| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <initializer_list> |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkSurface.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/gpu/GrContext.h" |
| #include "include/private/SkColorData.h" |
| #include "include/private/SkHalf.h" |
| #include "include/private/SkImageInfoPriv.h" |
| #include "include/utils/SkNWayCanvas.h" |
| #include "src/core/SkAutoPixmapStorage.h" |
| #include "src/core/SkConvertPixels.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/gpu/GrContextPriv.h" |
| #include "src/gpu/GrImageInfo.h" |
| #include "src/gpu/GrSurfaceContext.h" |
| #include "tests/Test.h" |
| #include "tests/TestUtils.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/gpu/GrContextFactory.h" |
| #include "tools/gpu/ProxyUtils.h" |
| |
| static const int DEV_W = 100, DEV_H = 100; |
| static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H); |
| static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1, |
| DEV_H * SK_Scalar1); |
| |
| static SkPMColor get_src_color(int x, int y) { |
| SkASSERT(x >= 0 && x < DEV_W); |
| SkASSERT(y >= 0 && y < DEV_H); |
| |
| U8CPU r = x; |
| U8CPU g = y; |
| U8CPU b = 0xc; |
| |
| U8CPU a = 0xff; |
| switch ((x+y) % 5) { |
| case 0: |
| a = 0xff; |
| break; |
| case 1: |
| a = 0x80; |
| break; |
| case 2: |
| a = 0xCC; |
| break; |
| case 4: |
| a = 0x01; |
| break; |
| case 3: |
| a = 0x00; |
| break; |
| } |
| return SkPremultiplyARGBInline(a, r, g, b); |
| } |
| |
| static SkPMColor get_dst_bmp_init_color(int x, int y, int w) { |
| int n = y * w + x; |
| |
| U8CPU b = n & 0xff; |
| U8CPU g = (n >> 8) & 0xff; |
| U8CPU r = (n >> 16) & 0xff; |
| return SkPackARGB32(0xff, r, g , b); |
| } |
| |
| // TODO: Make this consider both ATs |
| static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr, |
| bool* doUnpremul) { |
| *doUnpremul = (kUnpremul_SkAlphaType == at); |
| |
| const uint8_t* c = reinterpret_cast<const uint8_t*>(addr); |
| U8CPU a,r,g,b; |
| switch (ct) { |
| case kBGRA_8888_SkColorType: |
| b = static_cast<U8CPU>(c[0]); |
| g = static_cast<U8CPU>(c[1]); |
| r = static_cast<U8CPU>(c[2]); |
| a = static_cast<U8CPU>(c[3]); |
| break; |
| case kRGB_888x_SkColorType: // fallthrough |
| case kRGBA_8888_SkColorType: |
| r = static_cast<U8CPU>(c[0]); |
| g = static_cast<U8CPU>(c[1]); |
| b = static_cast<U8CPU>(c[2]); |
| // We set this even when for kRGB_888x because our caller will validate that it is 0xff. |
| a = static_cast<U8CPU>(c[3]); |
| break; |
| default: |
| SkDEBUGFAIL("Unexpected colortype"); |
| return 0; |
| } |
| |
| if (*doUnpremul) { |
| r = SkMulDiv255Ceiling(r, a); |
| g = SkMulDiv255Ceiling(g, a); |
| b = SkMulDiv255Ceiling(b, a); |
| } |
| return SkPackARGB32(a, r, g, b); |
| } |
| |
| static SkBitmap make_src_bitmap() { |
| static SkBitmap bmp; |
| if (bmp.isNull()) { |
| bmp.allocN32Pixels(DEV_W, DEV_H); |
| intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels()); |
| for (int y = 0; y < DEV_H; ++y) { |
| for (int x = 0; x < DEV_W; ++x) { |
| SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel()); |
| *pixel = get_src_color(x, y); |
| } |
| } |
| } |
| return bmp; |
| } |
| |
| static void fill_src_canvas(SkCanvas* canvas) { |
| canvas->save(); |
| canvas->setMatrix(SkMatrix::I()); |
| canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp); |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint); |
| canvas->restore(); |
| } |
| |
| static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) { |
| int w = bitmap->width(); |
| int h = bitmap->height(); |
| intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels()); |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| SkPMColor initColor = get_dst_bmp_init_color(x, y, w); |
| if (kAlpha_8_SkColorType == bitmap->colorType()) { |
| uint8_t* alpha = reinterpret_cast<uint8_t*>(pixels + y * bitmap->rowBytes() + x); |
| *alpha = SkGetPackedA32(initColor); |
| } else { |
| SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel()); |
| *pixel = initColor; |
| } |
| } |
| } |
| } |
| |
| static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) { |
| if (!didPremulConversion) { |
| return a == b; |
| } |
| int32_t aA = static_cast<int32_t>(SkGetPackedA32(a)); |
| int32_t aR = static_cast<int32_t>(SkGetPackedR32(a)); |
| int32_t aG = static_cast<int32_t>(SkGetPackedG32(a)); |
| int32_t aB = SkGetPackedB32(a); |
| |
| int32_t bA = static_cast<int32_t>(SkGetPackedA32(b)); |
| int32_t bR = static_cast<int32_t>(SkGetPackedR32(b)); |
| int32_t bG = static_cast<int32_t>(SkGetPackedG32(b)); |
| int32_t bB = static_cast<int32_t>(SkGetPackedB32(b)); |
| |
| return aA == bA && |
| SkAbs32(aR - bR) <= 1 && |
| SkAbs32(aG - bG) <= 1 && |
| SkAbs32(aB - bB) <= 1; |
| } |
| |
| // checks the bitmap contains correct pixels after the readPixels |
