| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <cmath> |
| #include "gm/gm.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkBlurTypes.h" |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorFilter.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkMaskFilter.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPathBuilder.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkSurface.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkBlurMask.h" |
| #include "src/core/SkMask.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "tools/timer/TimeUtils.h" |
| |
| #include <vector> |
| |
| #define STROKE_WIDTH SkIntToScalar(10) |
| |
| typedef void (*Proc)(SkCanvas*, const SkRect&, const SkPaint&); |
| |
| static void fill_rect(SkCanvas* canvas, const SkRect& r, const SkPaint& p) { |
| canvas->drawRect(r, p); |
| } |
| |
| static void draw_donut(SkCanvas* canvas, const SkRect& r, const SkPaint& p) { |
| SkRect rect; |
| SkPathBuilder path; |
| |
| rect = r; |
| rect.outset(STROKE_WIDTH/2, STROKE_WIDTH/2); |
| path.addRect(rect); |
| rect = r; |
| rect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2); |
| |
| path.addRect(rect); |
| path.setFillType(SkPathFillType::kEvenOdd); |
| |
| canvas->drawPath(path.detach(), p); |
| } |
| |
| static void draw_donut_skewed(SkCanvas* canvas, const SkRect& r, const SkPaint& p) { |
| SkRect rect; |
| SkPathBuilder path; |
| |
| rect = r; |
| rect.outset(STROKE_WIDTH/2, STROKE_WIDTH/2); |
| path.addRect(rect); |
| rect = r; |
| rect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2); |
| |
| rect.offset(7, -7); |
| |
| path.addRect(rect); |
| path.setFillType(SkPathFillType::kEvenOdd); |
| |
| canvas->drawPath(path.detach(), p); |
| } |
| |
| /* |
| * Spits out a dummy gradient to test blur with shader on paint |
| */ |
| static sk_sp<SkShader> make_radial() { |
| SkPoint pts[2] = { |
| { 0, 0 }, |
| { SkIntToScalar(100), SkIntToScalar(100) } |
| }; |
| SkTileMode tm = SkTileMode::kClamp; |
| const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN, }; |
| const SkScalar pos[] = { SK_Scalar1/4, SK_Scalar1*3/4 }; |
| SkMatrix scale; |
| scale.setScale(0.5f, 0.5f); |
| scale.postTranslate(25.f, 25.f); |
| SkPoint center0, center1; |
| center0.set(SkScalarAve(pts[0].fX, pts[1].fX), |
| SkScalarAve(pts[0].fY, pts[1].fY)); |
| center1.set(SkScalarInterp(pts[0].fX, pts[1].fX, SkIntToScalar(3)/5), |
| SkScalarInterp(pts[0].fY, pts[1].fY, SkIntToScalar(1)/4)); |
| return SkGradientShader::MakeTwoPointConical(center1, (pts[1].fX - pts[0].fX) / 7, |
| center0, (pts[1].fX - pts[0].fX) / 2, |
| colors, pos, SK_ARRAY_COUNT(colors), tm, |
| 0, &scale); |
| } |
| |
| typedef void (*PaintProc)(SkPaint*, SkScalar width); |
| |
| class BlurRectGM : public skiagm::GM { |
| public: |
| BlurRectGM(const char name[], U8CPU alpha) : fName(name), fAlpha(SkToU8(alpha)) {} |
| |
| private: |
| sk_sp<SkMaskFilter> fMaskFilters[kLastEnum_SkBlurStyle + 1]; |
| const char* fName; |
| SkAlpha fAlpha; |
| |
| void onOnceBeforeDraw() override { |
| for (int i = 0; i <= kLastEnum_SkBlurStyle; ++i) { |
| fMaskFilters[i] = SkMaskFilter::MakeBlur((SkBlurStyle)i, |
| SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(STROKE_WIDTH/2))); |
| } |
| } |
| |
| SkString onShortName() override { return SkString(fName); } |
| |
| SkISize onISize() override { return {860, 820}; } |
| |
| void onDraw(SkCanvas* canvas) override { |
| canvas->translate(STROKE_WIDTH*3/2, STROKE_WIDTH*3/2); |
| |
| SkRect r = { 0, 0, 100, 50 }; |
| SkScalar scales[] = { SK_Scalar1, 0.6f }; |
| |
| for (size_t s = 0; s < SK_ARRAY_COUNT(scales); ++s) { |
| canvas->save(); |
| for (size_t f = 0; f < SK_ARRAY_COUNT(fMaskFilters); ++f) { |
| SkPaint paint; |
| paint.setMaskFilter(fMaskFilters[f]); |
