| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrContext.h" |
| |
| #include "GrAARectRenderer.h" |
| #include "GrBufferAllocPool.h" |
| #include "GrDefaultGeoProcFactory.h" |
| #include "GrGpuResource.h" |
| #include "GrGpuResourceCacheAccess.h" |
| #include "GrDistanceFieldTextContext.h" |
| #include "GrDrawTargetCaps.h" |
| #include "GrGpu.h" |
| #include "GrIndexBuffer.h" |
| #include "GrInOrderDrawBuffer.h" |
| #include "GrLayerCache.h" |
| #include "GrOvalRenderer.h" |
| #include "GrPathRenderer.h" |
| #include "GrPathUtils.h" |
| #include "GrResourceCache2.h" |
| #include "GrSoftwarePathRenderer.h" |
| #include "GrStencilBuffer.h" |
| #include "GrStencilAndCoverTextContext.h" |
| #include "GrStrokeInfo.h" |
| #include "GrSurfacePriv.h" |
| #include "GrTextStrike.h" |
| #include "GrTexturePriv.h" |
| #include "GrTraceMarker.h" |
| #include "GrTracing.h" |
| #include "SkDashPathPriv.h" |
| #include "SkConfig8888.h" |
| #include "SkGr.h" |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "SkTLazy.h" |
| #include "SkTLS.h" |
| #include "SkTraceEvent.h" |
| |
| #include "effects/GrConfigConversionEffect.h" |
| #include "effects/GrDashingEffect.h" |
| #include "effects/GrSingleTextureEffect.h" |
| |
| #ifdef SK_DEBUG |
| // change this to a 1 to see notifications when partial coverage fails |
| #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 |
| #else |
| #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 |
| #endif |
| |
| static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15; |
| static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; |
| |
| static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11; |
| static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4; |
| |
| #define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this) |
| |
| class GrContext::AutoCheckFlush { |
| public: |
| AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(context); } |
| |
| ~AutoCheckFlush() { |
| if (fContext->fFlushToReduceCacheSize) { |
| fContext->flush(); |
| } |
| } |
| |
| private: |
| GrContext* fContext; |
| }; |
| |
| GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext, |
| const Options* opts) { |
| GrContext* context; |
| if (NULL == opts) { |
| context = SkNEW_ARGS(GrContext, (Options())); |
| } else { |
| context = SkNEW_ARGS(GrContext, (*opts)); |
| } |
| |
| if (context->init(backend, backendContext)) { |
| return context; |
| } else { |
| context->unref(); |
| return NULL; |
| } |
| } |
| |
| GrContext::GrContext(const Options& opts) : fOptions(opts) { |
| fGpu = NULL; |
| fClip = NULL; |
| fPathRendererChain = NULL; |
| fSoftwarePathRenderer = NULL; |
| fResourceCache2 = NULL; |
| fFontCache = NULL; |
| fDrawBuffer = NULL; |
| fDrawBufferVBAllocPool = NULL; |
| fDrawBufferIBAllocPool = NULL; |
| fFlushToReduceCacheSize = false; |
| fAARectRenderer = NULL; |
| fOvalRenderer = NULL; |
| fViewMatrix.reset(); |
| fMaxTextureSizeOverride = 1 << 20; |
| } |
| |
| bool GrContext::init(GrBackend backend, GrBackendContext backendContext) { |
| SkASSERT(NULL == fGpu); |
| |
| fGpu = GrGpu::Create(backend, backendContext, this); |
| if (NULL == fGpu) { |
| return false; |
| } |
| this->initCommon(); |
| return true; |
| } |
| |
| void GrContext::initCommon() { |
| fResourceCache2 = SkNEW(GrResourceCache2); |
| fResourceCache2->setOverBudgetCallback(OverBudgetCB, this); |
| |
| fFontCache = SkNEW_ARGS(GrFontCache, (fGpu)); |
| |
| fLayerCache.reset(SkNEW_ARGS(GrLayerCache, (this))); |
| |
| fAARectRenderer = SkNEW_ARGS(GrAARectRenderer, (fGpu)); |
| fOvalRenderer = SkNEW(GrOvalRenderer); |
| |
| fDidTestPMConversions = false; |
| |
| this->setupDrawBuffer(); |
| } |
| |
| GrContext::~GrContext() { |
| if (NULL == fGpu) { |
| return; |
| } |
| |
| this->flush(); |
| |
| for (int i = 0; i < fCleanUpData.count(); ++i) { |
| (*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo); |
| } |
| |
| SkDELETE(fResourceCache2); |
| SkDELETE(fFontCache); |
| SkDELETE(fDrawBuffer); |
| SkDELETE(fDrawBufferVBAllocPool); |
| SkDELETE(fDrawBufferIBAllocPool); |
| |
| fAARectRenderer->unref(); |
| fOvalRenderer->unref(); |
| |
| fGpu->unref(); |
| SkSafeUnref(fPathRendererChain); |
| SkSafeUnref(fSoftwarePathRenderer); |
| } |
| |
| void GrContext::abandonContext() { |
| // abandon first to so destructors |
| // don't try to free the resources in the API. |
| fResourceCache2->abandonAll(); |
| |
| fGpu->contextAbandoned(); |
| |
| // a path renderer may be holding onto resources that |
| // are now unusable |
| SkSafeSetNull(fPathRendererChain); |
| SkSafeSetNull(fSoftwarePathRenderer); |
| |
| delete fDrawBuffer; |
| fDrawBuffer = NULL; |
| |
| delete fDrawBufferVBAllocPool; |
| fDrawBufferVBAllocPool = NULL; |
| |
| delete fDrawBufferIBAllocPool; |
| fDrawBufferIBAllocPool = NULL; |
| |
| fAARectRenderer->reset(); |
| fOvalRenderer->reset(); |
| |
| fFontCache->freeAll(); |
| fLayerCache->freeAll(); |
| } |
| |
| void GrContext::resetContext(uint32_t state) { |
| fGpu->markContextDirty(state); |
| } |
| |
| void GrContext::freeGpuResources() { |
| this->flush(); |
| |
| if (fDrawBuffer) { |
| fDrawBuffer->purgeResources(); |
| } |
| |
| fAARectRenderer->reset(); |
| fOvalRenderer->reset(); |
| |
| fFontCache->freeAll(); |
| fLayerCache->freeAll(); |
| // a path renderer may be holding onto resources |
| SkSafeSetNull(fPathRendererChain); |
| SkSafeSetNull(fSoftwarePathRenderer); |
| } |
| |
| void GrContext::getResourceCacheUsage(int* resourceCount, size_t* resourceBytes) const { |
| if (resourceCount) { |
| *resourceCount = fResourceCache2->getBudgetedResourceCount(); |
| } |
| if (resourceBytes) { |
| *resourceBytes = fResourceCache2->getBudgetedResourceBytes(); |
| } |
| } |
| |
| GrTextContext* GrContext::createTextContext(GrRenderTarget* renderTarget, |
| const SkDeviceProperties& |
| leakyProperties, |
| bool enableDistanceFieldFonts) { |
| if (fGpu->caps()->pathRenderingSupport() && renderTarget->getStencilBuffer() && |
| renderTarget->isMultisampled()) { |
| return GrStencilAndCoverTextContext::Create(this, leakyProperties); |
| } |
| |
| return GrDistanceFieldTextContext::Create(this, leakyProperties, enableDistanceFieldFonts); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrTexture* GrContext::findAndRefTexture(const GrSurfaceDesc& desc, |
| const GrCacheID& cacheID, |
| const GrTextureParams* params) { |
| GrResourceKey resourceKey = GrTexturePriv::ComputeKey(fGpu, params, desc, cacheID); |
| |
| GrGpuResource* resource = this->findAndRefCachedResource(resourceKey); |
| if (resource) { |
| SkASSERT(static_cast<GrSurface*>(resource)->asTexture()); |
| return static_cast<GrSurface*>(resource)->asTexture(); |
| } |
| return NULL; |
| } |
| |
