | 
 |     spiral.lineTo(0, 50*SK_Scalar1); | 
 |     spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); | 
 |     spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); | 
 |     spiral.close(); | 
 |     check_convexity(reporter, spiral, SkPath::kConcave_Convexity); | 
 |     check_direction(reporter, spiral, kDontCheckDir); | 
 |  | 
 |     SkPath dent; | 
 |     dent.moveTo(0, 0); | 
 |     dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | 
 |     dent.lineTo(0, 100*SK_Scalar1); | 
 |     dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); | 
 |     dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); | 
 |     dent.close(); | 
 |     check_convexity(reporter, dent, SkPath::kConcave_Convexity); | 
 |     check_direction(reporter, dent, SkPath::kCW_Direction); | 
 | } | 
 |  | 
 | static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, | 
 |                                 const SkRect& bounds) { | 
 |     REPORTER_ASSERT(reporter, p.isConvex()); | 
 |     REPORTER_ASSERT(reporter, p.getBounds() == bounds); | 
 |  | 
 |     SkPath p2(p); | 
 |     REPORTER_ASSERT(reporter, p2.isConvex()); | 
 |     REPORTER_ASSERT(reporter, p2.getBounds() == bounds); | 
 |  | 
 |     SkPath other; | 
 |     other.swap(p2); | 
 |     REPORTER_ASSERT(reporter, other.isConvex()); | 
 |     REPORTER_ASSERT(reporter, other.getBounds() == bounds); | 
 | } | 
 |  | 
 | static void setFromString(SkPath* path, const char str[]) { | 
 |     bool first = true; | 
 |     while (str) { | 
 |         SkScalar x, y; | 
 |         str = SkParse::FindScalar(str, &x); | 
 |         if (NULL == str) { | 
 |             break; | 
 |         } | 
 |         str = SkParse::FindScalar(str, &y); | 
 |         SkASSERT(str); | 
 |         if (first) { | 
 |             path->moveTo(x, y); | 
 |             first = false; | 
 |         } else { | 
 |             path->lineTo(x, y); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_convexity(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |  | 
 |     check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
 |     path.addCircle(0, 0, SkIntToScalar(10)); | 
 |     check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
 |     path.addCircle(0, 0, SkIntToScalar(10));   // 2nd circle | 
 |     check_convexity(reporter, path, SkPath::kConcave_Convexity); | 
 |  | 
 |     path.reset(); | 
 |     path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); | 
 |     check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
 |     REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction)); | 
 |  | 
 |     path.reset(); | 
 |     path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); | 
 |     check_convexity(reporter, path, SkPath::kConvex_Convexity); | 
 |     REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction)); | 
 |  | 
 |     static const struct { | 
 |         const char*         fPathStr; | 
 |         SkPath::Convexity   fExpectedConvexity; | 
 |         SkPath::Direction   fExpectedDirection; | 
 |     } gRec[] = { | 
 |         { "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
 |         { "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
 |         { "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, | 
 |         { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction }, | 
 |         { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction }, | 
 |         { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction }, | 
 |         { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir }, | 
 |         { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction }, | 
 |     }; | 
 |  | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { | 
 |         SkPath path; | 
 |         setFromString(&path, gRec[i].fPathStr); | 
 |         check_convexity(reporter, path, gRec[i].fExpectedConvexity); | 
 |         check_direction(reporter, path, gRec[i].fExpectedDirection); | 
 |     } | 
 | } | 
 |  | 
 | static void test_isLine(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |     SkPoint pts[2]; | 
 |     const SkScalar value = SkIntToScalar(5); | 
 |  | 
 |     REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
 |  | 
 |     // set some non-zero values | 
 |     pts[0].set(value, value); | 
 |     pts[1].set(value, value); | 
 |     REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
 |     // check that pts was untouched | 
 |     REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | 
 |     REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | 
 |  | 
 |     const SkScalar moveX = SkIntToScalar(1); | 
 |     const SkScalar moveY = SkIntToScalar(2); | 
 |     SkASSERT(value != moveX && value != moveY); | 
 |  | 
 |     path.moveTo(moveX, moveY); | 
 |     REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
 |     REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
 |     // check that pts was untouched | 
 |     REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | 
 |     REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | 
 |  | 
 |     const SkScalar lineX = SkIntToScalar(2); | 
 |     const SkScalar lineY = SkIntToScalar(2); | 
 |     SkASSERT(value != lineX && value != lineY); | 
 |  | 
 |     path.lineTo(lineX, lineY); | 
 |     REPORTER_ASSERT(reporter, path.isLine(NULL)); | 
 |  | 
 |     REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); | 
 |     REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); | 
 |     REPORTER_ASSERT(reporter, path.isLine(pts)); | 
 |     REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | 
 |     REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | 
 |  | 
 |     path.lineTo(0, 0);  // too many points/verbs | 
 |     REPORTER_ASSERT(reporter, !path.isLine(NULL)); | 
 |     REPORTER_ASSERT(reporter, !path.isLine(pts)); | 
 |     REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | 
 |     REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | 
 | } | 
 |  | 
 | static void test_conservativelyContains(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |  | 
 |     // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. | 
 |     static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); | 
 |  | 
 |     // A circle that bounds kBaseRect (with a significant amount of slop) | 
 |     SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height()); | 
 |     circleR = SkScalarMul(circleR, SkFloatToScalar(1.75f)) / 2; | 
 |     static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; | 
 |  | 
 |     // round-rect radii | 
 |     static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; | 
 |  | 
 |     static const struct SUPPRESS_VISIBILITY_WARNING { | 
 |         SkRect fQueryRect; | 
 |         bool   fInRect; | 
 |         bool   fInCircle; | 
 |         bool   fInRR; | 
 |     } kQueries[] = { | 
 |         {kBaseRect, true, true, false}, | 
 |  | 
 |         // rect well inside of kBaseRect | 
 |         {SkRect::MakeLTRB(kBaseRect.fLeft + SkFloatToScalar(0.25f)*kBaseRect.width(), | 
 |                           kBaseRect.fTop + SkFloatToScalar(0.25f)*kBaseRect.height(), | 
 |                           kBaseRect.fRight - SkFloatToScalar(0.25f)*kBaseRect.width(), | 
 |                           kBaseRect.fBottom - SkFloatToScalar(0.25f)*kBaseRect.height()), | 
 |                           true, true, true}, | 
 |  | 
 |         // rects with edges off by one from kBaseRect's edges | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
 |                           kBaseRect.width(), kBaseRect.height() + 1), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
 |                           kBaseRect.width() + 1, kBaseRect.height()), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | 
 |                           kBaseRect.width() + 1, kBaseRect.height() + 1), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | 
 |                           kBaseRect.width(), kBaseRect.height()), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | 
 |                           kBaseRect.width(), kBaseRect.height()), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | 
 |                           kBaseRect.width() + 2, kBaseRect.height()), | 