| // if the bitmap was prefilled with pixels it checks that these weren't |
| // overwritten in the area outside the readPixels. |
| static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y, |
| bool checkSurfacePixels, bool checkBitmapPixels, |
| SkImageInfo surfaceInfo) { |
| SkAlphaType bmpAT = bitmap.alphaType(); |
| SkColorType bmpCT = bitmap.colorType(); |
| SkASSERT(!bitmap.isNull()); |
| SkASSERT(checkSurfacePixels || checkBitmapPixels); |
| |
| int bw = bitmap.width(); |
| int bh = bitmap.height(); |
| |
| SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh); |
| SkIRect clippedSrcRect = DEV_RECT; |
| if (!clippedSrcRect.intersect(srcRect)) { |
| clippedSrcRect.setEmpty(); |
| } |
| if (kAlpha_8_SkColorType == bmpCT) { |
| for (int by = 0; by < bh; ++by) { |
| for (int bx = 0; bx < bw; ++bx) { |
| int devx = bx + srcRect.fLeft; |
| int devy = by + srcRect.fTop; |
| const uint8_t* alpha = bitmap.getAddr8(bx, by); |
| |
| if (clippedSrcRect.contains(devx, devy)) { |
| if (checkSurfacePixels) { |
| uint8_t surfaceAlpha = (surfaceInfo.alphaType() == kOpaque_SkAlphaType) |
| ? 0xFF |
| : SkGetPackedA32(get_src_color(devx, devy)); |
| if (surfaceAlpha != *alpha) { |
| ERRORF(reporter, |
| "Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ", |
| bx, by, surfaceAlpha, *alpha); |
| return false; |
| } |
| } |
| } else if (checkBitmapPixels) { |
| uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw)); |
| if (origDstAlpha != *alpha) { |
| ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " |
| "Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha); |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| for (int by = 0; by < bh; ++by) { |
| for (int bx = 0; bx < bw; ++bx) { |
| int devx = bx + srcRect.fLeft; |
| int devy = by + srcRect.fTop; |
| |
| const uint32_t* pixel = bitmap.getAddr32(bx, by); |
| |
| if (clippedSrcRect.contains(devx, devy)) { |
| if (checkSurfacePixels) { |
| SkPMColor surfacePMColor = get_src_color(devx, devy); |
| if (SkColorTypeIsAlphaOnly(surfaceInfo.colorType())) { |
| surfacePMColor &= 0xFF000000; |
| } |
| if (kOpaque_SkAlphaType == surfaceInfo.alphaType() || kOpaque_SkAlphaType == bmpAT) { |
| surfacePMColor |= 0xFF000000; |
| } |
| bool didPremul; |
| SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul); |
| if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) { |
| ERRORF(reporter, |
| "Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. " |
| "Readback was unpremul: %d", |
| bx, by, surfacePMColor, pmPixel, didPremul); |
| return false; |
| } |
| } |
| } else if (checkBitmapPixels) { |
| uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw); |
| if (origDstPixel != *pixel) { |
| ERRORF(reporter, "Expected clipped out area of readback to be unchanged. " |
| "Expected 0x%08x, got 0x%08x", origDstPixel, *pixel); |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| enum class TightRowBytes : bool { kNo, kYes }; |
| |
| static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, TightRowBytes tightRB, |
| SkColorType ct, SkAlphaType at) { |
| SkImageInfo info = SkImageInfo::Make(rect.size(), ct, at); |
| size_t rowBytes = 0; |
| if (tightRB == TightRowBytes::kNo) { |
| rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel()); |
| } |
| bitmap->allocPixels(info, rowBytes); |
| } |
| |
| static const struct { |
| SkColorType fColorType; |
| SkAlphaType fAlphaType; |
| } gReadPixelsConfigs[] = { |
| {kRGBA_8888_SkColorType, kPremul_SkAlphaType}, |
| {kRGBA_8888_SkColorType, kUnpremul_SkAlphaType}, |
| {kRGB_888x_SkColorType, kOpaque_SkAlphaType}, |
| {kBGRA_8888_SkColorType, kPremul_SkAlphaType}, |
| {kBGRA_8888_SkColorType, kUnpremul_SkAlphaType}, |
| {kAlpha_8_SkColorType, kPremul_SkAlphaType}, |
| }; |
| const SkIRect gReadPixelsTestRects[] = { |
| // entire thing |
| DEV_RECT, |
| // larger on all sides |
| SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10), |
| // fully contained |
| SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4), |
| // outside top left |
| SkIRect::MakeLTRB(-10, -10, -1, -1), |
| // touching top left corner |
| SkIRect::MakeLTRB(-10, -10, 0, 0), |
| // overlapping top left corner |
| SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4), |
| // overlapping top left and top right corners |
| SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4), |
| // touching entire top edge |
| SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4), |
| // contained in x, overlapping top edge |
| SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4), |
| // outside top right corner |
| SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1), |
| // touching top right corner |
| SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0), |
| // overlapping top left and bottom left corners |
| SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10), |