| bool GrContext::isTextureInCache(const GrSurfaceDesc& desc, |
| const GrCacheID& cacheID, |
| const GrTextureParams* params) const { |
| GrResourceKey resourceKey = GrTexturePriv::ComputeKey(fGpu, params, desc, cacheID); |
| return fResourceCache2->hasContentKey(resourceKey); |
| } |
| |
| void GrContext::addStencilBuffer(GrStencilBuffer* sb) { |
| // TODO: Make GrStencilBuffers use the scratch mechanism rather than content keys. |
| ASSERT_OWNED_RESOURCE(sb); |
| |
| GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(), |
| sb->height(), |
| sb->numSamples()); |
| SkAssertResult(sb->cacheAccess().setContentKey(resourceKey)); |
| } |
| |
| GrStencilBuffer* GrContext::findAndRefStencilBuffer(int width, int height, int sampleCnt) { |
| GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width, height, sampleCnt); |
| GrGpuResource* resource = this->findAndRefCachedResource(resourceKey); |
| return static_cast<GrStencilBuffer*>(resource); |
| } |
| |
| static void stretch_image(void* dst, |
| int dstW, |
| int dstH, |
| const void* src, |
| int srcW, |
| int srcH, |
| size_t bpp) { |
| SkFixed dx = (srcW << 16) / dstW; |
| SkFixed dy = (srcH << 16) / dstH; |
| |
| SkFixed y = dy >> 1; |
| |
| size_t dstXLimit = dstW*bpp; |
| for (int j = 0; j < dstH; ++j) { |
| SkFixed x = dx >> 1; |
| const uint8_t* srcRow = reinterpret_cast<const uint8_t *>(src) + (y>>16)*srcW*bpp; |
| uint8_t* dstRow = reinterpret_cast<uint8_t *>(dst) + j*dstW*bpp; |
| for (size_t i = 0; i < dstXLimit; i += bpp) { |
| memcpy(dstRow + i, srcRow + (x>>16)*bpp, bpp); |
| x += dx; |
| } |
| y += dy; |
| } |
| } |
| |
| // The desired texture is NPOT and tiled but that isn't supported by |
| // the current hardware. Resize the texture to be a POT |
| GrTexture* GrContext::createResizedTexture(const GrSurfaceDesc& desc, |
| const GrCacheID& cacheID, |
| const void* srcData, |
| size_t rowBytes, |
| bool filter) { |
| SkAutoTUnref<GrTexture> clampedTexture(this->findAndRefTexture(desc, cacheID, NULL)); |
| if (NULL == clampedTexture) { |
| clampedTexture.reset(this->createTexture(NULL, desc, cacheID, srcData, rowBytes)); |
| |
| if (NULL == clampedTexture) { |
| return NULL; |
| } |
| } |
| |
| GrSurfaceDesc rtDesc = desc; |
| rtDesc.fFlags = rtDesc.fFlags | |
| kRenderTarget_GrSurfaceFlag | |
| kNoStencil_GrSurfaceFlag; |
| rtDesc.fWidth = GrNextPow2(desc.fWidth); |
| rtDesc.fHeight = GrNextPow2(desc.fHeight); |
| |
| GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); |
| |
| if (texture) { |
| GrDrawState drawState; |
| drawState.setRenderTarget(texture->asRenderTarget()); |
| |
| // if filtering is not desired then we want to ensure all |
| // texels in the resampled image are copies of texels from |
| // the original. |
| GrTextureParams params(SkShader::kClamp_TileMode, |
| filter ? GrTextureParams::kBilerp_FilterMode : |
| GrTextureParams::kNone_FilterMode); |
| drawState.addColorTextureProcessor(clampedTexture, SkMatrix::I(), params); |
| |
| drawState.setGeometryProcessor( |
| GrDefaultGeoProcFactory::CreateAndSetAttribs( |
| &drawState, |
| GrDefaultGeoProcFactory::kPosition_GPType | |
| GrDefaultGeoProcFactory::kLocalCoord_GPType))->unref(); |
| |
| GrDrawTarget::AutoReleaseGeometry arg(fDrawBuffer, 4, drawState.getVertexStride(), 0); |
| |
| if (arg.succeeded()) { |
| SkPoint* verts = (SkPoint*) arg.vertices(); |
| verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2 * sizeof(SkPoint)); |
| verts[1].setIRectFan(0, 0, 1, 1, 2 * sizeof(SkPoint)); |
| fDrawBuffer->drawNonIndexed(&drawState, kTriangleFan_GrPrimitiveType, 0, 4); |
| } |
| } else { |
| // TODO: Our CPU stretch doesn't filter. But we create separate |
| // stretched textures when the texture params is either filtered or |
| // not. Either implement filtered stretch blit on CPU or just create |
| // one when FBO case fails. |
| |
| rtDesc.fFlags = kNone_GrSurfaceFlags; |
| // no longer need to clamp at min RT size. |
| rtDesc.fWidth = GrNextPow2(desc.fWidth); |
| rtDesc.fHeight = GrNextPow2(desc.fHeight); |
| |
| // We shouldn't be resizing a compressed texture. |
| SkASSERT(!GrPixelConfigIsCompressed(desc.fConfig)); |
| |
| size_t bpp = GrBytesPerPixel(desc.fConfig); |
| GrAutoMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); |
| stretch_image(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, |
| srcData, desc.fWidth, desc.fHeight, bpp); |
| |
| size_t stretchedRowBytes = rtDesc.fWidth * bpp; |
| |
| texture = fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); |
| SkASSERT(texture); |
| } |
| |
| return texture; |
| } |
| |
| GrTexture* GrContext::createTexture(const GrTextureParams* params, |
| const GrSurfaceDesc& desc, |
| const GrCacheID& cacheID, |
| const void* srcData, |
| size_t rowBytes, |
| GrResourceKey* cacheKey) { |
| GrResourceKey resourceKey = GrTexturePriv::ComputeKey(fGpu, params, desc, cacheID); |
| |
| GrTexture* texture; |
| if (GrTexturePriv::NeedsResizing(resourceKey)) { |
| // We do not know how to resize compressed textures. |
| SkASSERT(!GrPixelConfigIsCompressed(desc.fConfig)); |
| |
| texture = this->createResizedTexture(desc, cacheID, |
| srcData, rowBytes, |
| GrTexturePriv::NeedsBilerp(resourceKey)); |
| } else { |
| texture = fGpu->createTexture(desc, srcData, rowBytes); |
| } |
| |
| if (texture) { |
| if (texture->cacheAccess().setContentKey(resourceKey)) { |
| if (cacheKey) { |
| *cacheKey = resourceKey; |
| } |
| } else { |
| texture->unref(); |
| texture = NULL; |
| } |
| } |
| |
| return texture; |
| } |
| |
| GrTexture* GrContext::refScratchTexture(const GrSurfaceDesc& inDesc, ScratchTexMatch match, |
| bool calledDuringFlush) { |
| // kNoStencil has no meaning if kRT isn't set. |
| SkASSERT((inDesc.fFlags & kRenderTarget_GrSurfaceFlag) || |
| !(inDesc.fFlags & kNoStencil_GrSurfaceFlag)); |
| |
| // Make sure caller has checked for renderability if kRT is set. |
| SkASSERT(!(inDesc.fFlags & kRenderTarget_GrSurfaceFlag) || |
| this->isConfigRenderable(inDesc.fConfig, inDesc.fSampleCnt > 0)); |
| |
| SkTCopyOnFirstWrite<GrSurfaceDesc> desc(inDesc); |
| |
| if (fGpu->caps()->reuseScratchTextures() || (desc->fFlags & kRenderTarget_GrSurfaceFlag)) { |
| GrSurfaceFlags origFlags = desc->fFlags; |
| if (kApprox_ScratchTexMatch == match) { |
| // bin by pow2 with a reasonable min |
| static const int MIN_SIZE = 16; |
| GrSurfaceDesc* wdesc = desc.writable(); |
| wdesc->fWidth = SkTMax(MIN_SIZE, GrNextPow2(desc->fWidth)); |
| wdesc->fHeight = SkTMax(MIN_SIZE, GrNextPow2(desc->fHeight)); |
| } |
| |
| do { |
| GrResourceKey key = GrTexturePriv::ComputeScratchKey(*desc); |
| uint32_t scratchFlags = 0; |
| if (calledDuringFlush) { |
| scratchFlags = GrResourceCache2::kRequireNoPendingIO_ScratchFlag; |
| } else if (!(desc->fFlags & kRenderTarget_GrSurfaceFlag)) { |