 |          false, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | 
 |                           kBaseRect.width() + 2, kBaseRect.height()), | 
 |          false, true, false}, | 
 |  | 
 |         // zero-w/h rects at each corner of kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false}, | 
 |         {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false}, | 
 |  | 
 |         // far away rect | 
 |         {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, | 
 |                           SkIntToScalar(10), SkIntToScalar(10)), | 
 |          false, false, false}, | 
 |  | 
 |         // very large rect containing kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), | 
 |                           kBaseRect.fTop - 5 * kBaseRect.height(), | 
 |                           11 * kBaseRect.width(), 11 * kBaseRect.height()), | 
 |          false, false, false}, | 
 |  | 
 |         // skinny rect that spans same y-range as kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | 
 |                           SkIntToScalar(1), kBaseRect.height()), | 
 |          true, true, true}, | 
 |  | 
 |         // short rect that spans same x-range as kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), | 
 |          true, true, true}, | 
 |  | 
 |         // skinny rect that spans slightly larger y-range than kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | 
 |                           SkIntToScalar(1), kBaseRect.height() + 1), | 
 |          false, true, false}, | 
 |  | 
 |         // short rect that spans slightly larger x-range than kBaseRect | 
 |         {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), | 
 |                           kBaseRect.width() + 1, SkScalar(1)), | 
 |          false, true, false}, | 
 |     }; | 
 |  | 
 |     for (int inv = 0; inv < 4; ++inv) { | 
 |         for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { | 
 |             SkRect qRect = kQueries[q].fQueryRect; | 
 |             if (inv & 0x1) { | 
 |                 SkTSwap(qRect.fLeft, qRect.fRight); | 
 |             } | 
 |             if (inv & 0x2) { | 
 |                 SkTSwap(qRect.fTop, qRect.fBottom); | 
 |             } | 
 |             for (int d = 0; d < 2; ++d) { | 
 |                 SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction; | 
 |                 path.reset(); | 
 |                 path.addRect(kBaseRect, dir); | 
 |                 REPORTER_ASSERT(reporter, kQueries[q].fInRect == | 
 |                                           path.conservativelyContainsRect(qRect)); | 
 |  | 
 |                 path.reset(); | 
 |                 path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); | 
 |                 REPORTER_ASSERT(reporter, kQueries[q].fInCircle == | 
 |                                           path.conservativelyContainsRect(qRect)); | 
 |  | 
 |                 path.reset(); | 
 |                 path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); | 
 |                 REPORTER_ASSERT(reporter, kQueries[q].fInRR == | 
 |                                           path.conservativelyContainsRect(qRect)); | 
 |             } | 
 |             // Slightly non-convex shape, shouldn't contain any rects. | 
 |             path.reset(); | 
 |             path.moveTo(0, 0); | 
 |             path.lineTo(SkIntToScalar(50), SkFloatToScalar(0.05f)); | 
 |             path.lineTo(SkIntToScalar(100), 0); | 
 |             path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); | 
 |             path.lineTo(0, SkIntToScalar(100)); | 
 |             path.close(); | 
 |             REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); | 
 |         } | 
 |     } | 
 |  | 
 |     // make sure a minimal convex shape works, a right tri with edges along pos x and y axes. | 
 |     path.reset(); | 
 |     path.moveTo(0, 0); | 
 |     path.lineTo(SkIntToScalar(100), 0); | 
 |     path.lineTo(0, SkIntToScalar(100)); | 
 |  | 
 |     // inside, on along top edge | 
 |     REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | 
 |                                                                                SkIntToScalar(10), | 
 |                                                                                SkIntToScalar(10)))); | 
 |     // above | 
 |     REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( | 
 |         SkRect::MakeXYWH(SkIntToScalar(50), | 
 |                          SkIntToScalar(-10), | 
 |                          SkIntToScalar(10), | 
 |                          SkIntToScalar(10)))); | 
 |     // to the left | 
 |     REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), | 
 |                                                                                 SkIntToScalar(5), | 
 |                                                                                 SkIntToScalar(5), | 
 |                                                                                 SkIntToScalar(5)))); | 
 |  | 
 |     // outside the diagonal edge | 
 |     REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), | 
 |                                                                                 SkIntToScalar(200), | 
 |                                                                                 SkIntToScalar(20), | 
 |                                                                                 SkIntToScalar(5)))); | 
 | } | 
 |  | 
 | // Simple isRect test is inline TestPath, below. | 
 | // test_isRect provides more extensive testing. | 
 | static void test_isRect(skiatest::Reporter* reporter) { | 
 |     // passing tests (all moveTo / lineTo... | 
 |     SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; | 
 |     SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
 |     SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | 
 |     SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | 
 |     SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; | 
 |     SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
 |     SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | 
 |     SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | 
 |     SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
 |     SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, | 
 |         {1, 0}, {.5f, 0}}; | 
 |     SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, | 
 |         {0, 1}, {0, .5f}}; | 
 |     SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
 |     SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
 |     SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; | 
 |     SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; | 
 |  | 
 |     // failing tests | 
 |     SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | 
 |     SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | 
 |     SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | 
 |     SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | 
 |     SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | 
 |     SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | 
 |     SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | 
 |     SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | 
 |     SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps | 
 |     SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap | 
 |     SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short | 
 |  | 
 |     // failing, no close | 
 |     SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match | 
 |     SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto | 
 |  | 
 |     size_t testLen[] = { | 
 |         sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6), | 
 |         sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc), | 
 |         sizeof(rd), sizeof(re), sizeof(rf), | 
 |         sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6), | 
 |         sizeof(f7), sizeof(f8), sizeof(f9), sizeof(fa), sizeof(fb), | 
 |         sizeof(c1), sizeof(c2) | 
 |     }; | 
 |     SkPoint* tests[] = { | 
 |         r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf, | 