| paint.setAlpha(fAlpha); |
| |
| SkPaint paintWithRadial = paint; |
| paintWithRadial.setShader(make_radial()); |
| |
| constexpr Proc procs[] = { |
| fill_rect, draw_donut, draw_donut_skewed |
| }; |
| |
| canvas->save(); |
| canvas->scale(scales[s], scales[s]); |
| this->drawProcs(canvas, r, paint, false, procs, SK_ARRAY_COUNT(procs)); |
| canvas->translate(r.width() * 4/3, 0); |
| this->drawProcs(canvas, r, paintWithRadial, false, procs, SK_ARRAY_COUNT(procs)); |
| canvas->translate(r.width() * 4/3, 0); |
| this->drawProcs(canvas, r, paint, true, procs, SK_ARRAY_COUNT(procs)); |
| canvas->translate(r.width() * 4/3, 0); |
| this->drawProcs(canvas, r, paintWithRadial, true, procs, SK_ARRAY_COUNT(procs)); |
| canvas->restore(); |
| |
| canvas->translate(0, SK_ARRAY_COUNT(procs) * r.height() * 4/3 * scales[s]); |
| } |
| canvas->restore(); |
| canvas->translate(4 * r.width() * 4/3 * scales[s], 0); |
| } |
| } |
| |
| void drawProcs(SkCanvas* canvas, const SkRect& r, const SkPaint& paint, |
| bool doClip, const Proc procs[], size_t procsCount) { |
| SkAutoCanvasRestore acr(canvas, true); |
| for (size_t i = 0; i < procsCount; ++i) { |
| if (doClip) { |
| SkRect clipRect(r); |
| clipRect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2); |
| canvas->save(); |
| canvas->clipRect(r); |
| } |
| procs[i](canvas, r, paint); |
| if (doClip) { |
| canvas->restore(); |
| } |
| canvas->translate(0, r.height() * 4/3); |
| } |
| } |
| }; |
| |
| DEF_SIMPLE_GM(blurrect_gallery, canvas, 1200, 1024) { |
| const int fGMWidth = 1200; |
| const int fPadding = 10; |
| const int fMargin = 100; |
| |
| const int widths[] = {25, 5, 5, 100, 150, 25}; |
| const int heights[] = {100, 100, 5, 25, 150, 25}; |
| const SkBlurStyle styles[] = {kNormal_SkBlurStyle, kInner_SkBlurStyle, kOuter_SkBlurStyle}; |
| const float radii[] = {20, 5, 10}; |
| |
| canvas->translate(50,20); |
| |
| int cur_x = 0; |
| int cur_y = 0; |
| |
| int max_height = 0; |
| |
| for (size_t i = 0 ; i < SK_ARRAY_COUNT(widths) ; i++) { |
| int width = widths[i]; |
| int height = heights[i]; |
| SkRect r; |
| r.setWH(SkIntToScalar(width), SkIntToScalar(height)); |
| SkAutoCanvasRestore autoRestore(canvas, true); |
| |
| for (size_t j = 0 ; j < SK_ARRAY_COUNT(radii) ; j++) { |
| float radius = radii[j]; |
| for (size_t k = 0 ; k < SK_ARRAY_COUNT(styles) ; k++) { |
| SkBlurStyle style = styles[k]; |
| |
| SkMask mask; |
| if (!SkBlurMask::BlurRect(SkBlurMask::ConvertRadiusToSigma(radius), |
| &mask, r, style)) { |
| continue; |
| } |
| |
| SkAutoMaskFreeImage amfi(mask.fImage); |
| |
| SkBitmap bm; |
| bm.installMaskPixels(mask); |
| |
| if (cur_x + bm.width() >= fGMWidth - fMargin) { |
| cur_x = 0; |
| cur_y += max_height + fPadding; |
| max_height = 0; |
| } |
| |
| canvas->save(); |
| canvas->translate((SkScalar)cur_x, (SkScalar)cur_y); |
| canvas->translate(-(bm.width() - r.width())/2, -(bm.height()-r.height())/2); |
| canvas->drawBitmap(bm, 0.f, 0.f, nullptr); |
| canvas->restore(); |
| |
| cur_x += bm.width() + fPadding; |
| if (bm.height() > max_height) |
| max_height = bm.height(); |
| } |
| } |
| } |
| } |
| |
| namespace skiagm { |
| |
| // Compares actual blur rects with reference masks created by the GM. Animates sigma in viewer. |
| class BlurRectCompareGM : public GM { |
| protected: |
| SkString onShortName() override { return SkString("blurrect_compare"); } |
| |
| SkISize onISize() override { return {900, 1220}; } |
| |
| void onOnceBeforeDraw() override { this->prepareReferenceMasks(); } |
| |
| DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override { |
| if (canvas->imageInfo().colorType() == kUnknown_SkColorType || |
| (canvas->recordingContext() && !canvas->recordingContext()->asDirectContext())) { |