| // If it is not a render target then it will most likely be populated by |
| // writePixels() which will trigger a flush if the texture has pending IO. |
| scratchFlags = GrResourceCache2::kPreferNoPendingIO_ScratchFlag; |
| } |
| GrGpuResource* resource = fResourceCache2->findAndRefScratchResource(key, scratchFlags); |
| if (resource) { |
| return static_cast<GrSurface*>(resource)->asTexture(); |
| } |
| |
| if (kExact_ScratchTexMatch == match) { |
| break; |
| } |
| // We had a cache miss and we are in approx mode, relax the fit of the flags. |
| |
| // We no longer try to reuse textures that were previously used as render targets in |
| // situations where no RT is needed; doing otherwise can confuse the video driver and |
| // cause significant performance problems in some cases. |
| if (desc->fFlags & kNoStencil_GrSurfaceFlag) { |
| desc.writable()->fFlags = desc->fFlags & ~kNoStencil_GrSurfaceFlag; |
| } else { |
| break; |
| } |
| |
| } while (true); |
| |
| desc.writable()->fFlags = origFlags; |
| } |
| |
| GrTexture* texture = fGpu->createTexture(*desc, NULL, 0); |
| SkASSERT(NULL == texture || |
| texture->cacheAccess().getScratchKey() == GrTexturePriv::ComputeScratchKey(*desc)); |
| return texture; |
| } |
| |
| void GrContext::OverBudgetCB(void* data) { |
| SkASSERT(data); |
| |
| GrContext* context = reinterpret_cast<GrContext*>(data); |
| |
| // Flush the InOrderDrawBuffer to possibly free up some textures |
| context->fFlushToReduceCacheSize = true; |
| } |
| |
| |
| GrTexture* GrContext::createUncachedTexture(const GrSurfaceDesc& descIn, |
| void* srcData, |
| size_t rowBytes) { |
| GrSurfaceDesc descCopy = descIn; |
| GrTexture* texture = fGpu->createTexture(descCopy, srcData, rowBytes); |
| if (texture) { |
| // TODO: It'd be nice to be able to do this before creation so we don't boot something |
| // out of the cache. We could temporarily boost the cache budget. |
| texture->cacheAccess().setBudgeted(false); |
| } |
| return texture; |
| } |
| |
| void GrContext::getResourceCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { |
| if (maxTextures) { |
| *maxTextures = fResourceCache2->getMaxResourceCount(); |
| } |
| if (maxTextureBytes) { |
| *maxTextureBytes = fResourceCache2->getMaxResourceBytes(); |
| } |
| } |
| |
| void GrContext::setResourceCacheLimits(int maxTextures, size_t maxTextureBytes) { |
| fResourceCache2->setLimits(maxTextures, maxTextureBytes); |
| } |
| |
| int GrContext::getMaxTextureSize() const { |
| return SkTMin(fGpu->caps()->maxTextureSize(), fMaxTextureSizeOverride); |
| } |
| |
| int GrContext::getMaxRenderTargetSize() const { |
| return fGpu->caps()->maxRenderTargetSize(); |
| } |
| |
| int GrContext::getMaxSampleCount() const { |
| return fGpu->caps()->maxSampleCount(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrTexture* GrContext::wrapBackendTexture(const GrBackendTextureDesc& desc) { |
| return fGpu->wrapBackendTexture(desc); |
| } |
| |
| GrRenderTarget* GrContext::wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { |
| return fGpu->wrapBackendRenderTarget(desc); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params, |
| int width, int height) const { |
| const GrDrawTargetCaps* caps = fGpu->caps(); |
| if (!caps->isConfigTexturable(kIndex_8_GrPixelConfig)) { |
| return false; |
| } |
| |
| bool isPow2 = SkIsPow2(width) && SkIsPow2(height); |
| |
| if (!isPow2) { |
| bool tiled = params && params->isTiled(); |
| if (tiled && !caps->npotTextureTileSupport()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::clear(const SkIRect* rect, |
| const GrColor color, |
| bool canIgnoreRect, |
| GrRenderTarget* renderTarget) { |
| ASSERT_OWNED_RESOURCE(renderTarget); |
| SkASSERT(renderTarget); |
| |
| AutoCheckFlush acf(this); |
| GR_CREATE_TRACE_MARKER_CONTEXT("GrContext::clear", this); |
| GrDrawTarget* target = this->prepareToDraw(NULL, NULL, &acf); |
| if (NULL == target) { |
| return; |
| } |
| target->clear(rect, color, canIgnoreRect, renderTarget); |
| } |
| |
| void GrContext::drawPaint(const GrPaint& origPaint) { |
| // set rect to be big enough to fill the space, but not super-huge, so we |
| // don't overflow fixed-point implementations |
| SkRect r; |
| r.setLTRB(0, 0, |
| SkIntToScalar(getRenderTarget()->width()), |
| SkIntToScalar(getRenderTarget()->height())); |
| SkMatrix inverse; |
| SkTCopyOnFirstWrite<GrPaint> paint(origPaint); |
| AutoMatrix am; |
| GR_CREATE_TRACE_MARKER_CONTEXT("GrContext::drawPaint", this); |
| |
| // We attempt to map r by the inverse matrix and draw that. mapRect will |
| // map the four corners and bound them with a new rect. This will not |
| // produce a correct result for some perspective matrices. |
| if (!this->getMatrix().hasPerspective()) { |
| if (!fViewMatrix.invert(&inverse)) { |
| SkDebugf("Could not invert matrix\n"); |
| return; |
| } |
| inverse.mapRect(&r); |
| } else { |
| if (!am.setIdentity(this, paint.writable())) { |
| SkDebugf("Could not invert matrix\n"); |
| return; |
| } |
| } |
| // by definition this fills the entire clip, no need for AA |
| if (paint->isAntiAlias()) { |
| paint.writable()->setAntiAlias(false); |
| } |
| this->drawRect(*paint, r); |
| } |
| |
| #ifdef SK_DEVELOPER |
| void GrContext::dumpFontCache() const { |
| fFontCache->dump(); |
| } |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /* create a triangle strip that strokes the specified triangle. There are 8 |
| unique vertices, but we repreat the last 2 to close up. Alternatively we |
| could use an indices array, and then only send 8 verts, but not sure that |
| would be faster. |
| */ |
| static void setStrokeRectStrip(SkPoint verts[10], SkRect rect, |
| SkScalar width) { |
| const SkScalar rad = SkScalarHalf(width); |
| rect.sort(); |
| |
| verts[0].set(rect.fLeft + rad, rect.fTop + rad); |
| verts[1].set(rect.fLeft - rad, rect.fTop - rad); |
| verts[2].set(rect.fRight - rad, rect.fTop + rad); |
| verts[3].set(rect.fRight + rad, rect.fTop - rad); |
| verts[4].set(rect.fRight - rad, rect.fBottom - rad); |
| verts[5].set(rect.fRight + rad, rect.fBottom + rad); |
| verts[6].set(rect.fLeft + rad, rect.fBottom - rad); |
| verts[7].set(rect.fLeft - rad, rect.fBottom + rad); |
| verts[8] = verts[0]; |
| verts[9] = verts[1]; |
| } |
| |
| static inline bool is_irect(const SkRect& r) { |
| return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) && |
| SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom); |
| } |
| |
| static bool apply_aa_to_rect(GrDrawTarget* target, |
| GrDrawState* ds, |
| SkRect* devBoundRect, |
| const SkRect& rect, |
| SkScalar strokeWidth, |
| const SkMatrix& combinedMatrix) { |
| if (!ds->canTweakAlphaForCoverage() && !ds->couldApplyCoverage(*target->caps())) { |