 |         f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb, | 
 |         c1, c2 | 
 |     }; | 
 |     SkPoint* lastPass = rf; | 
 |     SkPoint* lastClose = fb; | 
 |     bool fail = false; | 
 |     bool close = true; | 
 |     const size_t testCount = sizeof(tests) / sizeof(tests[0]); | 
 |     size_t index; | 
 |     for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | 
 |         SkPath path; | 
 |         path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY); | 
 |         for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) { | 
 |             path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY); | 
 |         } | 
 |         if (close) { | 
 |             path.close(); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path.isRect(0)); | 
 |         REPORTER_ASSERT(reporter, fail ^ path.isRect(NULL, NULL)); | 
 |  | 
 |         if (!fail) { | 
 |             SkRect computed, expected; | 
 |             expected.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint)); | 
 |             REPORTER_ASSERT(reporter, path.isRect(&computed)); | 
 |             REPORTER_ASSERT(reporter, expected == computed); | 
 |  | 
 |             bool isClosed; | 
 |             SkPath::Direction direction, cheapDirection; | 
 |             REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection)); | 
 |             REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction)); | 
 |             REPORTER_ASSERT(reporter, isClosed == close); | 
 |             REPORTER_ASSERT(reporter, direction == cheapDirection); | 
 |         } else { | 
 |             SkRect computed; | 
 |             computed.set(123, 456, 789, 1011); | 
 |             REPORTER_ASSERT(reporter, !path.isRect(&computed)); | 
 |             REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); | 
 |             REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); | 
 |  | 
 |             bool isClosed = (bool) -1; | 
 |             SkPath::Direction direction = (SkPath::Direction) -1; | 
 |             REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction)); | 
 |             REPORTER_ASSERT(reporter, isClosed == (bool) -1); | 
 |             REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1); | 
 |         } | 
 |  | 
 |         if (tests[testIndex] == lastPass) { | 
 |             fail = true; | 
 |         } | 
 |         if (tests[testIndex] == lastClose) { | 
 |             close = false; | 
 |         } | 
 |     } | 
 |  | 
 |     // fail, close then line | 
 |     SkPath path1; | 
 |     path1.moveTo(r1[0].fX, r1[0].fY); | 
 |     for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |         path1.lineTo(r1[index].fX, r1[index].fY); | 
 |     } | 
 |     path1.close(); | 
 |     path1.lineTo(1, 0); | 
 |     REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); | 
 |  | 
 |     // fail, move in the middle | 
 |     path1.reset(); | 
 |     path1.moveTo(r1[0].fX, r1[0].fY); | 
 |     for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |         if (index == 2) { | 
 |             path1.moveTo(1, .5f); | 
 |         } | 
 |         path1.lineTo(r1[index].fX, r1[index].fY); | 
 |     } | 
 |     path1.close(); | 
 |     REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); | 
 |  | 
 |     // fail, move on the edge | 
 |     path1.reset(); | 
 |     for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |         path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | 
 |         path1.lineTo(r1[index].fX, r1[index].fY); | 
 |     } | 
 |     path1.close(); | 
 |     REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); | 
 |  | 
 |     // fail, quad | 
 |     path1.reset(); | 
 |     path1.moveTo(r1[0].fX, r1[0].fY); | 
 |     for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |         if (index == 2) { | 
 |             path1.quadTo(1, .5f, 1, .5f); | 
 |         } | 
 |         path1.lineTo(r1[index].fX, r1[index].fY); | 
 |     } | 
 |     path1.close(); | 
 |     REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); | 
 |  | 
 |     // fail, cubic | 
 |     path1.reset(); | 
 |     path1.moveTo(r1[0].fX, r1[0].fY); | 
 |     for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |         if (index == 2) { | 
 |             path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | 
 |         } | 
 |         path1.lineTo(r1[index].fX, r1[index].fY); | 
 |     } | 
 |     path1.close(); | 
 |     REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); | 
 | } | 
 |  | 
 | static void test_isNestedRects(skiatest::Reporter* reporter) { | 
 |     // passing tests (all moveTo / lineTo... | 
 |     SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | 
 |     SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | 
 |     SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | 
 |     SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | 
 |     SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW | 
 |     SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
 |     SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | 
 |     SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | 
 |     SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | 
 |     SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, // CCW | 
 |         {1, 0}, {.5f, 0}}; | 
 |     SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, // CW | 
 |         {0, 1}, {0, .5f}}; | 
 |     SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW | 
 |     SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW | 
 |     SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | 
 |  | 
 |     // failing tests | 
 |     SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | 
 |     SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | 
 |     SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | 
 |     SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | 
 |     SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | 
 |     SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | 
 |     SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | 
 |     SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | 
 |  | 
 |     // failing, no close | 
 |     SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match | 
 |     SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto | 
 |  | 
 |     size_t testLen[] = { | 
 |         sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6), | 
 |         sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc), | 
 |         sizeof(rd), sizeof(re), | 
 |         sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6), | 
 |         sizeof(f7), sizeof(f8), | 
 |         sizeof(c1), sizeof(c2) | 
 |     }; | 
 |     SkPoint* tests[] = { | 
 |         r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, | 
 |         f1, f2, f3, f4, f5, f6, f7, f8, | 
 |         c1, c2 | 
 |     }; | 
 |     SkPath::Direction dirs[] = { | 
 |         SkPath::kCW_Direction, SkPath::kCW_Direction, SkPath::kCW_Direction, | 
 |         SkPath::kCW_Direction, SkPath::kCCW_Direction, SkPath::kCCW_Direction, | 
 |         SkPath::kCCW_Direction, SkPath::kCCW_Direction, SkPath::kCCW_Direction, | 
 |         SkPath::kCCW_Direction, SkPath::kCW_Direction, SkPath::kCW_Direction, | 
 |         SkPath::kCCW_Direction, SkPath::kCW_Direction, SkPath::kUnknown_Direction, | 
 |         SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, | 
 |         SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, | 
 |         SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, SkPath::kUnknown_Direction, | 
 |     }; | 
 |     SkASSERT(SK_ARRAY_COUNT(tests) == SK_ARRAY_COUNT(dirs)); | 
 |  | 
 |     const SkPoint* lastPass = re; | 
 |     const SkPoint* lastClose = f8; | 
 |     const size_t testCount = sizeof(tests) / sizeof(tests[0]); | 
 |     size_t index; | 
 |     for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { | 
 |         bool fail = false; | 
 |         bool close = true; | 
 |         for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | 
 |             SkPath path; | 
 |             if (rectFirst) { | 
 |                 path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |             } | 
