blob: 2881e5f5a825b0e732664a23a30d6b93e4f58575 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBBoxHierarchy.h"
#include "SkBlurImageFilter.h"
#include "SkCanvas.h"
#include "SkColorMatrixFilter.h"
#include "SkColorPriv.h"
#include "SkDashPathEffect.h"
#include "SkData.h"
#include "SkDecodingImageGenerator.h"
#include "SkError.h"
#include "SkImageEncoder.h"
#include "SkImageGenerator.h"
#include "SkLayerInfo.h"
#include "SkPaint.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPictureUtils.h"
#include "SkPixelRef.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkRandom.h"
#include "SkRecord.h"
#include "SkShader.h"
#include "SkStream.h"
#if SK_SUPPORT_GPU
#include "SkSurface.h"
#include "GrContextFactory.h"
#endif
#include "Test.h"
#include "SkLumaColorFilter.h"
#include "SkColorFilterImageFilter.h"
static const int gColorScale = 30;
static const int gColorOffset = 60;
static void make_bm(SkBitmap* bm, int w, int h, SkColor color, bool immutable) {
bm->allocN32Pixels(w, h);
bm->eraseColor(color);
if (immutable) {
bm->setImmutable();
}
}
static void make_checkerboard(SkBitmap* bm, int w, int h, bool immutable) {
SkASSERT(w % 2 == 0);
SkASSERT(h % 2 == 0);
bm->allocPixels(SkImageInfo::Make(w, h, kAlpha_8_SkColorType,
kPremul_SkAlphaType));
SkAutoLockPixels lock(*bm);
for (int y = 0; y < h; y += 2) {
uint8_t* s = bm->getAddr8(0, y);
for (int x = 0; x < w; x += 2) {
*s++ = 0xFF;
*s++ = 0x00;
}
s = bm->getAddr8(0, y + 1);
for (int x = 0; x < w; x += 2) {
*s++ = 0x00;
*s++ = 0xFF;
}
}
if (immutable) {
bm->setImmutable();
}
}
static void init_paint(SkPaint* paint, const SkBitmap &bm) {
SkShader* shader = SkShader::CreateBitmapShader(bm,
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode);
paint->setShader(shader)->unref();
}
typedef void (*DrawBitmapProc)(SkCanvas*, const SkBitmap&,
const SkBitmap&, const SkPoint&,
SkTDArray<SkPixelRef*>* usedPixRefs);
static void drawpaint_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
canvas->drawPaint(paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawpoints_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
// draw a rect
SkPoint points[5] = {
{ pos.fX, pos.fY },
{ pos.fX + bm.width() - 1, pos.fY },
{ pos.fX + bm.width() - 1, pos.fY + bm.height() - 1 },
{ pos.fX, pos.fY + bm.height() - 1 },
{ pos.fX, pos.fY },
};
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 5, points, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawrect_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) };
r.offset(pos.fX, pos.fY);
canvas->drawRect(r, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawoval_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) };
r.offset(pos.fX, pos.fY);
canvas->drawOval(r, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawrrect_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) };
r.offset(pos.fX, pos.fY);
SkRRect rr;
rr.setRectXY(r, SkIntToScalar(bm.width())/4, SkIntToScalar(bm.height())/4);
canvas->drawRRect(rr, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawpath_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkPath path;
path.lineTo(bm.width()/2.0f, SkIntToScalar(bm.height()));
path.lineTo(SkIntToScalar(bm.width()), 0);
path.close();
path.offset(pos.fX, pos.fY);
canvas->drawPath(path, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawbitmap_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
canvas->drawBitmap(bm, pos.fX, pos.fY, NULL);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawbitmap_withshader_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
// The bitmap in the paint is ignored unless we're drawing an A8 bitmap
canvas->drawBitmap(altBM, pos.fX, pos.fY, &paint);
*usedPixRefs->append() = bm.pixelRef();
*usedPixRefs->append() = altBM.pixelRef();
}
static void drawsprite_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
const SkMatrix& ctm = canvas->getTotalMatrix();
SkPoint p(pos);
ctm.mapPoints(&p, 1);
canvas->drawSprite(bm, (int)p.fX, (int)p.fY, NULL);
*usedPixRefs->append() = bm.pixelRef();
}
#if 0
// Although specifiable, this case doesn't seem to make sense (i.e., the
// bitmap in the shader is never used).
static void drawsprite_withshader_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
const SkMatrix& ctm = canvas->getTotalMatrix();
SkPoint p(pos);
ctm.mapPoints(&p, 1);
canvas->drawSprite(altBM, (int)p.fX, (int)p.fY, &paint);
*usedPixRefs->append() = bm.pixelRef();
*usedPixRefs->append() = altBM.pixelRef();
}
#endif
static void drawbitmaprect_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) };
r.offset(pos.fX, pos.fY);
canvas->drawBitmapRectToRect(bm, NULL, r, NULL);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawbitmaprect_withshader_proc(SkCanvas* canvas,
const SkBitmap& bm,
const SkBitmap& altBM,
const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) };
r.offset(pos.fX, pos.fY);
// The bitmap in the paint is ignored unless we're drawing an A8 bitmap
canvas->drawBitmapRectToRect(altBM, NULL, r, &paint);
*usedPixRefs->append() = bm.pixelRef();
*usedPixRefs->append() = altBM.pixelRef();
}
static void drawtext_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
paint.setTextSize(SkIntToScalar(1.5*bm.width()));
canvas->drawText("0", 1, pos.fX, pos.fY+bm.width(), paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawpostext_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
paint.setTextSize(SkIntToScalar(1.5*bm.width()));
SkPoint point = { pos.fX, pos.fY + bm.height() };
canvas->drawPosText("O", 1, &point, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawtextonpath_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
paint.setTextSize(SkIntToScalar(1.5*bm.width()));
SkPath path;
path.lineTo(SkIntToScalar(bm.width()), 0);
path.offset(pos.fX, pos.fY+bm.height());
canvas->drawTextOnPath("O", 1, path, NULL, paint);
*usedPixRefs->append() = bm.pixelRef();
}
static void drawverts_proc(SkCanvas* canvas, const SkBitmap& bm,
const SkBitmap& altBM, const SkPoint& pos,
SkTDArray<SkPixelRef*>* usedPixRefs) {
SkPaint paint;
init_paint(&paint, bm);
SkPoint verts[4] = {
{ pos.fX, pos.fY },
{ pos.fX + bm.width(), pos.fY },
{ pos.fX + bm.width(), pos.fY + bm.height() },
{ pos.fX, pos.fY + bm.height() }
};
SkPoint texs[4] = { { 0, 0 },
{ SkIntToScalar(bm.width()), 0 },
{ SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) },
{ 0, SkIntToScalar(bm.height()) } };
uint16_t indices[6] = { 0, 1, 2, 0, 2, 3 };
canvas->drawVertices(SkCanvas::kTriangles_VertexMode, 4, verts, texs, NULL, NULL,
indices, 6, paint);
*usedPixRefs->append() = bm.pixelRef();
}
// Return a picture with the bitmaps drawn at the specified positions.
static SkPicture* record_bitmaps(const SkBitmap bm[],
const SkPoint pos[],
SkTDArray<SkPixelRef*> analytic[],
int count,
DrawBitmapProc proc) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(1000, 1000);
for (int i = 0; i < count; ++i) {
analytic[i].rewind();
canvas->save();
SkRect clipRect = SkRect::MakeXYWH(pos[i].fX, pos[i].fY,
SkIntToScalar(bm[i].width()),
SkIntToScalar(bm[i].height()));
canvas->clipRect(clipRect, SkRegion::kIntersect_Op);
proc(canvas, bm[i], bm[count+i], pos[i], &analytic[i]);
canvas->restore();
}
return recorder.endRecording();
}
static void rand_rect(SkRect* rect, SkRandom& rand, SkScalar W, SkScalar H) {
rect->fLeft = rand.nextRangeScalar(-W, 2*W);
rect->fTop = rand.nextRangeScalar(-H, 2*H);
rect->fRight = rect->fLeft + rand.nextRangeScalar(0, W);
rect->fBottom = rect->fTop + rand.nextRangeScalar(0, H);
// we integralize rect to make our tests more predictable, since Gather is
// a little sloppy.