| #ifdef SK_DEBUG |
| //SkDebugf("Turning off AA to correctly apply blend.\n"); |
| #endif |
| return false; |
| } |
| |
| if (ds->getRenderTarget()->isMultisampled()) { |
| return false; |
| } |
| |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| if (strokeWidth >= 0) { |
| #endif |
| if (!combinedMatrix.preservesAxisAlignment()) { |
| return false; |
| } |
| |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| } else { |
| if (!combinedMatrix.preservesRightAngles()) { |
| return false; |
| } |
| } |
| #endif |
| |
| combinedMatrix.mapRect(devBoundRect, rect); |
| if (strokeWidth < 0) { |
| return !is_irect(*devBoundRect); |
| } |
| |
| return true; |
| } |
| |
| static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) { |
| return point.fX >= rect.fLeft && point.fX <= rect.fRight && |
| point.fY >= rect.fTop && point.fY <= rect.fBottom; |
| } |
| |
| void GrContext::drawRect(const GrPaint& paint, |
| const SkRect& rect, |
| const GrStrokeInfo* strokeInfo) { |
| if (strokeInfo && strokeInfo->isDashed()) { |
| SkPath path; |
| path.addRect(rect); |
| this->drawPath(paint, path, *strokeInfo); |
| return; |
| } |
| |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawRect", target); |
| SkScalar width = NULL == strokeInfo ? -1 : strokeInfo->getStrokeRec().getWidth(); |
| SkMatrix matrix = drawState.getViewMatrix(); |
| |
| // Check if this is a full RT draw and can be replaced with a clear. We don't bother checking |
| // cases where the RT is fully inside a stroke. |
| if (width < 0) { |
| SkRect rtRect; |
| drawState.getRenderTarget()->getBoundsRect(&rtRect); |
| SkRect clipSpaceRTRect = rtRect; |
| bool checkClip = false; |
| if (this->getClip()) { |
| checkClip = true; |
| clipSpaceRTRect.offset(SkIntToScalar(this->getClip()->fOrigin.fX), |
| SkIntToScalar(this->getClip()->fOrigin.fY)); |
| } |
| // Does the clip contain the entire RT? |
| if (!checkClip || target->getClip()->fClipStack->quickContains(clipSpaceRTRect)) { |
| SkMatrix invM; |
| if (!matrix.invert(&invM)) { |
| return; |
| } |
| // Does the rect bound the RT? |
| SkPoint srcSpaceRTQuad[4]; |
| invM.mapRectToQuad(srcSpaceRTQuad, rtRect); |
| if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[1]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[2]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[3])) { |
| // Will it blend? |
| GrColor clearColor; |
| if (paint.isOpaqueAndConstantColor(&clearColor)) { |
| target->clear(NULL, clearColor, true, fRenderTarget); |
| return; |
| } |
| } |
| } |
| } |
| |
| SkRect devBoundRect; |
| bool needAA = paint.isAntiAlias() && !drawState.getRenderTarget()->isMultisampled(); |
| bool doAA = needAA && apply_aa_to_rect(target, &drawState, &devBoundRect, rect, width, matrix); |
| |
| if (doAA) { |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(&drawState)) { |
| return; |
| } |
| |
| if (width >= 0) { |
| const SkStrokeRec& strokeRec = strokeInfo->getStrokeRec(); |
| fAARectRenderer->strokeAARect(target, |
| &drawState, |
| rect, |
| matrix, |
| devBoundRect, |
| strokeRec); |
| } else { |
| // filled AA rect |
| fAARectRenderer->fillAARect(target, &drawState, rect, matrix, devBoundRect); |
| } |
| return; |
| } |
| |
| if (width >= 0) { |
| // TODO: consider making static vertex buffers for these cases. |
| // Hairline could be done by just adding closing vertex to |
| // unitSquareVertexBuffer() |
| |
| static const int worstCaseVertCount = 10; |
| drawState.setDefaultVertexAttribs(); |
| drawState.setGeometryProcessor(GrDefaultGeoProcFactory::Create(false))->unref(); |
| GrDrawTarget::AutoReleaseGeometry geo(target, |
| worstCaseVertCount, |
| drawState.getVertexStride(), |
| 0); |
| |
| if (!geo.succeeded()) { |
| SkDebugf("Failed to get space for vertices!\n"); |
| return; |
| } |
| |
| GrPrimitiveType primType; |
| int vertCount; |
| SkPoint* vertex = geo.positions(); |
| |
| if (width > 0) { |
| vertCount = 10; |
| primType = kTriangleStrip_GrPrimitiveType; |
| setStrokeRectStrip(vertex, rect, width); |
| } else { |
| // hairline |
| vertCount = 5; |
| primType = kLineStrip_GrPrimitiveType; |
| vertex[0].set(rect.fLeft, rect.fTop); |
| vertex[1].set(rect.fRight, rect.fTop); |
| vertex[2].set(rect.fRight, rect.fBottom); |
| vertex[3].set(rect.fLeft, rect.fBottom); |
| vertex[4].set(rect.fLeft, rect.fTop); |
| } |
| |
| target->drawNonIndexed(&drawState, primType, 0, vertCount); |
| } else { |
| // filled BW rect |
| target->drawSimpleRect(&drawState, rect); |
| } |
| } |
| |
| void GrContext::drawRectToRect(const GrPaint& paint, |
| const SkRect& dstRect, |
| const SkRect& localRect, |
| const SkMatrix* localMatrix) { |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawRectToRect", target); |
| |
| target->drawRect(&drawState, dstRect, &localRect, localMatrix); |
| } |
| |
| static void set_vertex_attributes(GrDrawState* drawState, |
| const SkPoint* texCoords, |
| const GrColor* colors, |
| int* colorOffset, |
| int* texOffset) { |
| *texOffset = -1; |
| *colorOffset = -1; |
| |
| uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; |
| if (texCoords && colors) { |
| *colorOffset = sizeof(SkPoint); |
| *texOffset = sizeof(SkPoint) + sizeof(GrColor); |
| flags |= GrDefaultGeoProcFactory::kColor_GPType | |
| GrDefaultGeoProcFactory::kLocalCoord_GPType; |
| } else if (texCoords) { |
| *texOffset = sizeof(SkPoint); |
| flags |= GrDefaultGeoProcFactory::kLocalCoord_GPType; |
| } else if (colors) { |
| *colorOffset = sizeof(SkPoint); |
| flags |= GrDefaultGeoProcFactory::kColor_GPType; |
| } |
| drawState->setGeometryProcessor(GrDefaultGeoProcFactory::CreateAndSetAttribs(drawState, |
| flags))->unref(); |
| } |
| |
| void GrContext::drawVertices(const GrPaint& paint, |
| GrPrimitiveType primitiveType, |
| int vertexCount, |
| const SkPoint positions[], |
| const SkPoint texCoords[], |
| const GrColor colors[], |
| const uint16_t indices[], |
| int indexCount) { |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget::AutoReleaseGeometry geo; // must be inside AutoCheckFlush scope |
| |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawVertices", target); |
| |
| int colorOffset = -1, texOffset = -1; |
| set_vertex_attributes(&drawState, texCoords, colors, &colorOffset, &texOffset); |
| |
| size_t vertexStride = drawState.getVertexStride(); |
| if (!geo.set(target, vertexCount, vertexStride, indexCount)) { |
| SkDebugf("Failed to get space for vertices!\n"); |
| return; |
| } |
| void* curVertex = geo.vertices(); |
| |
| for (int i = 0; i < vertexCount; ++i) { |
| *((SkPoint*)curVertex) = positions[i]; |
| |
| if (texOffset >= 0) { |
| *(SkPoint*)((intptr_t)curVertex + texOffset) = texCoords[i]; |
| } |
| if (colorOffset >= 0) { |