 |             path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY); | 
 |             for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) { | 
 |                 path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY); | 
 |             } | 
 |             if (close) { | 
 |                 path.close(); | 
 |             } | 
 |             if (!rectFirst) { | 
 |                 path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |             } | 
 |             REPORTER_ASSERT(reporter, fail ^ path.isNestedRects(0)); | 
 |             if (!fail) { | 
 |                 SkRect expected[2], computed[2]; | 
 |                 SkPath::Direction expectedDirs[2], computedDirs[2]; | 
 |                 SkRect testBounds; | 
 |                 testBounds.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint)); | 
 |                 expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); | 
 |                 expected[1] = testBounds; | 
 |                 if (rectFirst) { | 
 |                     expectedDirs[0] = SkPath::kCW_Direction; | 
 |                 } else { | 
 |                     expectedDirs[0] = SkPath::kCCW_Direction; | 
 |                 } | 
 |                 expectedDirs[1] = dirs[testIndex]; | 
 |                 REPORTER_ASSERT(reporter, path.isNestedRects(computed, computedDirs)); | 
 |                 REPORTER_ASSERT(reporter, expected[0] == computed[0]); | 
 |                 REPORTER_ASSERT(reporter, expected[1] == computed[1]); | 
 |                 REPORTER_ASSERT(reporter, expectedDirs[0] == computedDirs[0]); | 
 |                 REPORTER_ASSERT(reporter, expectedDirs[1] == computedDirs[1]); | 
 |             } | 
 |             if (tests[testIndex] == lastPass) { | 
 |                 fail = true; | 
 |             } | 
 |             if (tests[testIndex] == lastClose) { | 
 |                 close = false; | 
 |             } | 
 |         } | 
 |  | 
 |         // fail, close then line | 
 |         SkPath path1; | 
 |         if (rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |         } | 
 |         path1.moveTo(r1[0].fX, r1[0].fY); | 
 |         for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |             path1.lineTo(r1[index].fX, r1[index].fY); | 
 |         } | 
 |         path1.close(); | 
 |         path1.lineTo(1, 0); | 
 |         if (!rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |  | 
 |         // fail, move in the middle | 
 |         path1.reset(); | 
 |         if (rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |         } | 
 |         path1.moveTo(r1[0].fX, r1[0].fY); | 
 |         for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |             if (index == 2) { | 
 |                 path1.moveTo(1, .5f); | 
 |             } | 
 |             path1.lineTo(r1[index].fX, r1[index].fY); | 
 |         } | 
 |         path1.close(); | 
 |         if (!rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |  | 
 |         // fail, move on the edge | 
 |         path1.reset(); | 
 |         if (rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |         } | 
 |         for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |             path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | 
 |             path1.lineTo(r1[index].fX, r1[index].fY); | 
 |         } | 
 |         path1.close(); | 
 |         if (!rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |  | 
 |         // fail, quad | 
 |         path1.reset(); | 
 |         if (rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |         } | 
 |         path1.moveTo(r1[0].fX, r1[0].fY); | 
 |         for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |             if (index == 2) { | 
 |                 path1.quadTo(1, .5f, 1, .5f); | 
 |             } | 
 |             path1.lineTo(r1[index].fX, r1[index].fY); | 
 |         } | 
 |         path1.close(); | 
 |         if (!rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |  | 
 |         // fail, cubic | 
 |         path1.reset(); | 
 |         if (rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | 
 |         } | 
 |         path1.moveTo(r1[0].fX, r1[0].fY); | 
 |         for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { | 
 |             if (index == 2) { | 
 |                 path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | 
 |             } | 
 |             path1.lineTo(r1[index].fX, r1[index].fY); | 
 |         } | 
 |         path1.close(); | 
 |         if (!rectFirst) { | 
 |             path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | 
 |         } | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |  | 
 |         // fail,  not nested | 
 |         path1.reset(); | 
 |         path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction); | 
 |         path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction); | 
 |         REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0)); | 
 |     } | 
 |  | 
 |     // pass, stroke rect | 
 |     SkPath src, dst; | 
 |     src.addRect(1, 1, 7, 7, SkPath::kCW_Direction); | 
 |     SkPaint strokePaint; | 
 |     strokePaint.setStyle(SkPaint::kStroke_Style); | 
 |     strokePaint.setStrokeWidth(2); | 
 |     strokePaint.getFillPath(src, &dst); | 
 |     REPORTER_ASSERT(reporter, dst.isNestedRects(0)); | 
 | } | 
 |  | 
 | static void write_and_read_back(skiatest::Reporter* reporter, | 
 |                                 const SkPath& p) { | 
 |     SkWriter32 writer(100); | 
 |     writer.writePath(p); | 
 |     size_t size = writer.size(); | 
 |     SkAutoMalloc storage(size); | 
 |     writer.flatten(storage.get()); | 
 |     SkReader32 reader(storage.get(), size); | 
 |  | 
 |     SkPath readBack; | 
 |     REPORTER_ASSERT(reporter, readBack != p); | 
 |     reader.readPath(&readBack); | 
 |     REPORTER_ASSERT(reporter, readBack == p); | 
 |  | 
 |     REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == | 
 |                               p.getConvexityOrUnknown()); | 
 |  | 
 |     REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL)); | 
 |  | 
 |     const SkRect& origBounds = p.getBounds(); | 
 |     const SkRect& readBackBounds = readBack.getBounds(); | 
 |  | 
 |     REPORTER_ASSERT(reporter, origBounds == readBackBounds); | 
 | } | 
 |  | 
 | static void test_flattening(skiatest::Reporter* reporter) { | 
 |     SkPath p; | 
 |  | 
 |     static const SkPoint pts[] = { | 
 |         { 0, 0 }, | 
 |         { SkIntToScalar(10), SkIntToScalar(10) }, | 
 |         { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, | 
 |         { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } | 
 |     }; | 
 |     p.moveTo(pts[0]); | 
 |     p.lineTo(pts[1]); | 
 |     p.quadTo(pts[2], pts[3]); | 
 |     p.cubicTo(pts[4], pts[5], pts[6]); | 
 |  | 
 |     write_and_read_back(reporter, p); | 
 |  | 
 |     // create a buffer that should be much larger than the path so we don't | 
 |     // kill our stack if writer goes too far. | 
 |     char buffer[1024]; | 
 |     uint32_t size1 = p.writeToMemory(NULL); | 
 |     uint32_t size2 = p.writeToMemory(buffer); | 
 |     REPORTER_ASSERT(reporter, size1 == size2); | 
 |  | 
 |     SkPath p2; | 
 |     uint32_t size3 = p2.readFromMemory(buffer); | 
 |     REPORTER_ASSERT(reporter, size1 == size3); | 
 |     REPORTER_ASSERT(reporter, p == p2); | 
 |  | 
 |     char buffer2[1024]; | 
 |     size3 = p2.writeToMemory(buffer2); | 
 |     REPORTER_ASSERT(reporter, size1 == size3); | 
 |     REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); | 
 |  | 
 |     // test persistence of the oval flag & convexity | 
 |     { | 
 |         SkPath oval; | 
 |         SkRect rect = SkRect::MakeWH(10, 10); | 
 |         oval.addOval(rect); | 
 |  | 
 |         write_and_read_back(reporter, oval); | 
 |     } | 
 | } | 
 |  | 
 | static void test_transform(skiatest::Reporter* reporter) { | 
 |     SkPath p, p1; | 
 |  | 
 |     static const SkPoint pts[] = { | 
 |         { 0, 0 }, | 
 |         { SkIntToScalar(10), SkIntToScalar(10) }, | 
 |         { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, | 