SkIRect ir;
rect->round(&ir);
rect->set(ir);
}
static void draw(SkPicture* pic, int width, int height, SkBitmap* result) {
make_bm(result, width, height, SK_ColorBLACK, false);
SkCanvas canvas(*result);
canvas.drawPicture(pic);
}
template <typename T> int find_index(const T* array, T elem, int count) {
for (int i = 0; i < count; ++i) {
if (array[i] == elem) {
return i;
}
}
return -1;
}
// Return true if 'ref' is found in array[]
static bool find(SkPixelRef const * const * array, SkPixelRef const * ref, int count) {
return find_index<const SkPixelRef*>(array, ref, count) >= 0;
}
// Look at each pixel that is inside 'subset', and if its color appears in
// colors[], find the corresponding value in refs[] and append that ref into
// array, skipping duplicates of the same value.
// Note that gathering pixelRefs from rendered colors suffers from the problem
// that multiple simultaneous textures (e.g., A8 for alpha and 8888 for color)
// isn't easy to reconstruct.
static void gather_from_image(const SkBitmap& bm, SkPixelRef* const refs[],
int count, SkTDArray<SkPixelRef*>* array,
const SkRect& subset) {
SkIRect ir;
subset.roundOut(&ir);
if (!ir.intersect(0, 0, bm.width()-1, bm.height()-1)) {
return;
}
// Since we only want to return unique values in array, when we scan we just
// set a bit for each index'd color found. In practice we only have a few
// distinct colors, so we just use an int's bits as our array. Hence the
// assert that count <= number-of-bits-in-our-int.
SkASSERT((unsigned)count <= 32);
uint32_t bitarray = 0;
SkAutoLockPixels alp(bm);
for (int y = ir.fTop; y < ir.fBottom; ++y) {
for (int x = ir.fLeft; x < ir.fRight; ++x) {
SkPMColor pmc = *bm.getAddr32(x, y);
// the only good case where the color is not found would be if
// the color is transparent, meaning no bitmap was drawn in that
// pixel.
if (pmc) {
uint32_t index = SkGetPackedR32(pmc);
SkASSERT(SkGetPackedG32(pmc) == index);
SkASSERT(SkGetPackedB32(pmc) == index);
if (0 == index) {
continue; // background color
}
SkASSERT(0 == (index - gColorOffset) % gColorScale);
index = (index - gColorOffset) / gColorScale;
SkASSERT(static_cast<int>(index) < count);
bitarray |= 1 << index;
}
}
}
for (int i = 0; i < count; ++i) {
if (bitarray & (1 << i)) {
*array->append() = refs[i];
}
}
}
static void gather_from_analytic(const SkPoint pos[], SkScalar w, SkScalar h,
const SkTDArray<SkPixelRef*> analytic[],
int count,
SkTDArray<SkPixelRef*>* result,
const SkRect& subset) {
for (int i = 0; i < count; ++i) {
SkRect rect = SkRect::MakeXYWH(pos[i].fX, pos[i].fY, w, h);
if (SkRect::Intersects(subset, rect)) {
result->append(analytic[i].count(), analytic[i].begin());
}
}
}
static const struct {
const DrawBitmapProc proc;
const char* const desc;
} gProcs[] = {
{drawpaint_proc, "drawpaint"},
{drawpoints_proc, "drawpoints"},
{drawrect_proc, "drawrect"},
{drawoval_proc, "drawoval"},
{drawrrect_proc, "drawrrect"},
{drawpath_proc, "drawpath"},
{drawbitmap_proc, "drawbitmap"},
{drawbitmap_withshader_proc, "drawbitmap_withshader"},
{drawsprite_proc, "drawsprite"},
#if 0
{drawsprite_withshader_proc, "drawsprite_withshader"},
#endif
{drawbitmaprect_proc, "drawbitmaprect"},
{drawbitmaprect_withshader_proc, "drawbitmaprect_withshader"},
{drawtext_proc, "drawtext"},
{drawpostext_proc, "drawpostext"},
{drawtextonpath_proc, "drawtextonpath"},
{drawverts_proc, "drawverts"},
};
static void create_textures(SkBitmap* bm, SkPixelRef** refs, int num, int w, int h) {
// Our convention is that the color components contain an encoding of
// the index of their corresponding bitmap/pixelref. (0,0,0,0) is
// reserved for the background
for (int i = 0; i < num; ++i) {
make_bm(&bm[i], w, h,
SkColorSetARGB(0xFF,
gColorScale*i+gColorOffset,
gColorScale*i+gColorOffset,
gColorScale*i+gColorOffset),
true);
refs[i] = bm[i].pixelRef();
}
// The A8 alternate bitmaps are all BW checkerboards
for (int i = 0; i < num; ++i) {
make_checkerboard(&bm[num+i], w, h, true);
refs[num+i] = bm[num+i].pixelRef();
}
}
static void test_gatherpixelrefs(skiatest::Reporter* reporter) {
const int IW = 32;
const int IH = IW;
const SkScalar W = SkIntToScalar(IW);
const SkScalar H = W;
static const int N = 4;
SkBitmap bm[2*N];
SkPixelRef* refs[2*N];
SkTDArray<SkPixelRef*> analytic[N];
const SkPoint pos[N] = {
{ 0, 0 }, { W, 0 }, { 0, H }, { W, H }
};
create_textures(bm, refs, N, IW, IH);
SkRandom rand;
for (size_t k = 0; k < SK_ARRAY_COUNT(gProcs); ++k) {
SkAutoTUnref<SkPicture> pic(
record_bitmaps(bm, pos, analytic, N, gProcs[k].proc));
REPORTER_ASSERT(reporter, pic->willPlayBackBitmaps() || N == 0);
// quick check for a small piece of each quadrant, which should just
// contain 1 or 2 bitmaps.
for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) {
SkRect r;
r.set(2, 2, W - 2, H - 2);
r.offset(pos[i].fX, pos[i].fY);
SkAutoDataUnref data(SkPictureUtils::GatherPixelRefs(pic, r));
if (!data) {
ERRORF(reporter, "SkPictureUtils::GatherPixelRefs returned "
"NULL for %s.", gProcs[k].desc);
continue;
}
SkPixelRef** gatheredRefs = (SkPixelRef**)data->data();
int count = static_cast<int>(data->size() / sizeof(SkPixelRef*));
REPORTER_ASSERT(reporter, 1 == count || 2 == count);
if (1 == count) {
REPORTER_ASSERT(reporter, gatheredRefs[0] == refs[i]);
} else if (2 == count) {
REPORTER_ASSERT(reporter,
(gatheredRefs[0] == refs[i] && gatheredRefs[1] == refs[i+N]) ||
(gatheredRefs[1] == refs[i] && gatheredRefs[0] == refs[i+N]));
}
}
SkBitmap image;
draw(pic, 2*IW, 2*IH, &image);
// Test a bunch of random (mostly) rects, and compare the gather results
// with a deduced list of refs by looking at the colors drawn.