| *errorMsg = "Not supported when recording, relies on canvas->makeSurface()"; |
| return DrawResult::kSkip; |
| } |
| int32_t ctxID = canvas->recordingContext() ? canvas->recordingContext()->priv().contextID() |
| : 0; |
| if (fRecalcMasksForAnimation || !fActualMasks[0][0][0] || ctxID != fLastContextUniqueID) { |
| if (fRecalcMasksForAnimation) { |
| // Sigma is changing so references must also be recalculated. |
| this->prepareReferenceMasks(); |
| } |
| this->prepareActualMasks(canvas); |
| this->prepareMaskDifferences(canvas); |
| fLastContextUniqueID = ctxID; |
| fRecalcMasksForAnimation = false; |
| } |
| canvas->clear(SK_ColorBLACK); |
| static constexpr float kMargin = 30; |
| float totalW = 0; |
| for (auto w : kSizes) { |
| totalW += w + kMargin; |
| } |
| canvas->translate(kMargin, kMargin); |
| for (int mode = 0; mode < 3; ++mode) { |
| canvas->save(); |
| for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) { |
| auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost; |
| for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) { |
| auto h = kSizes[heightIdx]; |
| canvas->save(); |
| for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) { |
| auto w = kSizes[widthIdx]; |
| SkPaint paint; |
| paint.setColor(SK_ColorWHITE); |
| SkImage* img; |
| switch (mode) { |
| case 0: |
| img = fReferenceMasks[sigmaIdx][heightIdx][widthIdx].get(); |
| break; |
| case 1: |
| img = fActualMasks[sigmaIdx][heightIdx][widthIdx].get(); |
| break; |
| case 2: |
| img = fMaskDifferences[sigmaIdx][heightIdx][widthIdx].get(); |
| // The error images are opaque, use kPlus so they are additive if |
| // the overlap between test cases. |
| paint.setBlendMode(SkBlendMode::kPlus); |
| break; |
| } |
| auto pad = PadForSigma(sigma); |
| canvas->drawImage(img, -pad, -pad, &paint); |
| #if 0 // Uncomment to hairline stroke around blurred rect in red on top of the blur result. |
| // The rect is defined at integer coords. We inset by 1/2 pixel so our stroke lies on top |
| // of the edge pixels. |
| SkPaint stroke; |
| stroke.setColor(SK_ColorRED); |
| stroke.setStrokeWidth(0.f); |
| stroke.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(SkRect::MakeWH(w, h).makeInset(0.5, 0.5), stroke); |
| #endif |
| canvas->translate(w + kMargin, 0.f); |
| } |
| canvas->restore(); |
| canvas->translate(0, h + kMargin); |
| } |
| } |
| canvas->restore(); |
| canvas->translate(totalW + 2 * kMargin, 0); |
| } |
| return DrawResult::kOk; |
| } |
| bool onAnimate(double nanos) override { |
| fSigmaAnimationBoost = TimeUtils::SineWave(nanos, 5, 2.5f, 0.f, 2.f); |
| fRecalcMasksForAnimation = true; |
| return true; |
| } |
| |
| private: |
| void prepareReferenceMasks() { |
| auto create_reference_mask = [](int w, int h, float sigma, int numSubpixels) { |
| int pad = PadForSigma(sigma); |
| int maskW = w + 2 * pad; |
| int maskH = h + 2 * pad; |
| // We'll do all our calculations at subpixel resolution, so adjust params |
| w *= numSubpixels; |
| h *= numSubpixels; |
| sigma *= numSubpixels; |
| auto scale = SK_ScalarRoot2Over2 / sigma; |
| auto def_integral_approx = [scale](float a, float b) { |
| return 0.5f * (std::erf(b * scale) - std::erf(a * scale)); |
| }; |
| // Do the x-pass. Above/below rect are rows of zero. All rows that intersect the rect |
| // are the same. The row is calculated and stored at subpixel resolution. |
| SkASSERT(!(numSubpixels & 0b1)); |
| std::unique_ptr<float[]> row(new float[maskW * numSubpixels]); |
| for (int col = 0; col < maskW * numSubpixels; ++col) { |
| // Compute distance to rect left in subpixel units |
| float ldiff = numSubpixels * pad - (col + 0.5f); |
| float rdiff = ldiff + w; |
| row[col] = def_integral_approx(ldiff, rdiff); |
| } |
| // y-pass |
| SkBitmap bmp; |