 |         { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } | 
 |     }; | 
 |     p.moveTo(pts[0]); | 
 |     p.lineTo(pts[1]); | 
 |     p.quadTo(pts[2], pts[3]); | 
 |     p.cubicTo(pts[4], pts[5], pts[6]); | 
 |  | 
 |     SkMatrix matrix; | 
 |     matrix.reset(); | 
 |     p.transform(matrix, &p1); | 
 |     REPORTER_ASSERT(reporter, p == p1); | 
 |  | 
 |     matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); | 
 |     p.transform(matrix, &p1); | 
 |     SkPoint pts1[7]; | 
 |     int count = p1.getPoints(pts1, 7); | 
 |     REPORTER_ASSERT(reporter, 7 == count); | 
 |     for (int i = 0; i < count; ++i) { | 
 |         SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); | 
 |         REPORTER_ASSERT(reporter, newPt == pts1[i]); | 
 |     } | 
 | } | 
 |  | 
 | static void test_zero_length_paths(skiatest::Reporter* reporter) { | 
 |     SkPath  p; | 
 |     uint8_t verbs[32]; | 
 |  | 
 |     struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { | 
 |         const char* testPath; | 
 |         const size_t numResultPts; | 
 |         const SkRect resultBound; | 
 |         const SkPath::Verb* resultVerbs; | 
 |         const size_t numResultVerbs; | 
 |     }; | 
 |  | 
 |     static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; | 
 |     static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; | 
 |     static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; | 
 |     static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; | 
 |     static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; | 
 |     static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; | 
 |     static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; | 
 |     static const SkPath::Verb resultVerbs8[] = { | 
 |         SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb | 
 |     }; | 
 |     static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; | 
 |     static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; | 
 |     static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; | 
 |     static const SkPath::Verb resultVerbs12[] = { | 
 |         SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb | 
 |     }; | 
 |     static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; | 
 |     static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; | 
 |     static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; | 
 |     static const SkPath::Verb resultVerbs16[] = { | 
 |         SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb | 
 |     }; | 
 |     static const struct zeroPathTestData gZeroLengthTests[] = { | 
 |         { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | 
 |         { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | 
 |         { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | 
 |         { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, | 
 |         { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, | 
 |         { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, | 
 |         { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, | 
 |         { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, | 
 |         { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, | 
 |         { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, | 
 |         { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, | 
 |         { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, | 
 |         { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, | 
 |             SK_ARRAY_COUNT(resultVerbs14) | 
 |         }, | 
 |         { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, | 
 |         { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, | 
 |             SK_ARRAY_COUNT(resultVerbs16) | 
 |         } | 
 |     }; | 
 |  | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { | 
 |         p.reset(); | 
 |         bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); | 
 |         REPORTER_ASSERT(reporter, valid); | 
 |         REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |         REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); | 
 |         REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); | 
 |         REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); | 
 |         for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { | 
 |             REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | struct SegmentInfo { | 
 |     SkPath fPath; | 
 |     int    fPointCount; | 
 | }; | 
 |  | 
 | #define kCurveSegmentMask   (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) | 
 |  | 
 | static void test_segment_masks(skiatest::Reporter* reporter) { | 
 |     SkPath p, p2; | 
 |  | 
 |     p.moveTo(0, 0); | 
 |     p.quadTo(100, 100, 200, 200); | 
 |     REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |     p2 = p; | 
 |     REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
 |     p.cubicTo(100, 100, 200, 200, 300, 300); | 
 |     REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |     p2 = p; | 
 |     REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
 |  | 
 |     p.reset(); | 
 |     p.moveTo(0, 0); | 
 |     p.cubicTo(100, 100, 200, 200, 300, 300); | 
 |     REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); | 
 |     p2 = p; | 
 |     REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | 
 |  | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 | } | 
 |  | 
 | static void test_iter(skiatest::Reporter* reporter) { | 
 |     SkPath  p; | 
 |     SkPoint pts[4]; | 
 |  | 
 |     // Test an iterator with no path | 
 |     SkPath::Iter noPathIter; | 
 |     REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test that setting an empty path works | 
 |     noPathIter.setPath(p, false); | 
 |     REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test that close path makes no difference for an empty path | 
 |     noPathIter.setPath(p, true); | 
 |     REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test an iterator with an initial empty path | 
 |     SkPath::Iter iter(p, false); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test that close path makes no difference | 
 |     iter.setPath(p, true); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |  | 
 |     struct iterTestData { | 
 |         const char* testPath; | 
 |         const bool forceClose; | 
 |         const bool consumeDegenerates; | 
 |         const size_t* numResultPtsPerVerb; | 
 |         const SkPoint* resultPts; | 
 |         const SkPath::Verb* resultVerbs; | 
 |         const size_t numResultVerbs; | 
 |     }; | 
 |  | 
 |     static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; | 
 |     static const SkPath::Verb resultVerbs2[] = { | 
 |         SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb | 
 |     }; | 
 |     static const SkPath::Verb resultVerbs3[] = { | 
 |         SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
 |     }; | 
 |     static const SkPath::Verb resultVerbs4[] = { | 
 |         SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
 |     }; | 
 |     static const SkPath::Verb resultVerbs5[] = { | 
 |         SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | 
 |     }; | 
 |     static const size_t resultPtsSizes1[] = { 0 }; | 
 |     static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 }; | 
 |     static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 }; | 
 |     static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 }; | 
 |     static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 }; | 
 |     static const SkPoint* resultPts1 = 0; | 
 |     static const SkPoint resultPts2[] = { | 
 |         { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 } | 
 |     }; | 
 |     static const SkPoint resultPts3[] = { | 
 |         { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }, | 
 |         { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 } | 
 |     }; | 
 |     static const SkPoint resultPts4[] = { | 
 |         { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | 
 |     }; | 
 |     static const SkPoint resultPts5[] = { | 