for (int j = 0; j < 100; ++j) {
SkRect r;
rand_rect(&r, rand, 2*W, 2*H);
SkTDArray<SkPixelRef*> fromImage;
gather_from_image(image, refs, N, &fromImage, r);
SkTDArray<SkPixelRef*> fromAnalytic;
gather_from_analytic(pos, W, H, analytic, N, &fromAnalytic, r);
SkData* data = SkPictureUtils::GatherPixelRefs(pic, r);
size_t dataSize = data ? data->size() : 0;
int gatherCount = static_cast<int>(dataSize / sizeof(SkPixelRef*));
SkASSERT(gatherCount * sizeof(SkPixelRef*) == dataSize);
SkPixelRef** gatherRefs = data ? (SkPixelRef**)(data->data()) : NULL;
SkAutoDataUnref adu(data);
// Everything that we saw drawn should appear in the analytic list
// but the analytic list may contain some pixelRefs that were not
// seen in the image (e.g., A8 textures used as masks)
for (int i = 0; i < fromImage.count(); ++i) {
if (-1 == fromAnalytic.find(fromImage[i])) {
ERRORF(reporter, "PixelRef missing %d %s",
i, gProcs[k].desc);
}
}
/*
* GatherPixelRefs is conservative, so it can return more bitmaps
* than are strictly required. Thus our check here is only that
* Gather didn't miss any that we actually needed. Even that isn't
* a strict requirement on Gather, which is meant to be quick and
* only mostly-correct, but at the moment this test should work.
*/
for (int i = 0; i < fromAnalytic.count(); ++i) {
bool found = find(gatherRefs, fromAnalytic[i], gatherCount);
if (!found) {
ERRORF(reporter, "PixelRef missing %d %s",
i, gProcs[k].desc);
}
#if 0
// enable this block of code to debug failures, as it will rerun
// the case that failed.
if (!found) {
SkData* data = SkPictureUtils::GatherPixelRefs(pic, r);
size_t dataSize = data ? data->size() : 0;
}
#endif
}
}
}
}
/* Hit a few SkPicture::Analysis cases not handled elsewhere. */
static void test_analysis(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
{
canvas->drawRect(SkRect::MakeWH(10, 10), SkPaint ());
}
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
REPORTER_ASSERT(reporter, !picture->willPlayBackBitmaps());
canvas = recorder.beginRecording(100, 100);
{
SkPaint paint;
// CreateBitmapShader is too smart for us; an empty (or 1x1) bitmap shader
// gets optimized into a non-bitmap form, so we create a 2x2 bitmap here.
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeN32Premul(2, 2));
bitmap.eraseColor(SK_ColorBLUE);
*(bitmap.getAddr32(0, 0)) = SK_ColorGREEN;
SkShader* shader = SkShader::CreateBitmapShader(bitmap, SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode);
paint.setShader(shader)->unref();
REPORTER_ASSERT(reporter,
shader->asABitmap(NULL, NULL, NULL) == SkShader::kDefault_BitmapType);
canvas->drawRect(SkRect::MakeWH(10, 10), paint);
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->willPlayBackBitmaps());
}
static void test_gatherpixelrefsandrects(skiatest::Reporter* reporter) {
const int IW = 32;
const int IH = IW;
const SkScalar W = SkIntToScalar(IW);
const SkScalar H = W;
static const int N = 4;
SkBitmap bm[2*N];
SkPixelRef* refs[2*N];
SkTDArray<SkPixelRef*> analytic[N];
const SkPoint pos[N] = {
{ 0, 0 }, { W, 0 }, { 0, H }, { W, H }
};
create_textures(bm, refs, N, IW, IH);
SkRandom rand;
for (size_t k = 0; k < SK_ARRAY_COUNT(gProcs); ++k) {
SkAutoTUnref<SkPicture> pic(
record_bitmaps(bm, pos, analytic, N, gProcs[k].proc));
REPORTER_ASSERT(reporter, pic->willPlayBackBitmaps() || N == 0);
SkAutoTUnref<SkPictureUtils::SkPixelRefContainer> prCont(
new SkPictureUtils::SkPixelRefsAndRectsList);
SkPictureUtils::GatherPixelRefsAndRects(pic, prCont);
// quick check for a small piece of each quadrant, which should just
// contain 1 or 2 bitmaps.
for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) {
SkRect r;
r.set(2, 2, W - 2, H - 2);
r.offset(pos[i].fX, pos[i].fY);
SkTDArray<SkPixelRef*> gatheredRefs;
prCont->query(r, &gatheredRefs);
int count = gatheredRefs.count();
REPORTER_ASSERT(reporter, 1 == count || 2 == count);
if (1 == count) {
REPORTER_ASSERT(reporter, gatheredRefs[0] == refs[i]);
} else if (2 == count) {
REPORTER_ASSERT(reporter,
(gatheredRefs[0] == refs[i] && gatheredRefs[1] == refs[i+N]) ||
(gatheredRefs[1] == refs[i] && gatheredRefs[0] == refs[i+N]));
}
}
SkBitmap image;
draw(pic, 2*IW, 2*IH, &image);
// Test a bunch of random (mostly) rects, and compare the gather results
// with the analytic results and the pixel refs seen in a rendering.
for (int j = 0; j < 100; ++j) {
SkRect r;
rand_rect(&r, rand, 2*W, 2*H);
SkTDArray<SkPixelRef*> fromImage;
gather_from_image(image, refs, N, &fromImage, r);
SkTDArray<SkPixelRef*> fromAnalytic;
gather_from_analytic(pos, W, H, analytic, N, &fromAnalytic, r);
SkTDArray<SkPixelRef*> gatheredRefs;
prCont->query(r, &gatheredRefs);
// Everything that we saw drawn should appear in the analytic list
// but the analytic list may contain some pixelRefs that were not
// seen in the image (e.g., A8 textures used as masks)
for (int i = 0; i < fromImage.count(); ++i) {
REPORTER_ASSERT(reporter, -1 != fromAnalytic.find(fromImage[i]));
}
// Everything in the analytic list should appear in the gathered
// list.
for (int i = 0; i < fromAnalytic.count(); ++i) {
REPORTER_ASSERT(reporter, -1 != gatheredRefs.find(fromAnalytic[i]));
}
}
}
}
#ifdef SK_DEBUG
// Ensure that deleting an empty SkPicture does not assert. Asserts only fire
// in debug mode, so only run in debug mode.
static void test_deleting_empty_picture() {
SkPictureRecorder recorder;
// Creates an SkPictureRecord
recorder.beginRecording(0, 0);
// Turns that into an SkPicture
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// Ceates a new SkPictureRecord
recorder.beginRecording(0, 0);
}
// Ensure that serializing an empty picture does not assert. Likewise only runs in debug mode.