| // overlapping bottom left corner |
| SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10), |
| // contained in y, overlapping left edge |
| SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4), |
| // outside bottom left corner |
| SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10), |
| // touching bottom left corner |
| SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10), |
| // overlapping bottom left and bottom right corners |
| SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10), |
| // overlapping bottom right corner |
| SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), |
| // overlapping top right and bottom right corners |
| SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10), |
| }; |
| |
| bool read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo, |
| const SkImageInfo& srcInfo) { |
| return SkIRect::Intersects(srcRect, DEV_RECT) && SkImageInfoValidConversion(dstInfo, srcInfo); |
| } |
| |
| static void test_readpixels(skiatest::Reporter* reporter, const sk_sp<SkSurface>& surface, |
| const SkImageInfo& surfaceInfo) { |
| SkCanvas* canvas = surface->getCanvas(); |
| fill_src_canvas(canvas); |
| for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { |
| const SkIRect& srcRect = gReadPixelsTestRects[rect]; |
| for (auto tightRB : {TightRowBytes::kYes, TightRowBytes::kNo}) { |
| for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { |
| SkBitmap bmp; |
| init_bitmap(&bmp, srcRect, tightRB, gReadPixelsConfigs[c].fColorType, |
| gReadPixelsConfigs[c].fAlphaType); |
| |
| // if the bitmap has pixels allocated before the readPixels, |
| // note that and fill them with pattern |
| bool startsWithPixels = !bmp.isNull(); |
| if (startsWithPixels) { |
| fill_dst_bmp_with_init_data(&bmp); |
| } |
| uint32_t idBefore = surface->generationID(); |
| bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop); |
| uint32_t idAfter = surface->generationID(); |
| |
| // we expect to succeed when the read isn't fully clipped out and the infos are |
| // compatible. |
| bool expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); |
| // determine whether we expected the read to succeed. |
| REPORTER_ASSERT(reporter, expectSuccess == success, |
| "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", |
| success, surfaceInfo.colorType(), surfaceInfo.alphaType(), |
| bmp.info().colorType(), bmp.info().alphaType()); |
| // read pixels should never change the gen id |
| REPORTER_ASSERT(reporter, idBefore == idAfter); |
| |
| if (success || startsWithPixels) { |
| check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, |
| startsWithPixels, surfaceInfo); |
| } else { |
| // if we had no pixels beforehand and the readPixels |
| // failed then our bitmap should still not have pixels |
| REPORTER_ASSERT(reporter, bmp.isNull()); |
| } |
| } |
| } |
| } |
| } |
| |
| DEF_TEST(ReadPixels, reporter) { |
| const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H); |
| auto surface(SkSurface::MakeRaster(info)); |
| test_readpixels(reporter, surface, info); |
| } |
| |
| static void test_readpixels_texture(skiatest::Reporter* reporter, |
| std::unique_ptr<GrSurfaceContext> sContext, |
| const SkImageInfo& surfaceInfo) { |
| for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) { |
| const SkIRect& srcRect = gReadPixelsTestRects[rect]; |
| for (auto tightRB : {TightRowBytes::kYes, TightRowBytes::kNo}) { |
| for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) { |
| SkBitmap bmp; |
| init_bitmap(&bmp, srcRect, tightRB, gReadPixelsConfigs[c].fColorType, |
| gReadPixelsConfigs[c].fAlphaType); |
| |
| // if the bitmap has pixels allocated before the readPixels, |
| // note that and fill them with pattern |
| bool startsWithPixels = !bmp.isNull(); |
| // Try doing the read directly from a non-renderable texture |
| if (startsWithPixels) { |
| fill_dst_bmp_with_init_data(&bmp); |
| bool success = sContext->readPixels(bmp.info(), bmp.getPixels(), bmp.rowBytes(), |
| {srcRect.fLeft, srcRect.fTop}); |
| auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo); |
| REPORTER_ASSERT( |
| reporter, expectSuccess == success, |
| "Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d", |
| success, surfaceInfo.colorType(), surfaceInfo.alphaType(), |
| bmp.info().colorType(), bmp.info().alphaType()); |
| if (success) { |
| check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true, |
| surfaceInfo); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| SkBitmap bmp = make_src_bitmap(); |
| |
| // On the GPU we will also try reading back from a non-renderable texture. |
| for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) { |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| sk_sp<GrTextureProxy> proxy = sk_gpu_test::MakeTextureProxyFromData( |