 |         { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | 
 |     }; | 
 |     static const struct iterTestData gIterTests[] = { | 
 |         { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | 
 |         { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | 
 |         { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | 
 |         { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | 
 |         { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) } | 
 |     }; | 
 |  | 
 |     for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { | 
 |         p.reset(); | 
 |         bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); | 
 |         REPORTER_ASSERT(reporter, valid); | 
 |         iter.setPath(p, gIterTests[i].forceClose); | 
 |         int j = 0, l = 0; | 
 |         do { | 
 |             REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]); | 
 |             for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { | 
 |                 REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); | 
 |             } | 
 |         } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); | 
 |         REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); | 
 |     } | 
 |  | 
 |     // The GM degeneratesegments.cpp test is more extensive | 
 | } | 
 |  | 
 | static void test_raw_iter(skiatest::Reporter* reporter) { | 
 |     SkPath p; | 
 |     SkPoint pts[4]; | 
 |  | 
 |     // Test an iterator with no path | 
 |     SkPath::RawIter noPathIter; | 
 |     REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
 |     // Test that setting an empty path works | 
 |     noPathIter.setPath(p); | 
 |     REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test an iterator with an initial empty path | 
 |     SkPath::RawIter iter(p); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Test that a move-only path returns the move. | 
 |     p.moveTo(SK_Scalar1, 0); | 
 |     iter.setPath(p); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // No matter how many moves we add, we should get them all back | 
 |     p.moveTo(SK_Scalar1*2, SK_Scalar1); | 
 |     p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | 
 |     iter.setPath(p); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Initial close is never ever stored | 
 |     p.reset(); | 
 |     p.close(); | 
 |     iter.setPath(p); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Move/close sequences | 
 |     p.reset(); | 
 |     p.close(); // Not stored, no purpose | 
 |     p.moveTo(SK_Scalar1, 0); | 
 |     p.close(); | 
 |     p.close(); // Not stored, no purpose | 
 |     p.moveTo(SK_Scalar1*2, SK_Scalar1); | 
 |     p.close(); | 
 |     p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | 
 |     p.moveTo(SK_Scalar1*4, SK_Scalar1*3); | 
 |     p.close(); | 
 |     iter.setPath(p); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == 0); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | 
 |     REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); | 
 |     REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); | 
 |     REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | 
 |  | 
 |     // Generate random paths and verify | 
 |     SkPoint randomPts[25]; | 
 |     for (int i = 0; i < 5; ++i) { | 
 |         for (int j = 0; j < 5; ++j) { | 
 |             randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); | 
 |         } | 
 |     } | 
 |  | 
 |     // Max of 10 segments, max 3 points per segment | 
 |     SkMWCRandom rand(9876543); | 
 |     SkPoint          expectedPts[31]; // May have leading moveTo | 
 |     SkPath::Verb     expectedVerbs[22]; // May have leading moveTo | 
 |     SkPath::Verb     nextVerb; | 
 |  | 
 |     for (int i = 0; i < 500; ++i) { | 
 |         p.reset(); | 
 |         bool lastWasClose = true; | 
 |         bool haveMoveTo = false; | 
 |         SkPoint lastMoveToPt = { 0, 0 }; | 
 |         int numPoints = 0; | 
 |         int numVerbs = (rand.nextU() >> 16) % 10; | 
 |         int numIterVerbs = 0; | 
 |         for (int j = 0; j < numVerbs; ++j) { | 
 |             do { | 
 |                 nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb); | 
 |             } while (lastWasClose && nextVerb == SkPath::kClose_Verb); | 
 |             switch (nextVerb) { | 
 |                 case SkPath::kMove_Verb: | 
 |                     expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     p.moveTo(expectedPts[numPoints]); | 
 |                     lastMoveToPt = expectedPts[numPoints]; | 
 |                     numPoints += 1; | 
 |                     lastWasClose = false; | 
 |                     haveMoveTo = true; | 
 |                     break; | 
 |                 case SkPath::kLine_Verb: | 
 |                     if (!haveMoveTo) { | 
 |                         expectedPts[numPoints++] = lastMoveToPt; | 
 |                         expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
 |                         haveMoveTo = true; | 
 |                     } | 
 |                     expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     p.lineTo(expectedPts[numPoints]); | 
 |                     numPoints += 1; | 
 |                     lastWasClose = false; | 
 |                     break; | 
 |                 case SkPath::kQuad_Verb: | 
 |                     if (!haveMoveTo) { | 
 |                         expectedPts[numPoints++] = lastMoveToPt; | 
 |                         expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
 |                         haveMoveTo = true; | 
 |                     } | 
 |                     expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); | 
 |                     numPoints += 2; | 
 |                     lastWasClose = false; | 
 |                     break; | 
 |                 case SkPath::kConic_Verb: | 
 |                     if (!haveMoveTo) { | 
 |                         expectedPts[numPoints++] = lastMoveToPt; | 
 |                         expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
 |                         haveMoveTo = true; | 
 |                     } | 
 |                     expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | 
 |                               rand.nextUScalar1() * 4); | 
 |                     numPoints += 2; | 
 |                     lastWasClose = false; | 
 |                     break; | 
 |                 case SkPath::kCubic_Verb: | 
 |                     if (!haveMoveTo) { | 
 |                         expectedPts[numPoints++] = lastMoveToPt; | 
 |                         expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | 
 |                         haveMoveTo = true; | 
 |                     } | 
 |                     expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; | 
 |                     p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | 
 |                               expectedPts[numPoints + 2]); | 
 |                     numPoints += 3; | 
 |                     lastWasClose = false; | 
 |                     break; | 
 |                 case SkPath::kClose_Verb: | 
 |                     p.close(); | 
 |                     haveMoveTo = false; | 
 |                     lastWasClose = true; | 
 |                     break; | 
 |                 default: | 
 |                     SkASSERT(!"unexpected verb"); | 
 |             } | 
 |             expectedVerbs[numIterVerbs++] = nextVerb; | 
 |         } | 
 |  | 
 |         iter.setPath(p); | 
 |         numVerbs = numIterVerbs; | 
 |         numIterVerbs = 0; | 
 |         int numIterPts = 0; | 
 |         SkPoint lastMoveTo; | 
 |         SkPoint lastPt; | 
 |         lastMoveTo.set(0, 0); | 
 |         lastPt.set(0, 0); | 
 |         while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { | 
 |             REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); | 
 |             numIterVerbs++; | 
 |             switch (nextVerb) { | 
 |                 case SkPath::kMove_Verb: | 
 |                     REPORTER_ASSERT(reporter, numIterPts < numPoints); | 
 |                     REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); | 