static void test_serializing_empty_picture() {
SkPictureRecorder recorder;
recorder.beginRecording(0, 0);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkDynamicMemoryWStream stream;
picture->serialize(&stream);
}
#endif
static void rand_op(SkCanvas* canvas, SkRandom& rand) {
SkPaint paint;
SkRect rect = SkRect::MakeWH(50, 50);
SkScalar unit = rand.nextUScalar1();
if (unit <= 0.3) {
// SkDebugf("save\n");
canvas->save();
} else if (unit <= 0.6) {
// SkDebugf("restore\n");
canvas->restore();
} else if (unit <= 0.9) {
// SkDebugf("clip\n");
canvas->clipRect(rect);
} else {
// SkDebugf("draw\n");
canvas->drawPaint(paint);
}
}
#if SK_SUPPORT_GPU
static void test_gpu_veto(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(50, 50);
SkScalar intervals[] = { 1.0f, 1.0f };
SkAutoTUnref<SkDashPathEffect> dash(SkDashPathEffect::Create(intervals, 2, 0));
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setPathEffect(dash);
canvas->drawPath(path, paint);
}
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// path effects currently render an SkPicture undesireable for GPU rendering
const char *reason = NULL;
REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL, &reason));
REPORTER_ASSERT(reporter, reason);
canvas = recorder.beginRecording(100, 100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(0, 50);
path.lineTo(25, 25);
path.lineTo(50, 50);
path.lineTo(50, 0);
path.close();
REPORTER_ASSERT(reporter, !path.isConvex());
SkPaint paint;
paint.setAntiAlias(true);
for (int i = 0; i < 50; ++i) {
canvas->drawPath(path, paint);
}
}
picture.reset(recorder.endRecording());
// A lot of small AA concave paths should be fine for GPU rendering
REPORTER_ASSERT(reporter, picture->suitableForGpuRasterization(NULL));
canvas = recorder.beginRecording(100, 100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(0, 100);
path.lineTo(50, 50);
path.lineTo(100, 100);
path.lineTo(100, 0);
path.close();
REPORTER_ASSERT(reporter, !path.isConvex());
SkPaint paint;
paint.setAntiAlias(true);
for (int i = 0; i < 50; ++i) {
canvas->drawPath(path, paint);
}
}
picture.reset(recorder.endRecording());
// A lot of large AA concave paths currently render an SkPicture undesireable for GPU rendering
REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL));
canvas = recorder.beginRecording(100, 100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(0, 50);
path.lineTo(25, 25);
path.lineTo(50, 50);
path.lineTo(50, 0);
path.close();
REPORTER_ASSERT(reporter, !path.isConvex());
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(0);
for (int i = 0; i < 50; ++i) {
canvas->drawPath(path, paint);
}
}
picture.reset(recorder.endRecording());
// hairline stroked AA concave paths are fine for GPU rendering
REPORTER_ASSERT(reporter, picture->suitableForGpuRasterization(NULL));
canvas = recorder.beginRecording(100, 100);
{
SkPaint paint;
SkScalar intervals [] = { 10, 20 };
SkPathEffect* pe = SkDashPathEffect::Create(intervals, 2, 25);
paint.setPathEffect(pe)->unref();
SkPoint points [2] = { { 0, 0 }, { 100, 0 } };
canvas->drawPoints(SkCanvas::kLines_PointMode, 2, points, paint);
}
picture.reset(recorder.endRecording());
// fast-path dashed effects are fine for GPU rendering ...
REPORTER_ASSERT(reporter, picture->suitableForGpuRasterization(NULL));
canvas = recorder.beginRecording(100, 100);
{
SkPaint paint;
SkScalar intervals [] = { 10, 20 };
SkPathEffect* pe = SkDashPathEffect::Create(intervals, 2, 25);
paint.setPathEffect(pe)->unref();
canvas->drawRect(SkRect::MakeWH(10, 10), paint);
}
picture.reset(recorder.endRecording());
// ... but only when applied to drawPoint() calls
REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL));
// Nest the previous picture inside a new one.
canvas = recorder.beginRecording(100, 100);
{
canvas->drawPicture(picture.get());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, !picture->suitableForGpuRasterization(NULL));
}
#endif
static void test_savelayer_extraction(skiatest::Reporter* reporter) {
static const int kWidth = 100;
static const int kHeight = 100;
// Create complex paint that the bounding box computation code can't
// optimize away
SkScalar blueToRedMatrix[20] = { 0 };
blueToRedMatrix[2] = blueToRedMatrix[18] = SK_Scalar1;
SkAutoTUnref<SkColorFilter> blueToRed(SkColorMatrixFilter::Create(blueToRedMatrix));
SkAutoTUnref<SkImageFilter> filter(SkColorFilterImageFilter::Create(blueToRed.get()));
SkPaint complexPaint;
complexPaint.setImageFilter(filter);
SkAutoTUnref<SkPicture> pict, child;
SkRTreeFactory bbhFactory;
{
SkPictureRecorder recorder;
SkCanvas* c = recorder.beginRecording(SkIntToScalar(kWidth), SkIntToScalar(kHeight),
&bbhFactory,
SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag);
c->saveLayer(NULL, &complexPaint);
c->restore();
child.reset(recorder.endRecording());
}
// create a picture with the structure:
// 1)
// SaveLayer
// Restore
// 2)
// SaveLayer
// Translate
// SaveLayer w/ bound
// Restore
// Restore
// 3)
// SaveLayer w/ copyable paint
// Restore
// 4)
// SaveLayer
// DrawPicture (which has a SaveLayer/Restore pair)
// Restore
// 5)
// SaveLayer
// DrawPicture with Matrix & Paint (with SaveLayer/Restore pair)
// Restore
{
SkPictureRecorder recorder;
SkCanvas* c = recorder.beginRecording(SkIntToScalar(kWidth),
SkIntToScalar(kHeight),
&bbhFactory,
SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag);
// 1)
c->saveLayer(NULL, &complexPaint); // layer #0
c->restore();
// 2)
c->saveLayer(NULL, NULL); // layer #1
c->translate(kWidth / 2.0f, kHeight / 2.0f);
SkRect r = SkRect::MakeXYWH(0, 0, kWidth/2, kHeight/2);
c->saveLayer(&r, &complexPaint); // layer #2
c->restore();
c->restore();
// 3)
{
c->saveLayer(NULL, &complexPaint); // layer #3
c->restore();
}
SkPaint layerPaint;
layerPaint.setColor(SK_ColorRED); // Non-alpha only to avoid SaveLayerDrawRestoreNooper
// 4)
{
c->saveLayer(NULL, &layerPaint); // layer #4
c->drawPicture(child); // layer #5 inside picture
c->restore();
}
// 5
{
SkPaint picturePaint;
SkMatrix trans;
trans.setTranslate(10, 10);
c->saveLayer(NULL, &layerPaint); // layer #6
c->drawPicture(child, &trans, &picturePaint); // layer #7 inside picture
c->restore();
}
pict.reset(recorder.endRecording());
}
// Now test out the SaveLayer extraction
{
SkPicture::AccelData::Key key = SkLayerInfo::ComputeKey();
const SkPicture::AccelData* data = pict->EXPERIMENTAL_getAccelData(key);
REPORTER_ASSERT(reporter, data);
const SkLayerInfo *gpuData = static_cast<const SkLayerInfo*>(data);
REPORTER_ASSERT(reporter, 8 == gpuData->numBlocks());
const SkLayerInfo::BlockInfo& info0 = gpuData->block(0);
// The parent/child layers appear in reverse order
const SkLayerInfo::BlockInfo& info1 = gpuData->block(2);
const SkLayerInfo::BlockInfo& info2 = gpuData->block(1);
const SkLayerInfo::BlockInfo& info3 = gpuData->block(3);
// The parent/child layers appear in reverse order
const SkLayerInfo::BlockInfo& info4 = gpuData->block(5);
const SkLayerInfo::BlockInfo& info5 = gpuData->block(4);
// The parent/child layers appear in reverse order