| context, renderable, origin, bmp.info(), bmp.getPixels(), bmp.rowBytes()); |
| GrColorType grColorType = SkColorTypeToGrColorType(bmp.colorType()); |
| GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(proxy->backendFormat(), |
| grColorType); |
| GrSurfaceProxyView view(std::move(proxy), origin, swizzle); |
| auto sContext = GrSurfaceContext::Make(context, std::move(view), |
| grColorType, kPremul_SkAlphaType, nullptr); |
| auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType); |
| test_readpixels_texture(reporter, std::move(sContext), info); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static const uint32_t kNumPixels = 5; |
| |
| // The five reference pixels are: red, green, blue, white, black. |
| // Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector |
| // plus a tail pixel. |
| static const uint32_t rgba[kNumPixels] = { |
| 0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000 |
| }; |
| static const uint32_t bgra[kNumPixels] = { |
| 0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000 |
| }; |
| static const uint16_t rgb565[kNumPixels] = { |
| SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0 |
| }; |
| |
| static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F }; |
| |
| static const uint64_t kRed = (uint64_t) SK_Half1 << 0; |
| static const uint64_t kGreen = (uint64_t) SK_Half1 << 16; |
| static const uint64_t kBlue = (uint64_t) SK_Half1 << 32; |
| static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48; |
| static const uint64_t f16[kNumPixels] = { |
| kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha |
| }; |
| |
| static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| |
| static const void* five_reference_pixels(SkColorType colorType) { |
| switch (colorType) { |
| case kUnknown_SkColorType: |
| return nullptr; |
| case kAlpha_8_SkColorType: |
| return alpha8; |
| case kRGB_565_SkColorType: |
| return rgb565; |
| case kARGB_4444_SkColorType: |
| return rgba4444; |
| case kRGBA_8888_SkColorType: |
| return rgba; |
| case kBGRA_8888_SkColorType: |
| return bgra; |
| case kGray_8_SkColorType: |
| return gray8; |
| case kRGBA_F16_SkColorType: |
| return f16; |
| default: |
| return nullptr; |
| } |
| |
| SkASSERT(false); |
| return nullptr; |
| } |
| |
| static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo, |
| const SkImageInfo& srcInfo) { |
| if (!SkImageInfoIsValid(srcInfo)) { |
| return; |
| } |
| |
| const void* srcPixels = five_reference_pixels(srcInfo.colorType()); |
| SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes()); |
| sk_sp<SkImage> src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr); |
| REPORTER_ASSERT(r, src); |
| |
| // Enough space for 5 pixels when color type is F16, more than enough space in other cases. |
| uint64_t dstPixels[kNumPixels]; |
| SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes()); |
| bool success = src->readPixels(dstPixmap, 0, 0); |
| REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo)); |
| |
| if (success) { |
| if (kGray_8_SkColorType == srcInfo.colorType() && |
| kGray_8_SkColorType != dstInfo.colorType()) { |
| // TODO: test (r,g,b) == (gray,gray,gray)? |
| return; |
| } |
| |
| if (kGray_8_SkColorType == dstInfo.colorType() && |
| kGray_8_SkColorType != srcInfo.colorType()) { |
| // TODO: test gray = luminance? |
| return; |
| } |
| |
| if (kAlpha_8_SkColorType == srcInfo.colorType() && |
| kAlpha_8_SkColorType != dstInfo.colorType()) { |
| // TODO: test output = black with this alpha? |
| return; |
| } |
| |
| REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()), |
| kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType()))); |
| } |
| } |
| |
| DEF_TEST(ReadPixels_ValidConversion, reporter) { |
| const SkColorType kColorTypes[] = { |
| kUnknown_SkColorType, |
| kAlpha_8_SkColorType, |
| kRGB_565_SkColorType, |
| kARGB_4444_SkColorType, |
| kRGBA_8888_SkColorType, |
| kBGRA_8888_SkColorType, |
| kGray_8_SkColorType, |
| kRGBA_F16_SkColorType, |
| }; |
| |
| const SkAlphaType kAlphaTypes[] = { |
| kUnknown_SkAlphaType, |
| kOpaque_SkAlphaType, |
| kPremul_SkAlphaType, |
| kUnpremul_SkAlphaType, |
| }; |
| |
| const sk_sp<SkColorSpace> kColorSpaces[] = { |
| nullptr, |
| SkColorSpace::MakeSRGB(), |
| }; |
| |
| for (SkColorType dstCT : kColorTypes) { |
| for (SkAlphaType dstAT: kAlphaTypes) { |
| for (sk_sp<SkColorSpace> dstCS : kColorSpaces) { |
| for (SkColorType srcCT : kColorTypes) { |
| for (SkAlphaType srcAT: kAlphaTypes) { |
| for (sk_sp<SkColorSpace> srcCS : kColorSpaces) { |
| test_conversion(reporter, |
| SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS), |
| SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static constexpr int min_rgb_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 0; |
| case kA16_unorm_SkColorType: return 0; |
| case kA16_float_SkColorType: return 0; |