 |                     lastPt = lastMoveTo = pts[0]; | 
 |                     numIterPts += 1; | 
 |                     break; | 
 |                 case SkPath::kLine_Verb: | 
 |                     REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); | 
 |                     REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
 |                     REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
 |                     lastPt = pts[1]; | 
 |                     numIterPts += 1; | 
 |                     break; | 
 |                 case SkPath::kQuad_Verb: | 
 |                 case SkPath::kConic_Verb: | 
 |                     REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); | 
 |                     REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
 |                     REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
 |                     REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | 
 |                     lastPt = pts[2]; | 
 |                     numIterPts += 2; | 
 |                     break; | 
 |                 case SkPath::kCubic_Verb: | 
 |                     REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); | 
 |                     REPORTER_ASSERT(reporter, pts[0] == lastPt); | 
 |                     REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | 
 |                     REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | 
 |                     REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); | 
 |                     lastPt = pts[3]; | 
 |                     numIterPts += 3; | 
 |                     break; | 
 |                 case SkPath::kClose_Verb: | 
 |                     REPORTER_ASSERT(reporter, pts[0] == lastMoveTo); | 
 |                     lastPt = lastMoveTo; | 
 |                     break; | 
 |                 default: | 
 |                     SkASSERT(!"unexpected verb"); | 
 |             } | 
 |         } | 
 |         REPORTER_ASSERT(reporter, numIterPts == numPoints); | 
 |         REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); | 
 |     } | 
 | } | 
 |  | 
 | static void check_for_circle(skiatest::Reporter* reporter, | 
 |                              const SkPath& path, | 
 |                              bool expectedCircle, | 
 |                              SkPath::Direction expectedDir) { | 
 |     SkRect rect; | 
 |     REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); | 
 |     REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir)); | 
 |  | 
 |     if (expectedCircle) { | 
 |         REPORTER_ASSERT(reporter, rect.height() == rect.width()); | 
 |     } | 
 | } | 
 |  | 
 | static void test_circle_skew(skiatest::Reporter* reporter, | 
 |                              const SkPath& path, | 
 |                              SkPath::Direction dir) { | 
 |     SkPath tmp; | 
 |  | 
 |     SkMatrix m; | 
 |     m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); | 
 |     path.transform(m, &tmp); | 
 |     // this matrix reverses the direction. | 
 |     if (SkPath::kCCW_Direction == dir) { | 
 |         dir = SkPath::kCW_Direction; | 
 |     } else { | 
 |         SkASSERT(SkPath::kCW_Direction == dir); | 
 |         dir = SkPath::kCCW_Direction; | 
 |     } | 
 |     check_for_circle(reporter, tmp, false, dir); | 
 | } | 
 |  | 
 | static void test_circle_translate(skiatest::Reporter* reporter, | 
 |                                   const SkPath& path, | 
 |                                   SkPath::Direction dir) { | 
 |     SkPath tmp; | 
 |  | 
 |     // translate at small offset | 
 |     SkMatrix m; | 
 |     m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); | 
 |     path.transform(m, &tmp); | 
 |     check_for_circle(reporter, tmp, true, dir); | 
 |  | 
 |     tmp.reset(); | 
 |     m.reset(); | 
 |  | 
 |     // translate at a relatively big offset | 
 |     m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); | 
 |     path.transform(m, &tmp); | 
 |     check_for_circle(reporter, tmp, true, dir); | 
 | } | 
 |  | 
 | static void test_circle_rotate(skiatest::Reporter* reporter, | 
 |                                const SkPath& path, | 
 |                                SkPath::Direction dir) { | 
 |     for (int angle = 0; angle < 360; ++angle) { | 
 |         SkPath tmp; | 
 |         SkMatrix m; | 
 |         m.setRotate(SkIntToScalar(angle)); | 
 |         path.transform(m, &tmp); | 
 |  | 
 |         // TODO: a rotated circle whose rotated angle is not a multiple of 90 | 
 |         // degrees is not an oval anymore, this can be improved.  we made this | 
 |         // for the simplicity of our implementation. | 
 |         if (angle % 90 == 0) { | 
 |             check_for_circle(reporter, tmp, true, dir); | 
 |         } else { | 
 |             check_for_circle(reporter, tmp, false, dir); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_circle_mirror_x(skiatest::Reporter* reporter, | 
 |                                  const SkPath& path, | 
 |                                  SkPath::Direction dir) { | 
 |     SkPath tmp; | 
 |     SkMatrix m; | 
 |     m.reset(); | 
 |     m.setScaleX(-SK_Scalar1); | 
 |     path.transform(m, &tmp); | 
 |  | 
 |     if (SkPath::kCW_Direction == dir) { | 
 |         dir = SkPath::kCCW_Direction; | 
 |     } else { | 
 |         SkASSERT(SkPath::kCCW_Direction == dir); | 
 |         dir = SkPath::kCW_Direction; | 
 |     } | 
 |  | 
 |     check_for_circle(reporter, tmp, true, dir); | 
 | } | 
 |  | 
 | static void test_circle_mirror_y(skiatest::Reporter* reporter, | 
 |                                  const SkPath& path, | 
 |                                  SkPath::Direction dir) { | 
 |     SkPath tmp; | 
 |     SkMatrix m; | 
 |     m.reset(); | 
 |     m.setScaleY(-SK_Scalar1); | 
 |     path.transform(m, &tmp); | 
 |  | 
 |     if (SkPath::kCW_Direction == dir) { | 
 |         dir = SkPath::kCCW_Direction; | 
 |     } else { | 
 |         SkASSERT(SkPath::kCCW_Direction == dir); | 
 |         dir = SkPath::kCW_Direction; | 
 |     } | 
 |  | 
 |     check_for_circle(reporter, tmp, true, dir); | 
 | } | 
 |  | 
 | static void test_circle_mirror_xy(skiatest::Reporter* reporter, | 
 |                                  const SkPath& path, | 
 |                                  SkPath::Direction dir) { | 
 |     SkPath tmp; | 
 |     SkMatrix m; | 
 |     m.reset(); | 
 |     m.setScaleX(-SK_Scalar1); | 
 |     m.setScaleY(-SK_Scalar1); | 
 |     path.transform(m, &tmp); | 
 |  | 
 |     check_for_circle(reporter, tmp, true, dir); | 
 | } | 
 |  | 
 | static void test_circle_with_direction(skiatest::Reporter* reporter, | 
 |                                        SkPath::Direction dir) { | 
 |     SkPath path; | 
 |  | 
 |     // circle at origin | 
 |     path.addCircle(0, 0, SkIntToScalar(20), dir); | 
 |     check_for_circle(reporter, path, true, dir); | 
 |     test_circle_rotate(reporter, path, dir); | 
 |     test_circle_translate(reporter, path, dir); | 
 |     test_circle_skew(reporter, path, dir); | 
 |  | 
 |     // circle at an offset at (10, 10) | 
 |     path.reset(); | 
 |     path.addCircle(SkIntToScalar(10), SkIntToScalar(10), | 
 |                    SkIntToScalar(20), dir); | 
 |     check_for_circle(reporter, path, true, dir); | 
 |     test_circle_rotate(reporter, path, dir); | 
 |     test_circle_translate(reporter, path, dir); | 
 |     test_circle_skew(reporter, path, dir); | 
 |     test_circle_mirror_x(reporter, path, dir); | 
 |     test_circle_mirror_y(reporter, path, dir); | 
 |     test_circle_mirror_xy(reporter, path, dir); | 
 | } | 
 |  | 
 | static void test_circle_with_add_paths(skiatest::Reporter* reporter) { | 
 |     SkPath path; | 
 |     SkPath circle; | 
 |     SkPath rect; | 
 |     SkPath empty; | 
 |  | 
 |     static const SkPath::Direction kCircleDir = SkPath::kCW_Direction; | 
 |     static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction; | 
 |  | 
 |     circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); | 
 |     rect.addRect(SkIntToScalar(5), SkIntToScalar(5), | 