const SkLayerInfo::BlockInfo& info6 = gpuData->block(7);
const SkLayerInfo::BlockInfo& info7 = gpuData->block(6);
REPORTER_ASSERT(reporter, NULL == info0.fPicture);
REPORTER_ASSERT(reporter, kWidth == info0.fBounds.width() &&
kHeight == info0.fBounds.height());
REPORTER_ASSERT(reporter, info0.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info0.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, 0 == info0.fBounds.fLeft && 0 == info0.fBounds.fTop);
REPORTER_ASSERT(reporter, NULL != info0.fPaint);
REPORTER_ASSERT(reporter, !info0.fIsNested && !info0.fHasNestedLayers);
REPORTER_ASSERT(reporter, NULL == info1.fPicture);
REPORTER_ASSERT(reporter, kWidth/2.0 == info1.fBounds.width() &&
kHeight/2.0 == info1.fBounds.height());
REPORTER_ASSERT(reporter, info1.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info1.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, kWidth/2.0 == info1.fBounds.fLeft &&
kHeight/2.0 == info1.fBounds.fTop);
REPORTER_ASSERT(reporter, NULL == info1.fPaint);
REPORTER_ASSERT(reporter, !info1.fIsNested &&
info1.fHasNestedLayers); // has a nested SL
REPORTER_ASSERT(reporter, NULL == info2.fPicture);
REPORTER_ASSERT(reporter, kWidth / 2 == info2.fBounds.width() &&
kHeight / 2 == info2.fBounds.height()); // bound reduces size
REPORTER_ASSERT(reporter, !info2.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info2.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, kWidth / 2 == info2.fBounds.fLeft && // translated
kHeight / 2 == info2.fBounds.fTop);
REPORTER_ASSERT(reporter, NULL != info2.fPaint);
REPORTER_ASSERT(reporter, info2.fIsNested && !info2.fHasNestedLayers); // is nested
REPORTER_ASSERT(reporter, NULL == info3.fPicture);
REPORTER_ASSERT(reporter, kWidth == info3.fBounds.width() &&
kHeight == info3.fBounds.height());
REPORTER_ASSERT(reporter, info3.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info3.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, 0 == info3.fBounds.fLeft && 0 == info3.fBounds.fTop);
REPORTER_ASSERT(reporter, info3.fPaint);
REPORTER_ASSERT(reporter, !info3.fIsNested && !info3.fHasNestedLayers);
REPORTER_ASSERT(reporter, NULL == info4.fPicture);
REPORTER_ASSERT(reporter, kWidth == info4.fBounds.width() &&
kHeight == info4.fBounds.height());
REPORTER_ASSERT(reporter, 0 == info4.fBounds.fLeft && 0 == info4.fBounds.fTop);
REPORTER_ASSERT(reporter, info4.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info4.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, info4.fPaint);
REPORTER_ASSERT(reporter, !info4.fIsNested &&
info4.fHasNestedLayers); // has a nested SL
REPORTER_ASSERT(reporter, child == info5.fPicture); // in a child picture
REPORTER_ASSERT(reporter, kWidth == info5.fBounds.width() &&
kHeight == info5.fBounds.height());
REPORTER_ASSERT(reporter, 0 == info5.fBounds.fLeft && 0 == info5.fBounds.fTop);
REPORTER_ASSERT(reporter, info5.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info5.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, NULL != info5.fPaint);
REPORTER_ASSERT(reporter, info5.fIsNested && !info5.fHasNestedLayers); // is nested
REPORTER_ASSERT(reporter, NULL == info6.fPicture);
REPORTER_ASSERT(reporter, kWidth-10 == info6.fBounds.width() &&
kHeight-10 == info6.fBounds.height());
REPORTER_ASSERT(reporter, 10 == info6.fBounds.fLeft && 10 == info6.fBounds.fTop);
REPORTER_ASSERT(reporter, info6.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info6.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, info6.fPaint);
REPORTER_ASSERT(reporter, !info6.fIsNested &&
info6.fHasNestedLayers); // has a nested SL
REPORTER_ASSERT(reporter, child == info7.fPicture); // in a child picture
REPORTER_ASSERT(reporter, kWidth == info7.fBounds.width() &&
kHeight == info7.fBounds.height());
REPORTER_ASSERT(reporter, 0 == info7.fBounds.fLeft && 0 == info7.fBounds.fTop);
REPORTER_ASSERT(reporter, info7.fLocalMat.isIdentity());
REPORTER_ASSERT(reporter, info7.fPreMat.isIdentity());
REPORTER_ASSERT(reporter, NULL != info7.fPaint);
REPORTER_ASSERT(reporter, info7.fIsNested && !info7.fHasNestedLayers); // is nested
}
}
static void test_has_text(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100,100);
{
canvas->drawRect(SkRect::MakeWH(20, 20), SkPaint());
}
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
REPORTER_ASSERT(reporter, !picture->hasText());
SkPoint point = SkPoint::Make(10, 10);
canvas = recorder.beginRecording(100,100);
{
canvas->drawText("Q", 1, point.fX, point.fY, SkPaint());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
canvas = recorder.beginRecording(100,100);
{
canvas->drawPosText("Q", 1, &point, SkPaint());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
canvas = recorder.beginRecording(100,100);
{
canvas->drawPosTextH("Q", 1, &point.fX, point.fY, SkPaint());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
canvas = recorder.beginRecording(100,100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(50, 50);
canvas->drawTextOnPathHV("Q", 1, path, point.fX, point.fY, SkPaint());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
canvas = recorder.beginRecording(100,100);
{
SkPath path;
path.moveTo(0, 0);
path.lineTo(50, 50);
canvas->drawTextOnPath("Q", 1, path, NULL, SkPaint());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
// Nest the previous picture inside a new one.
canvas = recorder.beginRecording(100,100);
{
canvas->drawPicture(picture.get());
}
picture.reset(recorder.endRecording());
REPORTER_ASSERT(reporter, picture->hasText());
}
static void set_canvas_to_save_count_4(SkCanvas* canvas) {
canvas->restoreToCount(1);
canvas->save();
canvas->save();
canvas->save();
}
/**
* A canvas that records the number of saves, saveLayers and restores.
*/
class SaveCountingCanvas : public SkCanvas {
public:
SaveCountingCanvas(int width, int height)
: INHERITED(width, height)
, fSaveCount(0)
, fSaveLayerCount(0)
, fRestoreCount(0){
}
virtual SaveLayerStrategy willSaveLayer(const SkRect* bounds, const SkPaint* paint,
SaveFlags flags) SK_OVERRIDE {
++fSaveLayerCount;
return this->INHERITED::willSaveLayer(bounds, paint, flags);
}
virtual void willSave() SK_OVERRIDE {
++fSaveCount;
this->INHERITED::willSave();
}
virtual void willRestore() SK_OVERRIDE {
++fRestoreCount;
this->INHERITED::willRestore();
}
unsigned int getSaveCount() const { return fSaveCount; }
unsigned int getSaveLayerCount() const { return fSaveLayerCount; }
unsigned int getRestoreCount() const { return fRestoreCount; }
private:
unsigned int fSaveCount;
unsigned int fSaveLayerCount;
unsigned int fRestoreCount;
typedef SkCanvas INHERITED;
};
void check_save_state(skiatest::Reporter* reporter, SkPicture* picture,
unsigned int numSaves, unsigned int numSaveLayers,
unsigned int numRestores) {
SaveCountingCanvas canvas(SkScalarCeilToInt(picture->cullRect().width()),
SkScalarCeilToInt(picture->cullRect().height()));
picture->playback(&canvas);
// Optimizations may have removed these,
// so expect to have seen no more than num{Saves,SaveLayers,Restores}.