| bmp.allocPixels(SkImageInfo::MakeA8(maskW, maskH)); |
| std::unique_ptr<float[]> accums(new float[maskW]); |
| const float accumScale = 1.f / (numSubpixels * numSubpixels); |
| for (int y = 0; y < maskH; ++y) { |
| // Initialize subpixel accumulation buffer for this row. |
| std::fill_n(accums.get(), maskW, 0); |
| for (int ys = 0; ys < numSubpixels; ++ys) { |
| // At each subpixel we want to integrate over the kernel centered at the |
| // subpixel multiplied by the x-pass. The x-pass is zero above and below the |
| // rect and constant valued from rect top to rect bottom. So we can get the |
| // integral of just the kernel from rect top to rect bottom and multiply by |
| // the single x-pass value from our precomputed row. |
| float tdiff = numSubpixels * pad - (y * numSubpixels + ys + 0.5f); |
| float bdiff = tdiff + h; |
| auto w = def_integral_approx(tdiff, bdiff); |
| for (int x = 0; x < maskW; ++x) { |
| for (int xs = 0; xs < numSubpixels; ++xs) { |
| int rowIdx = x * numSubpixels + xs; |
| accums[x] += w * row[rowIdx]; |
| } |
| } |
| } |
| for (int x = 0; x < maskW; ++x) { |
| auto result = accums[x] * accumScale; |
| *bmp.getAddr8(x, y) = SkToU8(sk_float_round2int(255.f * result)); |
| } |
| } |
| return SkImage::MakeFromBitmap(bmp); |
| }; |
| |
| // Number of times to subsample (in both X and Y). If fRecalcMasksForAnimation is true |
| // then we're animating, don't subsample as much to keep fps higher. |
| const int numSubpixels = fRecalcMasksForAnimation ? 2 : 8; |
| |
| for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) { |
| auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost; |
| for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) { |
| auto h = kSizes[heightIdx]; |
| for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) { |
| auto w = kSizes[widthIdx]; |
| fReferenceMasks[sigmaIdx][heightIdx][widthIdx] = |
| create_reference_mask(w, h, sigma, numSubpixels); |
| } |
| } |
| } |
| } |
| |
| void prepareActualMasks(SkCanvas* canvas) { |
| for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) { |
| auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost; |
| for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) { |
| auto h = kSizes[heightIdx]; |
| for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) { |
| auto w = kSizes[widthIdx]; |
| auto pad = PadForSigma(sigma); |
| auto ii = SkImageInfo::MakeA8(w + 2 * pad, h + 2 * pad); |
| auto surf = canvas->makeSurface(ii); |
| if (!surf) { |
| // Some GPUs don't have renderable A8 :( |
| surf = canvas->makeSurface(ii.makeColorType(kRGBA_8888_SkColorType)); |
| if (!surf) { |
| return; |
| } |
| } |
| auto rect = SkRect::MakeXYWH(pad, pad, w, h); |
| SkPaint paint; |
| // Color doesn't matter if we're rendering to A8 but does if we promoted to |
| // RGBA above. |
| paint.setColor(SK_ColorWHITE); |
| paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma)); |
| surf->getCanvas()->drawRect(rect, paint); |
| fActualMasks[sigmaIdx][heightIdx][widthIdx] = surf->makeImageSnapshot(); |
| } |
| } |
| } |
| } |
| |
| void prepareMaskDifferences(SkCanvas* canvas) { |
| for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) { |
| for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) { |
| for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) { |
| const auto& r = fReferenceMasks[sigmaIdx][heightIdx][widthIdx]; |
| const auto& a = fActualMasks[sigmaIdx][heightIdx][widthIdx]; |
| auto& d = fMaskDifferences[sigmaIdx][heightIdx][widthIdx]; |
| // The actual image might not be present if we're on an abandoned GrContext. |
| if (!a) { |
| d.reset(); |
| continue; |
| } |
| SkASSERT(r->width() == a->width()); |
| SkASSERT(r->height() == a->height()); |
| auto ii = SkImageInfo::Make(r->width(), r->height(), |
| kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| auto surf = canvas->makeSurface(ii); |
| if (!surf) { |
| return; |
| } |
| // We visualize the difference by turning both the alpha masks into opaque green |
| // images (where alpha becomes the green channel) and then perform a |
| // SkBlendMode::kDifference between them. |
| SkPaint filterPaint; |
| filterPaint.setColor(SK_ColorWHITE); |
| // Actually 8 * alpha becomes green to really highlight differences. |
| static constexpr float kGreenifyM[] = {0, 0, 0, 0, 0, |
| 0, 0, 0, 8, 0, |
| 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 1}; |
| auto greenifyCF = SkColorFilters::Matrix(kGreenifyM); |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| paint.setColorFilter(std::move(greenifyCF)); |
| surf->getCanvas()->drawImage(a, 0, 0, &paint); |
| paint.setBlendMode(SkBlendMode::kDifference); |
| surf->getCanvas()->drawImage(r, 0, 0, &paint); |
| d = surf->makeImageSnapshot(); |
| } |
| } |
| } |
| } |
| |
| // Per side padding around mask images for a sigma. Make this overly generous to ensure bugs |
| // related to big blurs are fully visible. |
| static int PadForSigma(float sigma) { return sk_float_ceil2int(4 * sigma); } |
| |
| static constexpr int kSizes[] = {1, 2, 4, 8, 16, 32}; |
| static constexpr float kSigmas[] = {0.5f, 1.2f, 2.3f, 3.9f, 7.4f}; |
| static constexpr size_t kNumSizes = SK_ARRAY_COUNT(kSizes); |
| static constexpr size_t kNumSigmas = SK_ARRAY_COUNT(kSigmas); |
| |
| sk_sp<SkImage> fReferenceMasks[kNumSigmas][kNumSizes][kNumSizes]; |
| sk_sp<SkImage> fActualMasks[kNumSigmas][kNumSizes][kNumSizes]; |
| sk_sp<SkImage> fMaskDifferences[kNumSigmas][kNumSizes][kNumSizes]; |
| int32_t fLastContextUniqueID; |
| // These are used only when animating. |
| float fSigmaAnimationBoost = 0; |
| bool fRecalcMasksForAnimation = false; |
| }; |
| |
| } // namespace skiagm |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| DEF_GM(return new BlurRectGM("blurrects", 0xFF);) |
| DEF_GM(return new skiagm::BlurRectCompareGM();) |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| DEF_SIMPLE_GM(blur_matrix_rect, canvas, 650, 685) { |
| static constexpr auto kRect = SkRect::MakeWH(14, 60); |
| static constexpr float kSigmas[] = {0.5f, 1.2f, 2.3f, 3.9f, 7.4f}; |
| static constexpr size_t kNumSigmas = SK_ARRAY_COUNT(kSigmas); |
| |
| const SkPoint c = {kRect.centerX(), kRect.centerY()}; |
| |
| std::vector<SkMatrix> matrices; |
| |
| matrices.push_back(SkMatrix::RotateDeg(4.f, c)); |
| |
| matrices.push_back(SkMatrix::RotateDeg(63.f, c)); |
| |
| matrices.push_back(SkMatrix::RotateDeg(30.f, c)); |
| matrices.back().preScale(1.1f, .5f); |
| |
| matrices.push_back(SkMatrix::RotateDeg(147.f, c)); |
| matrices.back().preScale(3.f, .1f); |
| |
| SkMatrix mirror; |
| mirror.setAll(0, 1, 0, |
| 1, 0, 0, |
| 0, 0, 1); |
| matrices.push_back(SkMatrix::Concat(mirror, matrices.back())); |
| |
| matrices.push_back(SkMatrix::RotateDeg(197.f, c)); |
| matrices.back().preSkew(.3f, -.5f); |
| |
| auto bounds = SkRect::MakeEmpty(); |
| for (const auto& m : matrices) { |
| SkRect mapped; |
| m.mapRect(&mapped, kRect); |
| bounds.joinNonEmptyArg(mapped.makeSorted()); |
| } |
| float blurPad = 2.f*kSigmas[kNumSigmas - 1]; |
| bounds.outset(blurPad, blurPad); |
| canvas->translate(-bounds.left(), -bounds.top()); |
| for (auto sigma : kSigmas) { |
| SkPaint paint; |
| paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma)); |
| canvas->save(); |
| for (const auto& m : matrices) { |
| canvas->save(); |
| canvas->concat(m); |
| canvas->drawRect(kRect, paint); |
| canvas->restore(); |
| canvas->translate(0, bounds.height()); |
| } |
| canvas->restore(); |
| canvas->translate(bounds.width(), 0); |
| } |
| } |