| *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; |
| } |
| curVertex = (void*)((intptr_t)curVertex + vertexStride); |
| } |
| |
| // we don't currently apply offscreen AA to this path. Need improved |
| // management of GrDrawTarget's geometry to avoid copying points per-tile. |
| if (indices) { |
| uint16_t* curIndex = (uint16_t*)geo.indices(); |
| for (int i = 0; i < indexCount; ++i) { |
| curIndex[i] = indices[i]; |
| } |
| target->drawIndexed(&drawState, primitiveType, 0, 0, vertexCount, indexCount); |
| } else { |
| target->drawNonIndexed(&drawState, primitiveType, 0, vertexCount); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::drawRRect(const GrPaint& paint, |
| const SkRRect& rrect, |
| const GrStrokeInfo& strokeInfo) { |
| if (rrect.isEmpty()) { |
| return; |
| } |
| |
| if (strokeInfo.isDashed()) { |
| SkPath path; |
| path.addRRect(rrect); |
| this->drawPath(paint, path, strokeInfo); |
| return; |
| } |
| |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawRRect", target); |
| |
| const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); |
| |
| if (!fOvalRenderer->drawRRect(target, &drawState, this, paint.isAntiAlias(), rrect, |
| strokeRec)) { |
| SkPath path; |
| path.addRRect(rrect); |
| this->internalDrawPath(target, &drawState, paint.isAntiAlias(), path, strokeInfo); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::drawDRRect(const GrPaint& paint, |
| const SkRRect& outer, |
| const SkRRect& inner) { |
| if (outer.isEmpty()) { |
| return; |
| } |
| |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawDRRect", target); |
| |
| if (!fOvalRenderer->drawDRRect(target, &drawState, this, paint.isAntiAlias(), outer, inner)) { |
| SkPath path; |
| path.addRRect(inner); |
| path.addRRect(outer); |
| path.setFillType(SkPath::kEvenOdd_FillType); |
| |
| GrStrokeInfo fillRec(SkStrokeRec::kFill_InitStyle); |
| this->internalDrawPath(target, &drawState, paint.isAntiAlias(), path, fillRec); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::drawOval(const GrPaint& paint, |
| const SkRect& oval, |
| const GrStrokeInfo& strokeInfo) { |
| if (oval.isEmpty()) { |
| return; |
| } |
| |
| if (strokeInfo.isDashed()) { |
| SkPath path; |
| path.addOval(oval); |
| this->drawPath(paint, path, strokeInfo); |
| return; |
| } |
| |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER("GrContext::drawOval", target); |
| |
| const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); |
| |
| |
| if (!fOvalRenderer->drawOval(target, &drawState, this, paint.isAntiAlias(), oval, strokeRec)) { |
| SkPath path; |
| path.addOval(oval); |
| this->internalDrawPath(target, &drawState, paint.isAntiAlias(), path, strokeInfo); |
| } |
| } |
| |
| // Can 'path' be drawn as a pair of filled nested rectangles? |
| static bool is_nested_rects(GrDrawTarget* target, |
| GrDrawState* drawState, |
| const SkPath& path, |
| const SkStrokeRec& stroke, |
| SkRect rects[2]) { |
| SkASSERT(stroke.isFillStyle()); |
| |
| if (path.isInverseFillType()) { |
| return false; |
| } |
| |
| // TODO: this restriction could be lifted if we were willing to apply |
| // the matrix to all the points individually rather than just to the rect |
| if (!drawState->getViewMatrix().preservesAxisAlignment()) { |
| return false; |
| } |
| |
| if (!drawState->canTweakAlphaForCoverage() && !drawState->couldApplyCoverage(*target->caps())) { |
| return false; |
| } |
| |
| SkPath::Direction dirs[2]; |
| if (!path.isNestedRects(rects, dirs)) { |
| return false; |
| } |
| |
| if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) { |
| // The two rects need to be wound opposite to each other |
| return false; |
| } |
| |
| // Right now, nested rects where the margin is not the same width |
| // all around do not render correctly |
| const SkScalar* outer = rects[0].asScalars(); |
| const SkScalar* inner = rects[1].asScalars(); |
| |
| bool allEq = true; |
| |
| SkScalar margin = SkScalarAbs(outer[0] - inner[0]); |
| bool allGoE1 = margin >= SK_Scalar1; |
| |
| for (int i = 1; i < 4; ++i) { |
| SkScalar temp = SkScalarAbs(outer[i] - inner[i]); |
| if (temp < SK_Scalar1) { |
| allGoE1 = false; |
| } |
| if (!SkScalarNearlyEqual(margin, temp)) { |
| allEq = false; |
| } |
| } |
| |
| return allEq || allGoE1; |
| } |
| |
| void GrContext::drawPath(const GrPaint& paint, const SkPath& path, const GrStrokeInfo& strokeInfo) { |
| |
| if (path.isEmpty()) { |
| if (path.isInverseFillType()) { |
| this->drawPaint(paint); |
| } |
| return; |
| } |
| |
| if (strokeInfo.isDashed()) { |
| SkPoint pts[2]; |
| if (path.isLine(pts)) { |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| }; |
| |
| SkMatrix origViewMatrix = drawState.getViewMatrix(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (avmr.setIdentity(&drawState)) { |
| if (GrDashingEffect::DrawDashLine(fGpu, target, &drawState, pts, paint, |
| strokeInfo, origViewMatrix)) { |
| return; |
| } |
| } |
| } |
| |
| // Filter dashed path into new path with the dashing applied |
| const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo(); |
| SkTLazy<SkPath> effectPath; |
| GrStrokeInfo newStrokeInfo(strokeInfo, false); |
| SkStrokeRec* stroke = newStrokeInfo.getStrokeRecPtr(); |
| if (SkDashPath::FilterDashPath(effectPath.init(), path, stroke, NULL, info)) { |
| this->drawPath(paint, *effectPath.get(), newStrokeInfo); |
| return; |
| } |
| |
| this->drawPath(paint, path, newStrokeInfo); |
| return; |
| } |
| |
| // Note that internalDrawPath may sw-rasterize the path into a scratch texture. |
| // Scratch textures can be recycled after they are returned to the texture |
| // cache. This presents a potential hazard for buffered drawing. However, |
| // the writePixels that uploads to the scratch will perform a flush so we're |
| // OK. |
| AutoCheckFlush acf(this); |
| GrDrawState drawState; |
| GrDrawTarget* target = this->prepareToDraw(&drawState, &paint, &acf); |
| if (NULL == target) { |
| return; |
| } |
| |
| GR_CREATE_TRACE_MARKER1("GrContext::drawPath", target, "Is Convex", path.isConvex()); |
| |
| const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); |
| |
| bool useCoverageAA = paint.isAntiAlias() && !drawState.getRenderTarget()->isMultisampled(); |
| |
| if (useCoverageAA && strokeRec.getWidth() < 0 && !path.isConvex()) { |
| // Concave AA paths are expensive - try to avoid them for special cases |
| SkRect rects[2]; |
| |
| if (is_nested_rects(target, &drawState, path, strokeRec, rects)) { |
| SkMatrix origViewMatrix = drawState.getViewMatrix(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(&drawState)) { |
| return; |
| } |
| |
| fAARectRenderer->fillAANestedRects(target, &drawState, rects, origViewMatrix); |
| return; |
| } |
| } |
| |
| SkRect ovalRect; |
| bool isOval = path.isOval(&ovalRect); |