REPORTER_ASSERT(reporter, numSaves >= canvas.getSaveCount());
REPORTER_ASSERT(reporter, numSaveLayers >= canvas.getSaveLayerCount());
REPORTER_ASSERT(reporter, numRestores >= canvas.getRestoreCount());
}
// This class exists so SkPicture can friend it and give it access to
// the 'partialReplay' method.
class SkPictureRecorderReplayTester {
public:
static SkPicture* Copy(SkPictureRecorder* recorder) {
SkPictureRecorder recorder2;
SkCanvas* canvas = recorder2.beginRecording(10, 10);
recorder->partialReplay(canvas);
return recorder2.endRecording();
}
};
static void create_imbalance(SkCanvas* canvas) {
SkRect clipRect = SkRect::MakeWH(2, 2);
SkRect drawRect = SkRect::MakeWH(10, 10);
canvas->save();
canvas->clipRect(clipRect, SkRegion::kReplace_Op);
canvas->translate(1.0f, 1.0f);
SkPaint p;
p.setColor(SK_ColorGREEN);
canvas->drawRect(drawRect, p);
// no restore
}
// This tests that replaying a potentially unbalanced picture into a canvas
// doesn't affect the canvas' save count or matrix/clip state.
static void check_balance(skiatest::Reporter* reporter, SkPicture* picture) {
SkBitmap bm;
bm.allocN32Pixels(4, 3);
SkCanvas canvas(bm);
int beforeSaveCount = canvas.getSaveCount();
SkMatrix beforeMatrix = canvas.getTotalMatrix();
SkRect beforeClip;
canvas.getClipBounds(&beforeClip);
canvas.drawPicture(picture);
REPORTER_ASSERT(reporter, beforeSaveCount == canvas.getSaveCount());
REPORTER_ASSERT(reporter, beforeMatrix == canvas.getTotalMatrix());
SkRect afterClip;
canvas.getClipBounds(&afterClip);
REPORTER_ASSERT(reporter, afterClip == beforeClip);
}
// Test out SkPictureRecorder::partialReplay
DEF_TEST(PictureRecorder_replay, reporter) {
// check save/saveLayer state
{
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->saveLayer(NULL, NULL);
SkAutoTUnref<SkPicture> copy(SkPictureRecorderReplayTester::Copy(&recorder));
// The extra save and restore comes from the Copy process.
check_save_state(reporter, copy, 2, 1, 3);
canvas->saveLayer(NULL, NULL);
SkAutoTUnref<SkPicture> final(recorder.endRecording());
check_save_state(reporter, final, 1, 2, 3);
// The copy shouldn't pick up any operations added after it was made
check_save_state(reporter, copy, 2, 1, 3);
}
// (partially) check leakage of draw ops
{
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
SkRect r = SkRect::MakeWH(5, 5);
SkPaint p;
canvas->drawRect(r, p);
SkAutoTUnref<SkPicture> copy(SkPictureRecorderReplayTester::Copy(&recorder));
REPORTER_ASSERT(reporter, !copy->willPlayBackBitmaps());
SkBitmap bm;
make_bm(&bm, 10, 10, SK_ColorRED, true);
r.offset(5.0f, 5.0f);
canvas->drawBitmapRectToRect(bm, NULL, r);
SkAutoTUnref<SkPicture> final(recorder.endRecording());
REPORTER_ASSERT(reporter, final->willPlayBackBitmaps());
REPORTER_ASSERT(reporter, copy->uniqueID() != final->uniqueID());
// The snapshot shouldn't pick up any operations added after it was made
REPORTER_ASSERT(reporter, !copy->willPlayBackBitmaps());
}
// Recreate the Android partialReplay test case
{
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(4, 3, NULL, 0);
create_imbalance(canvas);
int expectedSaveCount = canvas->getSaveCount();
SkAutoTUnref<SkPicture> copy(SkPictureRecorderReplayTester::Copy(&recorder));
check_balance(reporter, copy);
REPORTER_ASSERT(reporter, expectedSaveCount = canvas->getSaveCount());
// End the recording of source to test the picture finalization
// process isn't complicated by the partialReplay step
SkAutoTUnref<SkPicture> final(recorder.endRecording());
}
}
static void test_unbalanced_save_restores(skiatest::Reporter* reporter) {
SkCanvas testCanvas(100, 100);
set_canvas_to_save_count_4(&testCanvas);
REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount());
SkPaint paint;
SkRect rect = SkRect::MakeLTRB(-10000000, -10000000, 10000000, 10000000);
SkPictureRecorder recorder;
{
// Create picture with 2 unbalanced saves
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->save();
canvas->translate(10, 10);
canvas->drawRect(rect, paint);
canvas->save();
canvas->translate(10, 10);
canvas->drawRect(rect, paint);
SkAutoTUnref<SkPicture> extraSavePicture(recorder.endRecording());
testCanvas.drawPicture(extraSavePicture);
REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount());
}
set_canvas_to_save_count_4(&testCanvas);
{
// Create picture with 2 unbalanced restores
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->save();
canvas->translate(10, 10);
canvas->drawRect(rect, paint);
canvas->save();
canvas->translate(10, 10);
canvas->drawRect(rect, paint);
canvas->restore();
canvas->restore();
canvas->restore();
canvas->restore();
SkAutoTUnref<SkPicture> extraRestorePicture(recorder.endRecording());
testCanvas.drawPicture(extraRestorePicture);
REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount());
}
set_canvas_to_save_count_4(&testCanvas);
{
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->translate(10, 10);
canvas->drawRect(rect, paint);
SkAutoTUnref<SkPicture> noSavePicture(recorder.endRecording());
testCanvas.drawPicture(noSavePicture);
REPORTER_ASSERT(reporter, 4 == testCanvas.getSaveCount());
REPORTER_ASSERT(reporter, testCanvas.getTotalMatrix().isIdentity());
}
}
static void test_peephole() {
SkRandom rand;
SkPictureRecorder recorder;
for (int j = 0; j < 100; j++) {
SkRandom rand2(rand); // remember the seed
SkCanvas* canvas = recorder.beginRecording(100, 100);
for (int i = 0; i < 1000; ++i) {
rand_op(canvas, rand);
}
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
rand = rand2;
}
{
SkCanvas* canvas = recorder.beginRecording(100, 100);
SkRect rect = SkRect::MakeWH(50, 50);
for (int i = 0; i < 100; ++i) {
canvas->save();
}
while (canvas->getSaveCount() > 1) {
canvas->clipRect(rect);
canvas->restore();
}
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
}
}
#ifndef SK_DEBUG
// Only test this is in release mode. We deliberately crash in debug mode, since a valid caller
// should never do this.
static void test_bad_bitmap() {
// This bitmap has a width and height but no pixels. As a result, attempting to record it will
// fail.
SkBitmap bm;
bm.setInfo(SkImageInfo::MakeN32Premul(100, 100));
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(100, 100);
recordingCanvas->drawBitmap(bm, 0, 0);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkCanvas canvas;
canvas.drawPicture(picture);
}
#endif
// Encodes to PNG, unless there is already encoded data, in which case that gets
// used.
// FIXME: Share with PictureRenderer.cpp?
class PngPixelSerializer : public SkPixelSerializer {
public:
virtual bool onUseEncodedData(const void*, size_t) SK_OVERRIDE { return true; }
virtual SkData* onEncodePixels(const SkImageInfo& info, void* pixels,
size_t rowBytes) SK_OVERRIDE {
SkBitmap bm;
if (!bm.installPixels(info, pixels, rowBytes)) {
return NULL;
}
return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100);
}
};
static SkData* serialized_picture_from_bitmap(const SkBitmap& bitmap) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(bitmap.width()),
SkIntToScalar(bitmap.height()));
canvas->drawBitmap(bitmap, 0, 0);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkDynamicMemoryWStream wStream;
PngPixelSerializer serializer;
picture->serialize(&wStream, &serializer);
return wStream.copyToData();
}
struct ErrorContext {
int fErrors;
skiatest::Reporter* fReporter;
};
static void assert_one_parse_error_cb(SkError error, void* context) {
ErrorContext* errorContext = static_cast<ErrorContext*>(context);
errorContext->fErrors++;
// This test only expects one error, and that is a kParseError. If there are others,
// there is some unknown problem.
REPORTER_ASSERT_MESSAGE(errorContext->fReporter, 1 == errorContext->fErrors,
"This threw more errors than expected.");
REPORTER_ASSERT_MESSAGE(errorContext->fReporter, kParseError_SkError == error,
SkGetLastErrorString());
}
static void test_bitmap_with_encoded_data(skiatest::Reporter* reporter) {
// Create a bitmap that will be encoded.