| case kRGB_565_SkColorType: return 5; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 8; |
| case kR16G16_unorm_SkColorType: return 16; |
| case kR16G16_float_SkColorType: return 16; |
| case kRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 8; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 10; |
| case kRGB_101010x_SkColorType: return 10; |
| case kBGRA_1010102_SkColorType: return 10; |
| case kBGR_101010x_SkColorType: return 10; |
| case kGray_8_SkColorType: return 8; // counting gray as "rgb" |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static constexpr int alpha_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 8; |
| case kA16_unorm_SkColorType: return 16; |
| case kA16_float_SkColorType: return 16; |
| case kRGB_565_SkColorType: return 0; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 0; |
| case kR16G16_unorm_SkColorType: return 0; |
| case kR16G16_float_SkColorType: return 0; |
| case kRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 0; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 2; |
| case kRGB_101010x_SkColorType: return 0; |
| case kBGRA_1010102_SkColorType: return 2; |
| case kBGR_101010x_SkColorType: return 0; |
| case kGray_8_SkColorType: return 0; |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| } |
| SkUNREACHABLE; |
| } |
| |
| namespace { |
| |
| struct GpuReadPixelTestRules { |
| // Test unpremul sources? We could omit this and detect that creating the source of the read |
| // failed but having it lets us skip generating reference color data. |
| bool fAllowUnpremulSrc = true; |
| // Expect read function to succeed for kUnpremul? |
| bool fAllowUnpremulRead = true; |
| // Are reads that are overlapping but not contained by the src bounds expected to succeed? |
| bool fUncontainedRectSucceeds = true; |
| }; |
| |
| // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from |
| // the pixmap. |
| template <typename T> using GpuSrcFactory = T(SkPixmap&); |
| |
| // Does a read from the T into the pixmap. |
| template <typename T> using GpuReadSrcFn = bool(const T&, const SkIVector& offset, const SkPixmap&); |
| |
| } // anonymous namespace |
| |
| template <typename T> |
| static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, |
| const GpuReadPixelTestRules& rules, |
| const std::function<GpuSrcFactory<T>>& srcFactory, |
| const std::function<GpuReadSrcFn<T>>& read) { |
| // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have |
| // the same image info as src. We will do a converting readPixels() on it to get the data |
| // to compare with the results of 'read'. |
| auto runTest = [&](const T& src, const SkPixmap& srcPixels, const SkImageInfo& readInfo, |
| const SkIVector& offset) { |
| const bool csConversion = |
| !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); |
| const auto readCT = readInfo.colorType(); |
| const auto readAT = readInfo.alphaType(); |
| const auto srcCT = srcPixels.info().colorType(); |
| const auto srcAT = srcPixels.info().alphaType(); |
| const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); |
| const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); |
| const size_t readBpp = SkColorTypeBytesPerPixel(readCT); |
| |
| // Make the row bytes in the dst be loose for extra stress. |
| const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; |
| // This will make the last row tight. |
| const size_t dstSize = readInfo.computeByteSize(dstRB); |
| std::unique_ptr<char[]> dstData(new char[dstSize]); |
| SkPixmap dstPixels(readInfo, dstData.get(), dstRB); |
| // Initialize with an arbitrary value for each byte. Later we will check that only the |
| // correct part of the destination gets overwritten by 'read'. |
| static constexpr auto kInitialByte = static_cast<char>(0x1B); |
| std::fill_n(static_cast<char*>(dstPixels.writable_addr()), |
| dstPixels.computeByteSize(), |
| kInitialByte); |
| |
| const bool success = read(src, offset, dstPixels); |
| |
| if (!SkIRect::Intersects(rect, surfBounds)) { |
| REPORTER_ASSERT(reporter, !success); |
| } else if (readCT == kUnknown_SkColorType) { |
| REPORTER_ASSERT(reporter, !success); |
| } else if (readAT == kUnknown_SkAlphaType) { |
| REPORTER_ASSERT(reporter, !success); |
| } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { |
| REPORTER_ASSERT(reporter, !success); |
| } else if (!rules.fAllowUnpremulRead && readAT == kUnpremul_SkAlphaType) { |
| REPORTER_ASSERT(reporter, !success); |
| } else if (!success) { |
| // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. |
| if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { |
| ERRORF(reporter, |
| "Read failed. Src CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " |
| "Rect [%d, %d, %d, %d], CS conversion: %d\n", |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); |
| } |
| return; |
| } |
| |