| |
| if (!isOval || path.isInverseFillType() |
| || !fOvalRenderer->drawOval(target, &drawState, this, paint.isAntiAlias(), ovalRect, |
| strokeRec)) { |
| this->internalDrawPath(target, &drawState, paint.isAntiAlias(), path, strokeInfo); |
| } |
| } |
| |
| void GrContext::internalDrawPath(GrDrawTarget* target, |
| GrDrawState* drawState, |
| bool useAA, |
| const SkPath& path, |
| const GrStrokeInfo& strokeInfo) { |
| SkASSERT(!path.isEmpty()); |
| |
| GR_CREATE_TRACE_MARKER("GrContext::internalDrawPath", target); |
| |
| |
| // An Assumption here is that path renderer would use some form of tweaking |
| // the src color (either the input alpha or in the frag shader) to implement |
| // aa. If we have some future driver-mojo path AA that can do the right |
| // thing WRT to the blend then we'll need some query on the PR. |
| bool useCoverageAA = useAA && |
| !drawState->getRenderTarget()->isMultisampled() && |
| drawState->couldApplyCoverage(*target->caps()); |
| |
| |
| GrPathRendererChain::DrawType type = |
| useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType : |
| GrPathRendererChain::kColor_DrawType; |
| |
| const SkPath* pathPtr = &path; |
| SkTLazy<SkPath> tmpPath; |
| SkTCopyOnFirstWrite<SkStrokeRec> stroke(strokeInfo.getStrokeRec()); |
| |
| // Try a 1st time without stroking the path and without allowing the SW renderer |
| GrPathRenderer* pr = this->getPathRenderer(target, drawState, *pathPtr, *stroke, false, type); |
| |
| if (NULL == pr) { |
| if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(*stroke, this->getMatrix(), NULL)) { |
| // It didn't work the 1st time, so try again with the stroked path |
| if (stroke->applyToPath(tmpPath.init(), *pathPtr)) { |
| pathPtr = tmpPath.get(); |
| stroke.writable()->setFillStyle(); |
| if (pathPtr->isEmpty()) { |
| return; |
| } |
| } |
| } |
| |
| // This time, allow SW renderer |
| pr = this->getPathRenderer(target, drawState, *pathPtr, *stroke, true, type); |
| } |
| |
| if (NULL == pr) { |
| #ifdef SK_DEBUG |
| SkDebugf("Unable to find path renderer compatible with path.\n"); |
| #endif |
| return; |
| } |
| |
| pr->drawPath(target, drawState, *pathPtr, *stroke, useCoverageAA); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::flush(int flagsBitfield) { |
| if (NULL == fDrawBuffer) { |
| return; |
| } |
| |
| if (kDiscard_FlushBit & flagsBitfield) { |
| fDrawBuffer->reset(); |
| } else { |
| fDrawBuffer->flush(); |
| } |
| fFlushToReduceCacheSize = false; |
| } |
| |
| bool sw_convert_to_premul(GrPixelConfig srcConfig, int width, int height, size_t inRowBytes, |
| const void* inPixels, size_t outRowBytes, void* outPixels) { |
| SkSrcPixelInfo srcPI; |
| if (!GrPixelConfig2ColorType(srcConfig, &srcPI.fColorType)) { |
| return false; |
| } |
| srcPI.fAlphaType = kUnpremul_SkAlphaType; |
| srcPI.fPixels = inPixels; |
| srcPI.fRowBytes = inRowBytes; |
| |
| SkDstPixelInfo dstPI; |
| dstPI.fColorType = srcPI.fColorType; |
| dstPI.fAlphaType = kPremul_SkAlphaType; |
| dstPI.fPixels = outPixels; |
| dstPI.fRowBytes = outRowBytes; |
| |
| return srcPI.convertPixelsTo(&dstPI, width, height); |
| } |
| |
| bool GrContext::writeSurfacePixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig srcConfig, const void* buffer, size_t rowBytes, |
| uint32_t pixelOpsFlags) { |
| |
| { |
| GrTexture* texture = NULL; |
| if (!(kUnpremul_PixelOpsFlag & pixelOpsFlags) && (texture = surface->asTexture()) && |
| fGpu->canWriteTexturePixels(texture, srcConfig)) { |
| |
| if (!(kDontFlush_PixelOpsFlag & pixelOpsFlags) && |
| surface->surfacePriv().hasPendingIO()) { |
| this->flush(); |
| } |
| return fGpu->writeTexturePixels(texture, left, top, width, height, |
| srcConfig, buffer, rowBytes); |
| // Don't need to check kFlushWrites_PixelOp here, we just did a direct write so the |
| // upload is already flushed. |
| } |
| } |
| |
| // If we didn't do a direct texture write then we upload the pixels to a texture and draw. |
| GrRenderTarget* renderTarget = surface->asRenderTarget(); |
| if (NULL == renderTarget) { |
| return false; |
| } |
| |
| // We ignore the preferred config unless it is a R/B swap of the src config. In that case |
| // we will upload the original src data to a scratch texture but we will spoof it as the swapped |
| // config. This scratch will then have R and B swapped. We correct for this by swapping again |
| // when drawing the scratch to the dst using a conversion effect. |
| bool swapRAndB = false; |
| GrPixelConfig writeConfig = srcConfig; |
| if (GrPixelConfigSwapRAndB(srcConfig) == |
| fGpu->preferredWritePixelsConfig(srcConfig, renderTarget->config())) { |
| writeConfig = GrPixelConfigSwapRAndB(srcConfig); |
| swapRAndB = true; |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = writeConfig; |
| SkAutoTUnref<GrTexture> texture(this->refScratchTexture(desc, kApprox_ScratchTexMatch)); |
| if (!texture) { |
| return false; |
| } |
| |
| SkAutoTUnref<const GrFragmentProcessor> fp; |
| SkMatrix textureMatrix; |
| textureMatrix.setIDiv(texture->width(), texture->height()); |
| |
| // allocate a tmp buffer and sw convert the pixels to premul |
| SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0); |
| |
| if (kUnpremul_PixelOpsFlag & pixelOpsFlags) { |
| if (!GrPixelConfigIs8888(srcConfig)) { |
| return false; |
| } |
| fp.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix)); |
| // handle the unpremul step on the CPU if we couldn't create an effect to do it. |
| if (NULL == fp) { |
| size_t tmpRowBytes = 4 * width; |
| tmpPixels.reset(width * height); |
| if (!sw_convert_to_premul(srcConfig, width, height, rowBytes, buffer, tmpRowBytes, |
| tmpPixels.get())) { |
| return false; |
| } |
| rowBytes = tmpRowBytes; |
| buffer = tmpPixels.get(); |
| } |
| } |
| if (NULL == fp) { |
| fp.reset(GrConfigConversionEffect::Create(texture, |
| swapRAndB, |
| GrConfigConversionEffect::kNone_PMConversion, |
| textureMatrix)); |
| } |
| |
| // Even if the client told us not to flush, we still flush here. The client may have known that |
| // writes to the original surface caused no data hazards, but they can't know that the scratch |
| // we just got is safe. |
| if (texture->surfacePriv().hasPendingIO()) { |
| this->flush(); |
| } |
| if (!fGpu->writeTexturePixels(texture, 0, 0, width, height, |
| writeConfig, buffer, rowBytes)) { |
| return false; |
| } |
| |
| SkMatrix matrix; |
| matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top)); |
| |
| // This function can be called in the midst of drawing another object (e.g., when uploading a |
| // SW-rasterized clip while issuing a draw). So we push the current geometry state before |
| // drawing a rect to the render target. |