SkBitmap original;
make_bm(&original, 100, 100, SK_ColorBLUE, true);
SkDynamicMemoryWStream wStream;
if (!SkImageEncoder::EncodeStream(&wStream, original, SkImageEncoder::kPNG_Type, 100)) {
return;
}
SkAutoDataUnref data(wStream.copyToData());
SkBitmap bm;
bool installSuccess = SkInstallDiscardablePixelRef(
SkDecodingImageGenerator::Create(data, SkDecodingImageGenerator::Options()), &bm);
REPORTER_ASSERT(reporter, installSuccess);
// Write both bitmaps to pictures, and ensure that the resulting data streams are the same.
// Flattening original will follow the old path of performing an encode, while flattening bm
// will use the already encoded data.
SkAutoDataUnref picture1(serialized_picture_from_bitmap(original));
SkAutoDataUnref picture2(serialized_picture_from_bitmap(bm));
REPORTER_ASSERT(reporter, picture1->equals(picture2));
// Now test that a parse error was generated when trying to create a new SkPicture without
// providing a function to decode the bitmap.
ErrorContext context;
context.fErrors = 0;
context.fReporter = reporter;
SkSetErrorCallback(assert_one_parse_error_cb, &context);
SkMemoryStream pictureStream(picture1);
SkClearLastError();
SkAutoTUnref<SkPicture> pictureFromStream(SkPicture::CreateFromStream(&pictureStream, NULL));
REPORTER_ASSERT(reporter, pictureFromStream.get() != NULL);
SkClearLastError();
SkSetErrorCallback(NULL, NULL);
}
static void test_clip_bound_opt(skiatest::Reporter* reporter) {
// Test for crbug.com/229011
SkRect rect1 = SkRect::MakeXYWH(SkIntToScalar(4), SkIntToScalar(4),
SkIntToScalar(2), SkIntToScalar(2));
SkRect rect2 = SkRect::MakeXYWH(SkIntToScalar(7), SkIntToScalar(7),
SkIntToScalar(1), SkIntToScalar(1));
SkRect rect3 = SkRect::MakeXYWH(SkIntToScalar(6), SkIntToScalar(6),
SkIntToScalar(1), SkIntToScalar(1));
SkPath invPath;
invPath.addOval(rect1);
invPath.setFillType(SkPath::kInverseEvenOdd_FillType);
SkPath path;
path.addOval(rect2);
SkPath path2;
path2.addOval(rect3);
SkIRect clipBounds;
SkPictureRecorder recorder;
// Testing conservative-raster-clip that is enabled by PictureRecord
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(invPath, SkRegion::kIntersect_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(invPath, SkRegion::kIntersect_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 7 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(invPath, SkRegion::kUnion_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(path, SkRegion::kDifference_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 0 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 10 == clipBounds.fRight);
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(path, SkRegion::kReverseDifference_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
// True clip is actually empty in this case, but the best
// determination we can make using only bounds as input is that the
// clip is included in the bounds of 'path'.
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 7 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipPath(path, SkRegion::kIntersect_Op);
canvas->clipPath(path2, SkRegion::kXOR_Op);
bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds);
REPORTER_ASSERT(reporter, true == nonEmpty);
REPORTER_ASSERT(reporter, 6 == clipBounds.fLeft);
REPORTER_ASSERT(reporter, 6 == clipBounds.fTop);
REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom);
REPORTER_ASSERT(reporter, 8 == clipBounds.fRight);
}
}
/**
* A canvas that records the number of clip commands.
*/
class ClipCountingCanvas : public SkCanvas {
public:
ClipCountingCanvas(int width, int height)
: INHERITED(width, height)
, fClipCount(0){
}
virtual void onClipRect(const SkRect& r,
SkRegion::Op op,
ClipEdgeStyle edgeStyle) SK_OVERRIDE {
fClipCount += 1;
this->INHERITED::onClipRect(r, op, edgeStyle);
}
virtual void onClipRRect(const SkRRect& rrect,
SkRegion::Op op,
ClipEdgeStyle edgeStyle)SK_OVERRIDE {
fClipCount += 1;
this->INHERITED::onClipRRect(rrect, op, edgeStyle);
}
virtual void onClipPath(const SkPath& path,
SkRegion::Op op,
ClipEdgeStyle edgeStyle) SK_OVERRIDE {
fClipCount += 1;
this->INHERITED::onClipPath(path, op, edgeStyle);
}
virtual void onClipRegion(const SkRegion& deviceRgn, SkRegion::Op op) SK_OVERRIDE {
fClipCount += 1;
this->INHERITED::onClipRegion(deviceRgn, op);
}
unsigned getClipCount() const { return fClipCount; }
private:
unsigned fClipCount;
typedef SkCanvas INHERITED;
};
static void test_clip_expansion(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clipRect(SkRect::MakeEmpty(), SkRegion::kReplace_Op);
// The following expanding clip should not be skipped.
canvas->clipRect(SkRect::MakeXYWH(4, 4, 3, 3), SkRegion::kUnion_Op);
// Draw something so the optimizer doesn't just fold the world.
SkPaint p;
p.setColor(SK_ColorBLUE);
canvas->drawPaint(p);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
ClipCountingCanvas testCanvas(10, 10);
picture->playback(&testCanvas);
// Both clips should be present on playback.
REPORTER_ASSERT(reporter, testCanvas.getClipCount() == 2);
}
static void test_hierarchical(skiatest::Reporter* reporter) {
SkBitmap bm;
make_bm(&bm, 10, 10, SK_ColorRED, true);
SkPictureRecorder recorder;
recorder.beginRecording(10, 10);
SkAutoTUnref<SkPicture> childPlain(recorder.endRecording());
REPORTER_ASSERT(reporter, !childPlain->willPlayBackBitmaps()); // 0
recorder.beginRecording(10, 10)->drawBitmap(bm, 0, 0);
SkAutoTUnref<SkPicture> childWithBitmap(recorder.endRecording());
REPORTER_ASSERT(reporter, childWithBitmap->willPlayBackBitmaps()); // 1
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->drawPicture(childPlain);
SkAutoTUnref<SkPicture> parentPP(recorder.endRecording());
REPORTER_ASSERT(reporter, !parentPP->willPlayBackBitmaps()); // 0
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->drawPicture(childWithBitmap);
SkAutoTUnref<SkPicture> parentPWB(recorder.endRecording());
REPORTER_ASSERT(reporter, parentPWB->willPlayBackBitmaps()); // 1
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->drawBitmap(bm, 0, 0);
canvas->drawPicture(childPlain);
SkAutoTUnref<SkPicture> parentWBP(recorder.endRecording());
REPORTER_ASSERT(reporter, parentWBP->willPlayBackBitmaps()); // 1
}
{
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->drawBitmap(bm, 0, 0);
canvas->drawPicture(childWithBitmap);
SkAutoTUnref<SkPicture> parentWBWB(recorder.endRecording());
REPORTER_ASSERT(reporter, parentWBWB->willPlayBackBitmaps()); // 2
}
}
static void test_gen_id(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
recorder.beginRecording(0, 0);
SkAutoTUnref<SkPicture> empty(recorder.endRecording());
// Empty pictures should still have a valid ID
REPORTER_ASSERT(reporter, empty->uniqueID() != SK_InvalidGenID);
SkCanvas* canvas = recorder.beginRecording(1, 1);
canvas->drawARGB(255, 255, 255, 255);
SkAutoTUnref<SkPicture> hasData(recorder.endRecording());
// picture should have a non-zero id after recording
REPORTER_ASSERT(reporter, hasData->uniqueID() != SK_InvalidGenID);
// both pictures should have different ids
REPORTER_ASSERT(reporter, hasData->uniqueID() != empty->uniqueID());
}
static void test_bytes_used(skiatest::Reporter* reporter) {
SkPictureRecorder recorder;
recorder.beginRecording(0, 0);
SkAutoTUnref<SkPicture> empty(recorder.endRecording());
// Sanity check to make sure we aren't under-measuring.