| bool guardOk = true; |
| auto guardCheck = [](char x) { return x == kInitialByte; }; |
| |
| // Considering the rect we tried to read and the surface bounds figure out which pixels in |
| // both src and dst space should actually have been read and written. |
| SkIRect srcReadRect; |
| if (success && srcReadRect.intersect(surfBounds, rect)) { |
| SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); |
| |
| const bool lumConversion = |
| !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && |
| (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); |
| // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value |
| // difference. Note that sometimes read back on GPU can be lossy even when there no |
| // conversion at allbecause GPU->CPU read may go to a lower bit depth format and then be |
| // promoted back to the original type. For example, GL ES cannot read to 1010102, so we |
| // go through 8888. |
| const float numer = (lumConversion || csConversion) ? 3.f : 2.f; |
| int rgbBits = std::min({min_rgb_channel_bits(readCT), |
| min_rgb_channel_bits(srcCT), |
| 8}); |
| float tol = numer / (1 << rgbBits); |
| float alphaTol = 0; |
| if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { |
| const int alphaBits = std::min(alpha_channel_bits(readCT), |
| alpha_channel_bits(srcCT)); |
| alphaTol = 2.f / (1 << alphaBits); |
| } |
| |
| const float tols[4] = {tol, tol, tol, alphaTol}; |
| auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y, |
| const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, |
| "Src CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" |
| ", CS conversion: %d\n" |
| "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, |
| diffs[0], diffs[1], diffs[2], diffs[3]); |
| }); |
| SkAutoPixmapStorage ref; |
| ref.alloc(readInfo.makeWH(dstWriteRect.width(), dstWriteRect.height())); |
| srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); |
| // This is the part of dstPixels that should have been updated. |
| SkPixmap actual; |
| SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); |
| ComparePixels(ref, actual, tols, error); |
| |
| const auto* v = dstData.get(); |
| const auto* end = dstData.get() + dstSize; |
| guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); |
| v += dstWriteRect.top() * dstPixels.rowBytes(); |
| for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { |
| guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); |
| auto pad = v + dstWriteRect.right() * readBpp; |
| auto rowEnd = std::min(end, v + dstPixels.rowBytes()); |
| // min protects against reading past the end of the tight last row. |
| guardOk |= std::all_of(pad, rowEnd, guardCheck); |
| v = rowEnd; |
| } |
| guardOk |= std::all_of(v, end, guardCheck); |
| } else { |
| guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); |
| } |
| if (!guardOk) { |
| ERRORF(reporter, |
| "Result pixels modified result outside read rect [%d, %d, %d, %d]. " |
| "Src CT: %s, Read CT: %s, CS conversion: %d", |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, |
| ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), |
| csConversion); |
| } |
| }; |
| |
| static constexpr int kW = 16; |
| static constexpr int kH = 16; |
| |
| // Makes the reference data that is used to populate the src. Always F32 regardless of srcCT. |
| auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage { |
| // Make src data in F32 with srcAT. We will convert it to each color type we test to |
| // initialize the src. |
| const auto refInfo = |
| SkImageInfo::Make(kW, kH, kRGBA_F32_SkColorType, srcAT, SkColorSpace::MakeSRGB()); |
| auto refSurf = SkSurface::MakeRaster(refInfo); |
| static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}}; |
| static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; |
| SkPaint paint; |
| paint.setShader( |
| SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp)); |
| refSurf->getCanvas()->drawPaint(paint); |
| static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}}; |
| static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; |
| paint.setShader( |
| SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp)); |
| paint.setBlendMode(SkBlendMode::kPlus); |
| refSurf->getCanvas()->drawPaint(paint); |
| // Keep everything opaque if the src alpha type is opaque. Also, there is an issue with |
| // 1010102 (the only color type where the number of alpha bits is non-zero and not the |
| // same as r, g, and b). Because of the different precisions the draw below can create |
| // data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp |
| // r, g, b to a if the dst is premul and a different color type. GPU doesn't do this. |
| // We could but 1010102 premul is kind of dubious anyway. So for now just keep the data |
| // opaque. |
| if (srcAT != kOpaque_SkAlphaType && |