| // The bracket ensures we pop the stack if we wind up flushing below. |
| { |
| GrDrawTarget* drawTarget = this->prepareToDraw(NULL, NULL, NULL); |
| GrDrawTarget::AutoGeometryPush agp(drawTarget); |
| |
| GrDrawState drawState(matrix); |
| drawState.addColorProcessor(fp); |
| drawState.setRenderTarget(renderTarget); |
| drawTarget->drawSimpleRect(&drawState, SkRect::MakeWH(SkIntToScalar(width), |
| SkIntToScalar(height))); |
| } |
| |
| if (kFlushWrites_PixelOp & pixelOpsFlags) { |
| this->flushSurfaceWrites(surface); |
| } |
| |
| return true; |
| } |
| |
| // toggles between RGBA and BGRA |
| static SkColorType toggle_colortype32(SkColorType ct) { |
| if (kRGBA_8888_SkColorType == ct) { |
| return kBGRA_8888_SkColorType; |
| } else { |
| SkASSERT(kBGRA_8888_SkColorType == ct); |
| return kRGBA_8888_SkColorType; |
| } |
| } |
| |
| bool GrContext::readRenderTargetPixels(GrRenderTarget* target, |
| int left, int top, int width, int height, |
| GrPixelConfig dstConfig, void* buffer, size_t rowBytes, |
| uint32_t flags) { |
| ASSERT_OWNED_RESOURCE(target); |
| SkASSERT(target); |
| |
| if (!(kDontFlush_PixelOpsFlag & flags) && target->surfacePriv().hasPendingWrite()) { |
| this->flush(); |
| } |
| |
| // Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul. |
| |
| // If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll |
| // either do the flipY by drawing into a scratch with a matrix or on the cpu after the read. |
| bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top, |
| width, height, dstConfig, |
| rowBytes); |
| // We ignore the preferred config if it is different than our config unless it is an R/B swap. |
| // In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped |
| // config. Then we will call readPixels on the scratch with the swapped config. The swaps during |
| // the draw cancels out the fact that we call readPixels with a config that is R/B swapped from |
| // dstConfig. |
| GrPixelConfig readConfig = dstConfig; |
| bool swapRAndB = false; |
| if (GrPixelConfigSwapRAndB(dstConfig) == |
| fGpu->preferredReadPixelsConfig(dstConfig, target->config())) { |
| readConfig = GrPixelConfigSwapRAndB(readConfig); |
| swapRAndB = true; |
| } |
| |
| bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags); |
| |
| if (unpremul && !GrPixelConfigIs8888(dstConfig)) { |
| // The unpremul flag is only allowed for these two configs. |
| return false; |
| } |
| |
| SkAutoTUnref<GrTexture> tempTexture; |
| |
| // If the src is a texture and we would have to do conversions after read pixels, we instead |
| // do the conversions by drawing the src to a scratch texture. If we handle any of the |
| // conversions in the draw we set the corresponding bool to false so that we don't reapply it |
| // on the read back pixels. |
| GrTexture* src = target->asTexture(); |
| if (src && (swapRAndB || unpremul || flipY)) { |
| // Make the scratch a render so we can read its pixels. |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = readConfig; |
| desc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| // When a full read back is faster than a partial we could always make the scratch exactly |
| // match the passed rect. However, if we see many different size rectangles we will trash |
| // our texture cache and pay the cost of creating and destroying many textures. So, we only |
| // request an exact match when the caller is reading an entire RT. |
| ScratchTexMatch match = kApprox_ScratchTexMatch; |
| if (0 == left && |
| 0 == top && |
| target->width() == width && |
| target->height() == height && |
| fGpu->fullReadPixelsIsFasterThanPartial()) { |
| match = kExact_ScratchTexMatch; |
| } |
| tempTexture.reset(this->refScratchTexture(desc, match)); |
| if (tempTexture) { |
| // compute a matrix to perform the draw |
| SkMatrix textureMatrix; |
| textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); |
| textureMatrix.postIDiv(src->width(), src->height()); |
| |
| SkAutoTUnref<const GrFragmentProcessor> fp; |
| if (unpremul) { |
| fp.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix)); |
| if (fp) { |
| unpremul = false; // we no longer need to do this on CPU after the read back. |
| } |
| } |
| // If we failed to create a PM->UPM effect and have no other conversions to perform then |
| // there is no longer any point to using the scratch. |
| if (fp || flipY || swapRAndB) { |
| if (!fp) { |
| fp.reset(GrConfigConversionEffect::Create( |
| src, swapRAndB, GrConfigConversionEffect::kNone_PMConversion, |
| textureMatrix)); |
| } |
| swapRAndB = false; // we will handle the swap in the draw. |
| |
| // We protect the existing geometry here since it may not be |
| // clear to the caller that a draw operation (i.e., drawSimpleRect) |
| // can be invoked in this method |
| { |
| GrDrawTarget::AutoGeometryPush agp(fDrawBuffer); |
| GrDrawState drawState; |
| SkASSERT(fp); |
| drawState.addColorProcessor(fp); |
| |
| drawState.setRenderTarget(tempTexture->asRenderTarget()); |
| SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)); |
| fDrawBuffer->drawSimpleRect(&drawState, rect); |
| // we want to read back from the scratch's origin |
| left = 0; |
| top = 0; |
| target = tempTexture->asRenderTarget(); |
| } |
| this->flushSurfaceWrites(target); |
| } |
| } |
| } |
| |
| if (!fGpu->readPixels(target, |
| left, top, width, height, |
| readConfig, buffer, rowBytes)) { |
| return false; |
| } |
| // Perform any conversions we weren't able to perform using a scratch texture. |
| if (unpremul || swapRAndB) { |
| SkDstPixelInfo dstPI; |
| if (!GrPixelConfig2ColorType(dstConfig, &dstPI.fColorType)) { |
| return false; |
| } |
| dstPI.fAlphaType = kUnpremul_SkAlphaType; |
| dstPI.fPixels = buffer; |
| dstPI.fRowBytes = rowBytes; |
| |
| SkSrcPixelInfo srcPI; |
| srcPI.fColorType = swapRAndB ? toggle_colortype32(dstPI.fColorType) : dstPI.fColorType; |
| srcPI.fAlphaType = kPremul_SkAlphaType; |
| srcPI.fPixels = buffer; |
| srcPI.fRowBytes = rowBytes; |
| |
| return srcPI.convertPixelsTo(&dstPI, width, height); |
| } |
| return true; |
| } |
| |
| void GrContext::prepareSurfaceForExternalRead(GrSurface* surface) { |
| SkASSERT(surface); |
| ASSERT_OWNED_RESOURCE(surface); |
| if (surface->surfacePriv().hasPendingIO()) { |
| this->flush(); |
| } |
| GrRenderTarget* rt = surface->asRenderTarget(); |
| if (fGpu && rt) { |
| fGpu->resolveRenderTarget(rt); |
| } |
| } |
| |
| void GrContext::discardRenderTarget(GrRenderTarget* renderTarget) { |
| SkASSERT(renderTarget); |
| ASSERT_OWNED_RESOURCE(renderTarget); |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(NULL, NULL, &acf); |
| if (NULL == target) { |
| return; |
| } |
| target->discard(renderTarget); |
| } |
| |
| void GrContext::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint, uint32_t pixelOpsFlags) { |