REPORTER_ASSERT(reporter, SkPictureUtils::ApproximateBytesUsed(empty.get()) >=
sizeof(SkPicture) + sizeof(SkRecord));
// Protect against any unintentional bloat.
size_t approxUsed = SkPictureUtils::ApproximateBytesUsed(empty.get());
REPORTER_ASSERT(reporter, approxUsed <= 136);
// Sanity check of nested SkPictures.
SkPictureRecorder r2;
r2.beginRecording(0, 0);
r2.getRecordingCanvas()->drawPicture(empty.get());
SkAutoTUnref<SkPicture> nested(r2.endRecording());
REPORTER_ASSERT(reporter, SkPictureUtils::ApproximateBytesUsed(nested.get()) >
SkPictureUtils::ApproximateBytesUsed(empty.get()));
}
DEF_TEST(Picture, reporter) {
#ifdef SK_DEBUG
test_deleting_empty_picture();
test_serializing_empty_picture();
#else
test_bad_bitmap();
#endif
test_unbalanced_save_restores(reporter);
test_peephole();
#if SK_SUPPORT_GPU
test_gpu_veto(reporter);
#endif
test_has_text(reporter);
test_analysis(reporter);
test_gatherpixelrefs(reporter);
test_gatherpixelrefsandrects(reporter);
test_bitmap_with_encoded_data(reporter);
test_clip_bound_opt(reporter);
test_clip_expansion(reporter);
test_hierarchical(reporter);
test_gen_id(reporter);
test_savelayer_extraction(reporter);
test_bytes_used(reporter);
}
static void draw_bitmaps(const SkBitmap bitmap, SkCanvas* canvas) {
const SkPaint paint;
const SkRect rect = { 5.0f, 5.0f, 8.0f, 8.0f };
const SkIRect irect = { 2, 2, 3, 3 };
// Don't care what these record, as long as they're legal.
canvas->drawBitmap(bitmap, 0.0f, 0.0f, &paint);
canvas->drawBitmapRectToRect(bitmap, &rect, rect, &paint, SkCanvas::kNone_DrawBitmapRectFlag);
canvas->drawBitmapNine(bitmap, irect, rect, &paint);
canvas->drawSprite(bitmap, 1, 1);
}
static void test_draw_bitmaps(SkCanvas* canvas) {
SkBitmap empty;
draw_bitmaps(empty, canvas);
empty.setInfo(SkImageInfo::MakeN32Premul(10, 10));
draw_bitmaps(empty, canvas);
}
DEF_TEST(Picture_EmptyBitmap, r) {
SkPictureRecorder recorder;
test_draw_bitmaps(recorder.beginRecording(10, 10));
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
}
DEF_TEST(Canvas_EmptyBitmap, r) {
SkBitmap dst;
dst.allocN32Pixels(10, 10);
SkCanvas canvas(dst);
test_draw_bitmaps(&canvas);
}
DEF_TEST(DontOptimizeSaveLayerDrawDrawRestore, reporter) {
// This test is from crbug.com/344987.
// The commands are:
// saveLayer with paint that modifies alpha
// drawBitmapRectToRect
// drawBitmapRectToRect
// restore
// The bug was that this structure was modified so that:
// - The saveLayer and restore were eliminated
// - The alpha was only applied to the first drawBitmapRectToRect
// This test draws blue and red squares inside a 50% transparent
// layer. Both colours should show up muted.
// When the bug is present, the red square (the second bitmap)
// shows upwith full opacity.
SkBitmap blueBM;
make_bm(&blueBM, 100, 100, SkColorSetARGB(255, 0, 0, 255), true);
SkBitmap redBM;
make_bm(&redBM, 100, 100, SkColorSetARGB(255, 255, 0, 0), true);
SkPaint semiTransparent;
semiTransparent.setAlpha(0x80);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawARGB(0, 0, 0, 0);
canvas->saveLayer(0, &semiTransparent);
canvas->drawBitmap(blueBM, 25, 25);
canvas->drawBitmap(redBM, 50, 50);
canvas->restore();
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// Now replay the picture back on another canvas
// and check a couple of its pixels.
SkBitmap replayBM;
make_bm(&replayBM, 100, 100, SK_ColorBLACK, false);
SkCanvas replayCanvas(replayBM);
picture->playback(&replayCanvas);
replayCanvas.flush();
// With the bug present, at (55, 55) we would get a fully opaque red
// intead of a dark red.
REPORTER_ASSERT(reporter, replayBM.getColor(30, 30) == 0xff000080);
REPORTER_ASSERT(reporter, replayBM.getColor(55, 55) == 0xff800000);
}
struct CountingBBH : public SkBBoxHierarchy {
mutable int searchCalls;
CountingBBH() : searchCalls(0) {}
virtual void search(const SkRect& query, SkTDArray<unsigned>* results) const SK_OVERRIDE {
this->searchCalls++;
}
virtual void insert(SkAutoTMalloc<SkRect>*, int) SK_OVERRIDE {}
virtual size_t bytesUsed() const { return 0; }
};
class SpoonFedBBHFactory : public SkBBHFactory {
public:
explicit SpoonFedBBHFactory(SkBBoxHierarchy* bbh) : fBBH(bbh) {}
SkBBoxHierarchy* operator()(const SkRect&) const SK_OVERRIDE {
return SkRef(fBBH);
}
private:
SkBBoxHierarchy* fBBH;
};
// When the canvas clip covers the full picture, we don't need to call the BBH.
DEF_TEST(Picture_SkipBBH, r) {
CountingBBH bbh;
SpoonFedBBHFactory factory(&bbh);
SkPictureRecorder recorder;
recorder.beginRecording(320, 240, &factory);
SkAutoTUnref<const SkPicture> picture(recorder.endRecording());
SkCanvas big(640, 480), small(300, 200);
picture->playback(&big);
REPORTER_ASSERT(r, bbh.searchCalls == 0);
picture->playback(&small);
REPORTER_ASSERT(r, bbh.searchCalls == 1);
}
DEF_TEST(Picture_BitmapLeak, r) {
SkBitmap mut, immut;
mut.allocN32Pixels(300, 200);
immut.allocN32Pixels(300, 200);
immut.setImmutable();
SkASSERT(!mut.isImmutable());
SkASSERT(immut.isImmutable());
// No one can hold a ref on our pixels yet.
REPORTER_ASSERT(r, mut.pixelRef()->unique());
REPORTER_ASSERT(r, immut.pixelRef()->unique());
SkAutoTUnref<const SkPicture> pic;
{
// we want the recorder to go out of scope before our subsequent checks, so we
// place it inside local braces.
SkPictureRecorder rec;
SkCanvas* canvas = rec.beginRecording(1920, 1200);
canvas->drawBitmap(mut, 0, 0);
canvas->drawBitmap(immut, 800, 600);
pic.reset(rec.endRecording());
}
// The picture shares the immutable pixels but copies the mutable ones.
REPORTER_ASSERT(r, mut.pixelRef()->unique());
REPORTER_ASSERT(r, !immut.pixelRef()->unique());
// When the picture goes away, it's just our bitmaps holding the refs.
pic.reset(NULL);
REPORTER_ASSERT(r, mut.pixelRef()->unique());
REPORTER_ASSERT(r, immut.pixelRef()->unique());
}