| (srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType |
| && srcCT != kBGRA_1010102_SkColorType)) { |
| static constexpr SkColor kColors3[] = {SK_ColorWHITE, |
| SK_ColorWHITE, |
| 0x60FFFFFF, |
| SK_ColorWHITE, |
| SK_ColorWHITE}; |
| static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; |
| paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f, |
| kColors3, kPos3, 5, SkTileMode::kMirror)); |
| paint.setBlendMode(SkBlendMode::kDstIn); |
| refSurf->getCanvas()->drawPaint(paint); |
| } |
| |
| const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); |
| SkAutoPixmapStorage srcPixels; |
| srcPixels.alloc(srcInfo); |
| refSurf->readPixels(srcPixels, 0, 0); |
| return srcPixels; |
| }; |
| |
| for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { |
| const auto srcAT = static_cast<SkAlphaType>(sat); |
| if (srcAT == kUnknown_SkAlphaType || |
| (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc)) { |
| continue; |
| } |
| for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { |
| const auto srcCT = static_cast<SkColorType>(sct); |
| // Note that we only currently use srcCT for a 1010102 workaround. If we remove this we |
| // can also but the ref data setup above the srcCT loop. |
| SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT); |
| auto src = srcFactory(srcPixels); |
| if (!src) { |
| continue; |
| } |
| for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { |
| const auto readCT = static_cast<SkColorType>(rct); |
| for (const sk_sp<SkColorSpace>& readCS : |
| {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { |
| for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { |
| const auto readAT = static_cast<SkAlphaType>(at); |
| if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { |
| // This doesn't make sense. |
| continue; |
| } |
| // Test full size, partial, empty, and too wide rects. |
| for (const auto& rect : { |
| // entire thing |
| SkIRect::MakeWH(kW, kH), |
| // larger on all sides |
| SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10), |
| // fully contained |
| SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), |
| // outside top left |
| SkIRect::MakeLTRB(-10, -10, -1, -1), |
| // touching top left corner |
| SkIRect::MakeLTRB(-10, -10, 0, 0), |
| // overlapping top left corner |
| SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4), |
| // overlapping top left and top right corners |
| SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4), |
| // touching entire top edge |
| SkIRect::MakeLTRB(-10, -10, kW + 10, 0), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), |
| // contained in x, overlapping top edge |
| SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4), |
| // outside top right corner |
| SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1), |
| // touching top right corner |
| SkIRect::MakeLTRB(kW, -10, kW + 10, 0), |
| // overlapping top left and bottom left corners |
| SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(-10, -10, 0, kH + 10), |
| // overlapping bottom left corner |
| SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10), |
| // contained in y, overlapping left edge |
| SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4), |
| // outside bottom left corner |
| SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10), |
| // touching bottom left corner |
| SkIRect::MakeLTRB(-10, kH, 0, kH + 10), |
| // overlapping bottom left and bottom right corners |
| SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(0, kH, kW, kH + 10), |
| // overlapping bottom right corner |
| SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10), |
| // overlapping top right and bottom right corners |
| SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10), |
| }) { |
| const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), |
| readCT, readAT, readCS); |
| const SkIVector offset = rect.topLeft(); |
| runTest(src, srcPixels, readInfo, offset); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| namespace { |
| struct AsyncContext { |
| bool fCalled = false; |
| std::unique_ptr<const SkSurface::AsyncReadResult> fResult; |
| }; |
| } // anonymous namespace |
| |
| // Making this a lambda in the test functions caused: |
| // "error: cannot compile this forwarded non-trivially copyable parameter yet" |
| // on x86/Win/Clang bot, referring to 'result'. |
| static void async_callback(void* c, std::unique_ptr<const SkSurface::AsyncReadResult> result) { |
| auto context = static_cast<AsyncContext*>(c); |
| context->fResult = std::move(result); |
| context->fCalled = true; |
| }; |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(AsyncReadPixels, reporter, ctxInfo) { |
| using Surface = sk_sp<SkSurface>; |
| auto reader = std::function<GpuReadSrcFn<Surface>>([](const Surface& surface, |
| const SkIVector& offset, |