| if (NULL == src || NULL == dst) { |
| return; |
| } |
| ASSERT_OWNED_RESOURCE(src); |
| ASSERT_OWNED_RESOURCE(dst); |
| |
| // Since we're going to the draw target and not GPU, no need to check kNoFlush |
| // here. |
| |
| GrDrawTarget* target = this->prepareToDraw(NULL, NULL, NULL); |
| if (NULL == target) { |
| return; |
| } |
| target->copySurface(dst, src, srcRect, dstPoint); |
| |
| if (kFlushWrites_PixelOp & pixelOpsFlags) { |
| this->flush(); |
| } |
| } |
| |
| void GrContext::flushSurfaceWrites(GrSurface* surface) { |
| if (surface->surfacePriv().hasPendingWrite()) { |
| this->flush(); |
| } |
| } |
| |
| GrDrawTarget* GrContext::prepareToDraw(GrDrawState* ds, |
| const GrPaint* paint, |
| const AutoCheckFlush* acf) { |
| if (NULL == fGpu) { |
| return NULL; |
| } |
| |
| ASSERT_OWNED_RESOURCE(fRenderTarget.get()); |
| if (ds) { |
| if (paint) { |
| SkASSERT(acf); |
| ds->setFromPaint(*paint, fViewMatrix, fRenderTarget.get()); |
| #if GR_DEBUG_PARTIAL_COVERAGE_CHECK |
| if ((paint->hasMask() || 0xff != paint->fCoverage) && |
| !fDrawState->couldApplyCoverage(fGpu->caps())) { |
| SkDebugf("Partial pixel coverage will be incorrectly blended.\n"); |
| } |
| #endif |
| // Clear any vertex attributes configured for the previous use of the |
| // GrDrawState which can effect which blend optimizations are in effect. |
| ds->setDefaultVertexAttribs(); |
| } else { |
| ds->reset(fViewMatrix); |
| ds->setRenderTarget(fRenderTarget.get()); |
| } |
| ds->setState(GrDrawState::kClip_StateBit, fClip && !fClip->fClipStack->isWideOpen()); |
| } |
| fDrawBuffer->setClip(fClip); |
| return fDrawBuffer; |
| } |
| |
| /* |
| * This method finds a path renderer that can draw the specified path on |
| * the provided target. |
| * Due to its expense, the software path renderer has split out so it can |
| * can be individually allowed/disallowed via the "allowSW" boolean. |
| */ |
| GrPathRenderer* GrContext::getPathRenderer(const GrDrawTarget* target, |
| const GrDrawState* drawState, |
| const SkPath& path, |
| const SkStrokeRec& stroke, |
| bool allowSW, |
| GrPathRendererChain::DrawType drawType, |
| GrPathRendererChain::StencilSupport* stencilSupport) { |
| |
| if (NULL == fPathRendererChain) { |
| fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this)); |
| } |
| |
| GrPathRenderer* pr = fPathRendererChain->getPathRenderer(target, |
| drawState, |
| path, |
| stroke, |
| drawType, |
| stencilSupport); |
| |
| if (NULL == pr && allowSW) { |
| if (NULL == fSoftwarePathRenderer) { |
| fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this)); |
| } |
| pr = fSoftwarePathRenderer; |
| } |
| |
| return pr; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| bool GrContext::isConfigRenderable(GrPixelConfig config, bool withMSAA) const { |
| return fGpu->caps()->isConfigRenderable(config, withMSAA); |
| } |
| |
| int GrContext::getRecommendedSampleCount(GrPixelConfig config, |
| SkScalar dpi) const { |
| if (!this->isConfigRenderable(config, true)) { |
| return 0; |
| } |
| int chosenSampleCount = 0; |
| if (fGpu->caps()->pathRenderingSupport()) { |
| if (dpi >= 250.0f) { |
| chosenSampleCount = 4; |
| } else { |
| chosenSampleCount = 16; |
| } |
| } |
| return chosenSampleCount <= fGpu->caps()->maxSampleCount() ? |
| chosenSampleCount : 0; |
| } |
| |
| void GrContext::setupDrawBuffer() { |
| SkASSERT(NULL == fDrawBuffer); |
| SkASSERT(NULL == fDrawBufferVBAllocPool); |
| SkASSERT(NULL == fDrawBufferIBAllocPool); |
| |
| fDrawBufferVBAllocPool = |
| SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false, |
| DRAW_BUFFER_VBPOOL_BUFFER_SIZE, |
| DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS)); |
| fDrawBufferIBAllocPool = |
| SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false, |
| DRAW_BUFFER_IBPOOL_BUFFER_SIZE, |
| DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS)); |
| |
| fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu, |
| fDrawBufferVBAllocPool, |
| fDrawBufferIBAllocPool)); |
| } |
| |
| GrDrawTarget* GrContext::getTextTarget() { |
| return this->prepareToDraw(NULL, NULL, NULL); |
| } |
| |
| const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { |
| return fGpu->getQuadIndexBuffer(); |
| } |
| |
| namespace { |
| void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) { |
| GrConfigConversionEffect::PMConversion pmToUPM; |
| GrConfigConversionEffect::PMConversion upmToPM; |
| GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM); |
| *pmToUPMValue = pmToUPM; |
| *upmToPMValue = upmToPM; |
| } |
| } |
| |
| const GrFragmentProcessor* GrContext::createPMToUPMEffect(GrTexture* texture, |
| bool swapRAndB, |
| const SkMatrix& matrix) { |
| if (!fDidTestPMConversions) { |
| test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); |
| fDidTestPMConversions = true; |
| } |
| GrConfigConversionEffect::PMConversion pmToUPM = |
| static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion); |
| if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) { |
| return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix); |
| } else { |
| return NULL; |
| } |
| } |
| |
| const GrFragmentProcessor* GrContext::createUPMToPMEffect(GrTexture* texture, |
| bool swapRAndB, |
| const SkMatrix& matrix) { |
| if (!fDidTestPMConversions) { |
| test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); |
| fDidTestPMConversions = true; |
| } |
| GrConfigConversionEffect::PMConversion upmToPM = |
| static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion); |
| if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) { |
| return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix); |
| } else { |
| return NULL; |
| } |
| } |
| |
| void GrContext::addResourceToCache(const GrResourceKey& resourceKey, GrGpuResource* resource) { |
| resource->cacheAccess().setContentKey(resourceKey); |
| } |
| |
| GrGpuResource* GrContext::findAndRefCachedResource(const GrResourceKey& resourceKey) { |
| return fResourceCache2->findAndRefContentResource(resourceKey); |
| } |
| |
| void GrContext::addGpuTraceMarker(const GrGpuTraceMarker* marker) { |
| fGpu->addGpuTraceMarker(marker); |
| if (fDrawBuffer) { |
| fDrawBuffer->addGpuTraceMarker(marker); |
| } |
| } |
| |
| void GrContext::removeGpuTraceMarker(const GrGpuTraceMarker* marker) { |
| fGpu->removeGpuTraceMarker(marker); |
| if (fDrawBuffer) { |
| fDrawBuffer->removeGpuTraceMarker(marker); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| #if GR_CACHE_STATS |
| void GrContext::printCacheStats() const { |
| fResourceCache2->printStats(); |
| } |
| #endif |
| |
| #if GR_GPU_STATS |
| const GrContext::GPUStats* GrContext::gpuStats() const { |
| return fGpu->gpuStats(); |
| } |
| #endif |
| |