 |                  SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); | 
 |  | 
 |     SkMatrix translate; | 
 |     translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); | 
 |  | 
 |     // For simplicity, all the path concatenation related operations | 
 |     // would mark it non-circle, though in theory it's still a circle. | 
 |  | 
 |     // empty + circle (translate) | 
 |     path = empty; | 
 |     path.addPath(circle, translate); | 
 |     check_for_circle(reporter, path, false, kCircleDir); | 
 |  | 
 |     // circle + empty (translate) | 
 |     path = circle; | 
 |     path.addPath(empty, translate); | 
 |     check_for_circle(reporter, path, false, kCircleDir); | 
 |  | 
 |     // test reverseAddPath | 
 |     path = circle; | 
 |     path.reverseAddPath(rect); | 
 |     check_for_circle(reporter, path, false, kCircleDirOpposite); | 
 | } | 
 |  | 
 | static void test_circle(skiatest::Reporter* reporter) { | 
 |     test_circle_with_direction(reporter, SkPath::kCW_Direction); | 
 |     test_circle_with_direction(reporter, SkPath::kCCW_Direction); | 
 |  | 
 |     // multiple addCircle() | 
 |     SkPath path; | 
 |     path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
 |     path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); | 
 |     check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
 |  | 
 |     // some extra lineTo() would make isOval() fail | 
 |     path.reset(); | 
 |     path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
 |     path.lineTo(0, 0); | 
 |     check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
 |  | 
 |     // not back to the original point | 
 |     path.reset(); | 
 |     path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | 
 |     path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); | 
 |     check_for_circle(reporter, path, false, SkPath::kCW_Direction); | 
 |  | 
 |     test_circle_with_add_paths(reporter); | 
 | } | 
 |  | 
 | static void test_oval(skiatest::Reporter* reporter) { | 
 |     SkRect rect; | 
 |     SkMatrix m; | 
 |     SkPath path; | 
 |  | 
 |     rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); | 
 |     path.addOval(rect); | 
 |  | 
 |     REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
 |  | 
 |     m.setRotate(SkIntToScalar(90)); | 
 |     SkPath tmp; | 
 |     path.transform(m, &tmp); | 
 |     // an oval rotated 90 degrees is still an oval. | 
 |     REPORTER_ASSERT(reporter, tmp.isOval(NULL)); | 
 |  | 
 |     m.reset(); | 
 |     m.setRotate(SkIntToScalar(30)); | 
 |     tmp.reset(); | 
 |     path.transform(m, &tmp); | 
 |     // an oval rotated 30 degrees is not an oval anymore. | 
 |     REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
 |  | 
 |     // since empty path being transformed. | 
 |     path.reset(); | 
 |     tmp.reset(); | 
 |     m.reset(); | 
 |     path.transform(m, &tmp); | 
 |     REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
 |  | 
 |     // empty path is not an oval | 
 |     tmp.reset(); | 
 |     REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
 |  | 
 |     // only has moveTo()s | 
 |     tmp.reset(); | 
 |     tmp.moveTo(0, 0); | 
 |     tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); | 
 |     REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); | 
 |  | 
 |     // mimic WebKit's calling convention, | 
 |     // call moveTo() first and then call addOval() | 
 |     path.reset(); | 
 |     path.moveTo(0, 0); | 
 |     path.addOval(rect); | 
 |     REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
 |  | 
 |     // copy path | 
 |     path.reset(); | 
 |     tmp.reset(); | 
 |     tmp.addOval(rect); | 
 |     path = tmp; | 
 |     REPORTER_ASSERT(reporter, path.isOval(NULL)); | 
 | } | 
 |  | 
 | static void TestPath(skiatest::Reporter* reporter) { | 
 |     SkTSize<SkScalar>::Make(3,4); | 
 |  | 
 |     SkPath  p, p2; | 
 |     SkRect  bounds, bounds2; | 
 |  | 
 |     REPORTER_ASSERT(reporter, p.isEmpty()); | 
 |     REPORTER_ASSERT(reporter, 0 == p.countPoints()); | 
 |     REPORTER_ASSERT(reporter, 0 == p.countVerbs()); | 
 |     REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); | 
 |     REPORTER_ASSERT(reporter, p.isConvex()); | 
 |     REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); | 
 |     REPORTER_ASSERT(reporter, !p.isInverseFillType()); | 
 |     REPORTER_ASSERT(reporter, p == p2); | 
 |     REPORTER_ASSERT(reporter, !(p != p2)); | 
 |  | 
 |     REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); | 
 |  | 
 |     bounds.set(0, 0, SK_Scalar1, SK_Scalar1); | 
 |  | 
 |     p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); | 
 |     check_convex_bounds(reporter, p, bounds); | 
 |     // we have quads or cubics | 
 |     REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask); | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |  | 
 |     p.reset(); | 
 |     REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); | 
 |     REPORTER_ASSERT(reporter, p.isEmpty()); | 
 |  | 
 |     p.addOval(bounds); | 
 |     check_convex_bounds(reporter, p, bounds); | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |  | 
 |     p.reset(); | 
 |     p.addRect(bounds); | 
 |     check_convex_bounds(reporter, p, bounds); | 
 |     // we have only lines | 
 |     REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); | 
 |     REPORTER_ASSERT(reporter, !p.isEmpty()); | 
 |  | 
 |     REPORTER_ASSERT(reporter, p != p2); | 
 |     REPORTER_ASSERT(reporter, !(p == p2)); | 
 |  | 
 |     // do getPoints and getVerbs return the right result | 
 |     REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4); | 
 |     REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5); | 
 |     SkPoint pts[4]; | 
 |     int count = p.getPoints(pts, 4); | 
 |     REPORTER_ASSERT(reporter, count == 4); | 
 |     uint8_t verbs[6]; | 
 |     verbs[5] = 0xff; | 
 |     p.getVerbs(verbs, 5); | 
 |     REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); | 
 |     REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); | 
 |     REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); | 
 |     REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); | 
 |     REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); | 
 |     REPORTER_ASSERT(reporter, 0xff == verbs[5]); | 
 |     bounds2.set(pts, 4); | 
 |     REPORTER_ASSERT(reporter, bounds == bounds2); | 
 |  | 
 |     bounds.offset(SK_Scalar1*3, SK_Scalar1*4); | 
 |     p.offset(SK_Scalar1*3, SK_Scalar1*4); | 
 |     REPORTER_ASSERT(reporter, bounds == p.getBounds()); | 
 |  | 
 |     REPORTER_ASSERT(reporter, p.isRect(NULL)); | 
 |     bounds2.setEmpty(); | 
 |     REPORTER_ASSERT(reporter, p.isRect(&bounds2)); | 
 |     REPORTER_ASSERT(reporter, bounds == bounds2); | 
 |  | 
 |     // now force p to not be a rect | 
 |     bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); | 
 |     p.addRect(bounds); | 
 |     REPORTER_ASSERT(reporter, !p.isRect(NULL)); | 
 |  | 
 |     test_isLine(reporter); | 
 |     test_isRect(reporter); | 
 |     test_isNestedRects(reporter); | 
 |     test_zero_length_paths(reporter); | 
 |     test_direction(reporter); | 
 |     test_convexity(reporter); | 
 |     test_convexity2(reporter); | 
 |     test_conservativelyContains(reporter); | 
 |     test_close(reporter); | 
 |     test_segment_masks(reporter); | 
 |     test_flattening(reporter); | 
 |     test_transform(reporter); | 
 |     test_bounds(reporter); | 
 |     test_iter(reporter); | 
 |     test_raw_iter(reporter); | 
 |     test_circle(reporter); | 
 |     test_oval(reporter); | 
 |     test_strokerec(reporter); | 
 |     test_addPoly(reporter); | 
 |     test_isfinite(reporter); | 
 |     test_isfinite_after_transform(reporter); | 
 |     test_arb_round_rect_is_convex(reporter); | 
 |     test_arb_zero_rad_round_rect_is_rect(reporter); | 
 |     test_addrect_isfinite(reporter); | 
 |     test_tricky_cubic(); | 
 |     test_clipped_cubic(); | 
 |     test_crbug_170666(); | 
 |     test_bad_cubic_crbug229478(); | 
 |     test_bad_cubic_crbug234190(); | 
 | } | 
 |  | 
 | #include "TestClassDef.h" | 
 | DEFINE_TESTCLASS("Path", PathTestClass, TestPath) |