| const SkPixmap& pixels) { |
| AsyncContext context; |
| auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); |
| |
| // Rescale quality and linearity don't matter since we're doing a non-scaling readback. |
| surface->asyncRescaleAndReadPixels(pixels.info(), rect, SkSurface::RescaleGamma::kSrc, |
| kNone_SkFilterQuality, async_callback, &context); |
| while (!context.fCalled) { |
| surface->getCanvas()->getGrContext()->checkAsyncWorkCompletion(); |
| } |
| if (!context.fResult) { |
| return false; |
| } |
| SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), |
| context.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); |
| return true; |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = false; |
| rules.fAllowUnpremulRead = false; |
| rules.fUncontainedRectSucceeds = false; |
| |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.grContext(), origin](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Surface(); |
| } |
| auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, src.info(), |
| 0, origin, nullptr); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) { |
| using Surface = sk_sp<SkSurface>; |
| auto reader = std::function<GpuReadSrcFn<Surface>>( |
| [](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { |
| return surface->readPixels(pixels, offset.fX, offset.fY); |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = false; |
| rules.fAllowUnpremulRead = true; |
| rules.fUncontainedRectSucceeds = true; |
| |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.grContext(), origin](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Surface(); |
| } |
| auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, src.info(), |
| 0, origin, nullptr); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader); |
| } |
| } |
| |
| DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) { |
| const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()); |
| enum class ShutdownSequence { |
| kFreeResult_DestroyContext, |
| kDestroyContext_FreeResult, |
| kFreeResult_ReleaseAndAbandon_DestroyContext, |
| kFreeResult_Abandon_DestroyContext, |
| kReleaseAndAbandon_FreeResult_DestroyContext, |
| kAbandon_FreeResult_DestroyContext, |
| kReleaseAndAbandon_DestroyContext_FreeResult, |
| kAbandon_DestroyContext_FreeResult, |
| }; |
| for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { |
| auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t); |
| for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, |
| ShutdownSequence::kDestroyContext_FreeResult, |
| ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, |
| ShutdownSequence::kFreeResult_Abandon_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, |
| ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { |
| // Vulkan context abandoning without resource release has issues outside of the scope of |
| // this test. |
| if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType && |
| (sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || |
| sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult || |
| sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext)) { |
| continue; |
| } |
| for (bool yuv : {false, true}) { |
| sk_gpu_test::GrContextFactory factory(options); |
| auto context = factory.get(type); |
| if (!context) { |
| continue; |
| } |
| // This test is only meaningful for contexts that support transfer buffers for |
| // reads. |
| if (!context->priv().caps()->transferFromSurfaceToBufferSupport()) { |
| continue; |
| } |
| auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, ii, 1, nullptr); |
| if (!surf) { |
| continue; |
| } |
| AsyncContext cbContext; |
| if (yuv) { |
| surf->asyncRescaleAndReadPixelsYUV420( |
| kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), |
| ii.dimensions(), SkSurface::RescaleGamma::kSrc, kNone_SkFilterQuality, |
| &async_callback, &cbContext); |
| } else { |
| surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkSurface::RescaleGamma::kSrc, |
| kNone_SkFilterQuality, &async_callback, |
| &cbContext); |
| } |
| while (!cbContext.fCalled) { |
| context->checkAsyncWorkCompletion(); |
| } |
| if (!cbContext.fResult) { |
| ERRORF(reporter, "Callback failed on %s. is YUV: %d", |
| sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); |
| continue; |
| } |
| // The real test is that we don't crash, get Vulkan validation errors, etc, during |
| // this shutdown sequence. |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| break; |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| factory.releaseResourcesAndAbandonContexts(); |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| factory.abandonContexts(); |
| factory.destroyContexts(); |
| break; |
| } |
| cbContext.fResult.reset(); |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| break; |
| } |
| } |
| } |
| } |
| } |